1. Lukasik, S., Why the Arpanet Was Built, IEEE Annals of the History of Computing, vol. 33, no. 3, pp.4-21, 2011.
2. Forouzan, B.A., Data Communications and Networking(4th ed.), McGraw Hill, 2012.
3. Chow, W. W., Koch, S.W., & Sargent, M., Semiconductor-laser physics, Springer Science & Business Media, 2012.
4. SFF Committee, Gigabit Interface Converter (GBIC), 1999.
5. SFF Committee, SFP (Small Form factor Pluggable) Transceiver, 2001.
6. Peng Z., Guiming H., Liwu Z., 1000BASE-T SFP, Proceedings of the 5th Electronics Packaging Technology Conference , IEEE, 2003.
7. SFF Committee, QSFP (Quad Small Formfactor Pluggable) Transceiver, 2006.
8. QSFP-DD MSA, QSFP-DD Specification for QSFP Double Density 8x pluggable transceiver, Rev1.0, 2016.
9. QSFP-DD MSA, QSFP-DD/QSFP-DD800/QSFP112 Hardware Specification for QSFP Double Density 8x and QSFP 4x pluggable transceivers, Rev6.01, 2021.
10. QSFP-DD MSA, QSFP-DD/QSFP-DD800/QSFP-DD1600 Hardware Specification for QSFP Double Density 8x pluggable transceivers, Rev7.0, 2023.
11. A. Romero and S. Kipp, Cooling 8×100GbE switch blades with high power optical modules, 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp. 1327-1333, 2012.
12. Mack, B., and Graham, T., Thermal specifications for pluggable optics modules, 2016 32nd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). IEEE, 2016.
13. Samtec, Inc., Thermal Design of QSFP-DD Cages and Heatsinks For High Power High Density Applications, 2018.
14. Dogruoz, B., Giovanni, G., Nowell, M., Nering, R., Tsai, A., Aranyosi, A., Maki, J., Ali, H., Kapuscinski, C., Shah, V., Sommers S., Daou, F., Daou, H., Best, B., Cheng, N., Optimizing QSFP-DD Systems to Achieve at Least 25 Watt Thermal Port Performance, QSFP-DD MSA, 2021.
15. Chen A., Kocsis S., Ajersch P., Mack B., Giobbio G., Jacques J., Nowell M., Little T., Park W., Yang P., Aranyosi A., Le V., Maki J., Daou H., Farajalla S., Ali H., Sommers S., Kuzhikkali R., Sammon K., Enabling QSFP-DD1600 Ecosystem With Performance-Driven Thermal Innovations, QSFP-DD MSA, 2023.
16. Raghupathy A.P., Boundary-Condition-Independent Reduced-Order Modeling for Thermal Analysis of Complex Electronics Packages, University of Cincinnati, 2009.
17. JEDEC Standard JESD15-4, DELPHI Compact Thermal Model Guideline, 2008.
18. Bar-Cohen, A., Elperin, T., Eliasi, R., θjc Characterization of Chip Packages- Justification, Limitations, and Future, IEEE Transactions on components, hybrids, and manufacturing technology, vol. 12, pp.724-731, 1989.
19. Shidore, S., & Lee, T. Y. T., A comparative study of the performance of compact model topologies and their implementation in CFD for a plastic ball grid array package, J. Electron. Packag., vol. 123, no. 13, pp. 232-237, 2001.
20. JEDEC Standard JESD15-3, Two-Resistor Compact Thermal Model Guideline, 2008.
21. Lasance C. J. M., Vinke H., Rosten H., Thermal Characterization of Electronic Devices with Boundary Condition Independent Compact Models, IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, vol. 18, no. 4, pp. 723-731, 1995.
22. Aranyosi, A., Ortega, A., Evans, J., Tarter, T., Pursel, J., & Radhakrishnan, J., Development of compact thermal models for advanced electronic packaging: Methodology and experimental validation for a single-chip CPGA package, ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No. 00CH37069) (Vol. 1, pp. 225-232). IEEE, 2000.
23. 陳霈祺,光纖收發器緊湊熱模型,碩士論文,國立中央大學,民國112年。24. 陳彥瑋,運用田口法於光纖收發器之散熱分析,碩士論文,國立中央大學,民國111年。25. Murshed, S. M. S., Introductory Chapter: Electronics Cooling—An Overview, Electronics Cooling, pp.1-11, 2016.