跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/15 07:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李承芳
研究生(外文):Cheng-Fang Li
論文名稱:應用顆粒阻尼技術於偏心轉子機構的減振分析:離散元素法與多體動力學雙向耦合模擬
論文名稱(外文):Vibration Reduction Analysis of Eccentric Rotor Mechanism Using Particle Damping Technology:Coupled discrete element method and multi-body dynamics simulation
指導教授:鍾雲吉
指導教授(外文):Yun-Chi Chung
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系在職專班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:65
中文關鍵詞:偏心轉子機構顆粒阻尼器振動抑制雙面平衡法耦合理論多體動力學與離散元素法
外文關鍵詞:eccentric rotor mechanismparticle dampervibration suppressiondouble-plane balancing methodcoupling theorymulti-body dynamics and discrete element method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:7
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用顆粒阻尼減振技術應用於偏心轉子傳動系統的動平衡校正,並探討其減振效益。並採用多體動力學(Multi-body Dynamics, MBD)及離散元素法(Discrete Element Method, DEM)耦合的理論,建構出具顆粒阻尼偏心轉子機構系統之MBD-DEM雙向耦合動力模擬分析模型。本研究使用雙面平衡法,平衡轉子系統上的偏心慣性力,並採用顆粒阻尼技術,透過顆粒與腔體之間的碰撞及摩擦,抑制偏心轉子轉動時所產生的振動。研究顯示不論那一種轉速與不論那一種粒徑,皆均具有一定之減振效果,在本研究中轉速600 rpm與粒徑4 mm的組合呈現最佳減振效果,其減振效果可達81%。考慮8孔洞扇形、16孔洞扇形及8孔圓柱形的三種腔體形狀,透過模擬結果的比較,得知8孔洞扇形腔體之減振效果最佳。

關鍵詞:偏心轉子機構、顆粒阻尼器、振動抑制、雙面平衡法、耦合理論、多體動力學與離散元素法。
The study applies particle damping technology to eccentric rotor systems and explores its vibration reduction performance. The coupling theory of multi-body dynamics (MBD) and the discrete element method (DEM) is proposed to analyze the dynamic characteristics of eccentric rotor systems with damping particles. This study uses a double-plane balancing method to balance the eccentric inertial forces on the rotor systems and employs granular damping technology to suppress vibrations generated by the rotating eccentric rotor through collisions and friction between the granules and the cavities. Numerical results show that, regardless of the rotational speed or particle size studied here, a certain level of vibration reduction is achieved. In this study, the eccentric rotor system with 4 mm particles under 600 rpm rotational speed exhibits the best vibration reduction effect, achieving up to 81% reduction. Considering three types of cavity patterns—8-hole sector, 16-hole sector, and 8-hole cylindrical cavities—the comparison of simulation results reveals that the 8-hole sector cavity pattern provides the best vibration reduction effect.

Keywords: eccentric rotor mechanism, particle damper, vibration suppression, double-plane balancing method, coupling theory, multi-body dynamics and discrete element method.
目錄
摘要 I
ABSTRACT II
謝誌 III
目錄 IV
圖目錄 VI
表目錄 VIII
符號對照表 IX
第1章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 1
1-3 文獻回顧 3
1-4 研究架構 3
第2章 物理問題與分析方法 5
2-1 雙面平衡法 5
2-2 離散元素法與多體動力學 5
2-3 顆粒阻尼接觸理論 7
第3章 具顆粒阻尼偏心轉子傳動系統模型建立 9
3-1 MBD-DEM耦合模型原理 9
3-2 MBD-DEM耦合模型建立 9
3-3 MBD-DEM耦合模型參數設定 10
3-3-1 求解器選用 10
3-3-2 MBD模型參數設定 10
3-3-3 DEM模型參數設定 11
3-4 摩擦係數與恢復係數實驗 12
3-5 求解器精度與時間步長的參數分析 13
第4章 具顆粒阻尼偏心轉子模擬結果與討論 14
4-1 轉速與粒徑對減振效果影響分析 14
4-2 腔體形狀對減振效果影響分析 17
4-3 填充率對顆粒減振效果影響分析 19
第5章 結論 22
參考文獻 23
作者介紹 26
參考文獻
[1]J. J. Moore, A. B. Palazzolo, R. Gadangi, T. A. Nale, S. A. Klusman, G. V. Brown, A. F. Kascak, A forced response analysis and application of impact dampers to rotor dynamic vibration suppression in a cryogenic environment, J. Vib. Acoust. 117 (1995) 300-310.
[2]C. X. Wong, M. C. Daniel, J. A. Rongon, Energy dissipation prediction of particle dampers, J. Sound Vib. 319 (2009) 91-118.
[3]B. Yao, Q. Chen, Investigation on zero-gravity behavior of particle dampers, J. Vib. Control 21 (2015) 124-133.
[4]Z. Xu, M. Y. Wang, T. Chen, An experimental study of particle damping for beams and plates, J. Vib. Acoust. 126 (2004) 141-148.
[5]Z. Lu, X. Lu, W. Lu, S. F. Masri, Experimental studies of the effects of buffered particle dampers attached to a multi-degree-of-freedom system under dynamic loads, J. Sound Vib. 331 (2012) 2007-2022.
[6]Z. Lu, Y. Liao, Z. Huang, Stochastic response control of particle dampers under random seismic excitation, J. Sound Vib. 481 (2020) 115439.
[7]Z. Lu, X. Lu, S. F. Masri, Studies of the performance of particle dampers under dynamic loads, J. Sound Vib. 329 (2010) 5415-5433.
[8]B. Yao, Q. Chen, Investigation on zero-gravity behavior of particle dampers, J Vib Control 21 (2015): 124-133.
[9]H. V. Panossian, Structural damping enhancement via non-obstructive particle damping technique, J. Vib. Acoust. 114 (1992) 101-105.
[10]B. L. Fowler, E. M. Flint, S. E. Olson, Design methodology for particle damping, Smart Mater. Struct. : Damping and Isolation. 4331 (2001) 186-197.
[11]Z. Lu, X.L. Lu, W.S. Lu, S.F. Masri, Experimental studies of the effects of buffered particle dampers attached to a multi-degree-of-freedom system under dynamic loads, J. Sound Vib.331 (2012) 2007-2022.
[12]S. C. Dragomir, M. Sinnott, E. S. Semercigil, Ö. F. Turan, Energy dissipation characteristics of particle sloshing in a rotating cylinder, J. Sound Vib. 331 (2012) 963-973.
[13]M. Saeki, Analytical study of multi-particle damping, J. Sound Vib. 281 (2005) 1133-1144.

[14]N. Ahmad, R. Ranganath, A. Ghosal, Modeling and experimental study of a honeycomb beam filled with damping particles, J. Sound Vib. 391 (2017) 20-34.
[15]J. Chen, Y. Wang, Y. Zhao, Y. Feng, Experimental research on design parameters of basin tuned and particle damper for wind turbine tower on shaker, Struct. Control Health Monit. 26 (2019) e2440.
[16]Z. Lu, X. Lu, S. F. Masri, Studies of the performance of particle dampers under dynamic loads, J. Sound Vib. 329 (2010) 5415-5433.
[17]Z. Lu, S. F. Masri, X. Lu, Studies of the performance of particle dampers attached to a two-degrees-of-freedom system under random excitation, J. Vib. Control 17 (2011) 1454-1471.
[18]C. X. Wong, M. C. Daniel, J. A. Rongong, Energy dissipation prediction of particle dampers, J. Sound Vib. 319 (2009) 91-118.
[19]J. E. Bolander, J. Eliáš, G. Cusatis, K. Nagai, Discrete mechanical models of concrete fracture, Eng. Fract. Mech. 257 (2021): 108030.
[20]S. R. Jaggannagari, R. K. Desu, J. Reimann, Y. Gan, M. Moscardini, R. K. Annabattula, DEM simulations of vibrated sphere packings in slender prismatic containers, Powder Technology 393 (2021) 31-59.
[21]P. A. Cundall, O. D. L. Strack, A discrete numerical model for granular assemblies, geotechnique 29 (1979) 47-65.
[22]Z. Xu, M. Y. Wang, T. Chen, An experimental study of particle damping for beams and plates, J. Vib. Acoust. 126 (2004) 141-148.
[23]C. X. Wong, M. C. Daniel, J. A. Rongong, Energy dissipation prediction of particle dampers, J. Sound Vib. 319 (2009) 91-118.
[24]E. Corral, R. G. Moreno, M. J. G. García, C. Castejón, Nonlinear phenomena of contact in multibody systems dynamics: a review, Nonlinear Dyn. 104 (2021) 1269-1295.
[25]W. Q. Xiao, Y. X. Huang, H. Jiang, H. Lin, J. N. Li, Energy dissipation mechanism and experiment of particle dampers for gear transmission under centrifugal loads, Particuology 27 (2016) 40-50.
[26]W. Q. Xiao, J. N. Li, Investigation into the influence of particles' friction coefficient on vibration suppression in gear transmission, Mech. Mach. Theory 108 (2017) 217-230.
[27]S. Lommen, G. Lodewijks, D. L. Schott, Co-simulation framework of discrete element method and multibody dynamics models, Eng. Comput. 35 (2018) 1481-1499.
電子全文 電子全文(網際網路公開日期:20290731)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top