|
參考文獻 1. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166. 2. Jeanmaire, D.L. and R.P. Van Duyne, Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977. 84(1): p. 1-20. 3. Albrecht, M.G. and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the american chemical society, 1977. 99(15): p. 5215-5217. 4. Moskovits, M., Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. The Journal of Chemical Physics, 1978. 69(9): p. 4159-4161. 5. Moskovits, M., Surface-enhanced spectroscopy. Reviews of modern physics, 1985. 57(3): p. 783. 6. Aroca, R., Surface-enhanced vibrational spectroscopy. 2006: John Wiley & Sons. 7. Le Ru, E. and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects. 2008: Elsevier. 8. Lombardi, J.R. and R.L. Birke, A unified view of surface-enhanced Raman scattering. Accounts of chemical research, 2009. 42(6): p. 734-742. 9. Otto, A., The ‘chemical’(electronic) contribution to surface‐enhanced Raman scattering. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 2005. 36(6‐7): p. 497-509. 10. Otto, A., Charge transfer in first layer enhanced Raman scattering and surface resistance. Quarterly Phys Rev, 2017. 3. 11. Ma, Y., et al., Intrinsic Raman signal of polymer matrix induced quantitative multiphase SERS analysis based on stretched PDMS film with anchored Ag nanoparticles/Au nanowires. Chemical Engineering Journal, 2020. 381: p. 122710. 12. Chang, K., et al., Advances in metal-organic framework-plasmonic metal composites based SERS platforms: Engineering strategies in chemical sensing, practical applications and future perspectives in food safety. Chemical Engineering Journal, 2023. 459: p. 141539. 13. Liu, K., et al., Porous Au–Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis. Nano Letters, 2016. 16(6): p. 3675-3681. 14. Liu, H., et al., SERS Tags for Biomedical Detection and Bioimaging. Theranostics, 2022. 12(4): p. 1870-1903. 15. Sahin, F., et al., Antifouling superhydrophobic surfaces with bactericidal and SERS activity. Chemical Engineering Journal, 2022. 431: p. 133445. 16. Liu, X., et al., Plasmonic Coupling of Au Nanoclusters on a Flexible MXene/Graphene Oxide Fiber for Ultrasensitive SERS Sensing. ACS Sensors, 2023. 8(3): p. 1287-1298. 17. Zhang, C., et al., Magnetic surface-enhanced Raman scattering (MagSERS) biosensors for microbial food safety: Fundamentals and applications. Trends in Food Science & Technology, 2021. 113: p. 366-381. 18. Hu, B., H. Pu, and D.-W. Sun, Multifunctional cellulose based substrates for SERS smart sensing: Principles, applications and emerging trends for food safety detection. Trends in Food Science & Technology, 2021. 110: p. 304-320. 19. Li, C., et al., Local hot charge density regulation: Vibration-free pyroelectric nanogenerator for effectively enhancing catalysis and in-situ surface enhanced Raman scattering monitoring. Nano Energy, 2021. 81: p. 105585. 20. Li, C., et al., Shaped femtosecond laser induced photoreduction for highly controllable Au nanoparticles based on localized field enhancement and their SERS applications. 2020. 9(3): p. 691-702. 21. Youfu, G., et al., Femtosecond Laser Ablated Polymer SERS Fiber Probe With Photoreduced Deposition of Silver Nanoparticles. IEEE Photonics Journal, 2016. 8(5): p. 1-6. 22. Dina, N.E., et al. Structural Changes Induced in Grapevine (Vitis vinifera L.) DNA by Femtosecond IR Laser Pulses: A Surface-Enhanced Raman Spectroscopic Study. Nanomaterials, 2016. 6, DOI: 10.3390/nano6060096. 23. Han, Y., et al., Surface enhanced Raman scattering silica substrate fast fabrication by femtosecond laser pulses. Applied Physics A, 2009. 97(3): p. 721-724. 24. Wu, T. and Y.-W. Lin, Surface-enhanced Raman scattering active gold nanoparticle/nanohole arrays fabricated through electron beam lithography. Applied Surface Science, 2018. 435: p. 1143-1149. 25. Petti, L., et al., A plasmonic nanostructure fabricated by electron beam lithography as a sensitive and highly homogeneous SERS substrate for bio-sensing applications. Vibrational Spectroscopy, 2016. 82: p. 22-30. 26. Liu, X., et al., Black silicon: fabrication methods, properties and solar energy applications. Energy & Environmental Science, 2014. 7(10): p. 3223-3263. 27. Huang, Z., et al., Metal-Assisted Chemical Etching of Silicon: A Review. Advanced Materials, 2011. 23(2): p. 285-308. 28. Chartier, C., S. Bastide, and C. Lévy-Clément, Metal-assisted chemical etching of silicon in HF–H2O2. Electrochimica Acta, 2008. 53(17): p. 5509-5516. 29. Pu, S.D., et al., Achieving Ultrahigh-Rate Planar and Dendrite-Free Zinc Electroplating for Aqueous Zinc Battery Anodes. Advanced Materials, 2022. 34(28): p. 2202552. 30. Qi, H., et al., Graphdiyne Oxides as Excellent Substrate for Electroless Deposition of Pd Clusters with High Catalytic Activity. Journal of the American Chemical Society, 2015. 137(16): p. 5260-5263. 31. Liu, L., et al., Space confined electroless deposition of silver nanoparticles for highly-uniform SERS detection. Sensors and Actuators B: Chemical, 2018. 255: p. 1401-1406. 32. Fang, H., et al., Silver catalysis in the fabrication of silicon nanowire arrays. Nanotechnology, 2006. 17(15): p. 3768. 33. Huang, Z., H. Fang, and J. Zhu, Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density. Advanced Materials, 2007. 19(5): p. 744-748. 34. Milenko, K., et al., Micro-lensed optical fibers for a surface-enhanced Raman scattering sensing probe. Optics Letters, 2018. 43(24): p. 6029-6032. 35. Milenko, K., et al., Optimization of SERS Sensing With Micro-Lensed Optical Fibers and Au Nano-Film. Journal of Lightwave Technology, 2020. 38(7): p. 2081-2085. 36. Tran, W., et al., Analysis of Thin-Film Polymers Using Attenuated Total Internal Reflection–Raman Microspectroscopy. Applied Spectroscopy, 2015. 69(2): p. 230-238. 37. Christinck, J., et al., Bright single-photon emission from a GeV center in diamond under a microfabricated solid immersion lens at room temperature. Journal of Applied Physics, 2023. 133(19). 38. Chan, K.L.A. and S.G. Kazarian, Correcting the effect of refraction and dispersion of light in FT-IR spectroscopic imaging in transmission through thick infrared windows. Analytical chemistry, 2013. 85(2): p. 1029-1036. 39. Woodhead, C.S., et al., Increasing the light extraction and longevity of TMDC monolayers using liquid formed micro-lenses. 2D Materials, 2016. 4(1): p. 015032. 40. Yang, F., et al., A sandwich SERS detection system based on optical convergence and synergistic enhancement effects. Analyst, 2021. 146(20): p. 6132-6138. 41. Yang, F., et al., High-performance surface-enhanced Raman spectroscopy chip integrated with a micro-optical system for the rapid detection of creatinine in serum. Biomedical Optics Express, 2021. 12(8): p. 4795-4806. 42. Jin, C.M., J.B. Joo, and I. Choi, Facile Amplification of Solution-State Surface-Enhanced Raman Scattering of Small Molecules Using Spontaneously Formed 3D Nanoplasmonic Wells. Analytical Chemistry, 2018. 90(8): p. 5023-5031. 43. Kim, Y.-T., et al., Interference micro/nanolenses of salts for local modulation of Raman scattering. RSC advances, 2023. 13(46): p. 32487-32491. 44. Kim, Y.-T., et al., Hygroscopic Micro/Nanolenses along Carbon Nanotube Ion Channels. Nano Letters, 2020. 20(2): p. 812-819. 45. Kim, Y.T., et al., Aqueous Microlenses for Localized Collection and Enhanced Raman Spectroscopy of Gaseous Molecules. Advanced Optical Materials, 2021. 9(22). 46. Zillohu, A.U., et al., Biomimetic Transferable Surface for a Real Time Control over Wettability and Photoerasable Writing with Water Drop Lens. Scientific Reports, 2014. 4(1): p. 7407. 47. Li, R., et al., Self-Concentrated Surface-Enhanced Raman Scattering-Active Droplet Sensor with Three-Dimensional Hot Spots for Highly Sensitive Molecular Detection in Complex Liquid Environments. ACS Sensors, 2020. 5(11): p. 3420-3431. 48. Shin, S., et al., A Droplet-Based High-Throughput SERS Platform on a Droplet-Guiding-Track-Engraved Superhydrophobic Substrate. Small, 2017. 13(7): p. 1602865. 49. Tsao, C.-W., et al., Surface-enhanced Raman scattering (SERS) spectroscopy on localized silver nanoparticle-decorated porous silicon substrate. Analyst, 2021. 146(24): p. 7645-7652. 50. Hauffe, K., In hydrofluoric acid corrosion-resistant materials. Zeitschrift fuer Werkstofftechnik, 1985. 16(8): p. 259-270. 51. Al-Sharafi, A., et al., Influence of thermalcapillary and buoyant forces on flow characteristics in a droplet on hydrophobic surface. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2016. 102: p. 239-253. 52. Lee, H.J., C.K. Choi, and S.H. Lee, Local heating effect on thermal Marangoni flow and heat transfer characteristics of an evaporating droplet. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022. 195. 53. Shi, W.Y., et al., Marangoni convection instability in a sessile droplet with low volatility on heated substrate. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2017. 117: p. 274-286. 54. Zhu, J.L. and W.Y. Shi, Instability patterns of Marangoni flow in evaporating droplets on lyophobic surface. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2023. 141. 55. Ren, J., A. Crivoi, and F. Duan, Disk-Ring Deposition in Drying a Sessile Nanofluid Droplet with Enhanced Marangoni Effect and Particle Surface Adsorption. Langmuir, 2020. 36(49): p. 15064-15074. 56. Thayyil Raju, L., et al., Evaporation of a Sessile Colloidal Water–Glycerol Droplet: Marangoni Ring Formation. Langmuir, 2022. 38(39): p. 12082-12094. 57. Thokchom, A.K. and S. Shin, Dynamical Clustering and Band Formation of Particles in a Marangoni Vortexing Droplet. Langmuir, 2019. 35(27): p. 8977-8983. 58. Cheng, Z.-Q., et al., Improved SERS Performance and Catalytic Activity of Dendritic Au/Ag Bimetallic Nanostructures Based on Ag Dendrites. Nanoscale Research Letters, 2020. 15(1): p. 117. 59. Liu, T., et al., Silver morphology indicating the evolution of concentration heterogeneity. Chemical Engineering and Processing - Process Intensification, 2018. 134: p. 38-44. 60. Shen, R., et al., A dendritic Ag induced by the polyaniline on copper sheet for facilely and highly efficient SERS detection. Materials Chemistry and Physics, 2022. 287: p. 126346. 61. Volochanskyi, O., et al., Electroless deposition via galvanic displacement as a simple way for the preparation of silver, gold, and copper SERS-active substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. 616: p. 126310. 62. Wang, Y.Q., et al., Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array. Applied Surface Science, 2012. 258(15): p. 5881-5885. 63. Anyfantakis, M., et al., Modulation of the Coffee-Ring Effect in Particle/Surfactant Mixtures: the Importance of Particle–Interface Interactions. Langmuir, 2015. 31(14): p. 4113-4120. 64. Ji, B., et al., Suppression of coffee-ring effect via periodic oscillation of substrate for ultra-sensitive enrichment towards surface-enhanced Raman scattering. Nanoscale, 2019. 11(43): p. 20534-20545. 65. Parsa, M.M., Wetting and evaporation of nanosuspension droplets. 2017. 66. Trueman, R.E., et al., Auto-stratification in drying colloidal dispersions: A diffusive model. Journal of Colloid and Interface Science, 2012. 377(1): p. 207-212. 67. de Gennes, P.G., Solvent evaporation of spin cast films: “crust” effects. The European Physical Journal E, 2002. 7(1): p. 31-34. 68. Lin, X.M., et al., Formation of Long-Range-Ordered Nanocrystal Superlattices on Silicon Nitride Substrates. The Journal of Physical Chemistry B, 2001. 105(17): p. 3353-3357. 69. Li, Y., et al., Rate-dependent interface capture beyond the coffee-ring effect. Scientific Reports, 2016. 6(1): p. 24628. 70. Yang, H., et al., Femtosecond laser patterned superhydrophobic/hydrophobic SERS sensors for rapid positioning ultratrace detection. Optics Express, 2021. 29(11): p. 16904-16913. 71. Jiao, L., et al., IR laser caused droplet evaporation on the hydrophobic surface. International Journal of Heat and Mass Transfer, 2016. 94: p. 180-190. 72. Kim, M., J.-H. Lee, and J.-M. Nam, Plasmonic Photothermal Nanoparticles for Biomedical Applications. Advanced Science, 2019. 6(17): p. 1900471. 73. Caldarola, M., et al., Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nature Communications, 2015. 6(1): p. 7915. 74. Sacco, A., et al., Development of a candidate reference sample for the characterization of tip-enhanced Raman spectroscopy spatial resolution. RSC advances, 2018. 8(49): p. 27863-27869. 75. Xu, R., et al., An Efficient Strategy to Prepare Ultra-High Sensitivity SERS-Active Substrate Based on Laser-Induced Selective Metallization of Polymers. ACS Sustainable Chemistry & Engineering, 2021. 9(14): p. 5038-5049. 76. Olea-Mejía, O., et al., SERS-active Ag, Au and Ag–Au alloy nanoparticles obtained by laser ablation in liquids for sensing methylene blue. Applied Surface Science, 2015. 348: p. 66-70. 77. Yilmaz, M., et al., The fabrication of plasmonic nanoparticle-containing multilayer films via a bio-inspired polydopamine coating. RSC advances, 2016. 6(15): p. 12638-12641. 78. Hussain, A., D.-W. Sun, and H. Pu, SERS detection of urea and ammonium sulfate adulterants in milk with coffee ring effect. Food Additives & Contaminants: Part A, 2019. 36(6): p. 851-862. 79. Du, X., et al., Qualitative and Quantitative Determination of Melamine by Surface-Enhanced Raman Spectroscopy Using Silver Nanorod Array Substrates. Applied Spectroscopy, 2010. 64(7): p. 781-785.
|