跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/07 19:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊子頤
研究生(外文):Zi-Yi Yang
論文名稱:利用液滴沉積及微液滴透鏡進行表面增強拉曼散射
論文名稱(外文):Droplet deposition and Microdroplet lens for SERS
指導教授:曹嘉文
指導教授(外文):Chia-Wen Tsao
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:70
中文關鍵詞:表面增強拉曼散射金屬輔助化學蝕刻液滴沉積
相關次數:
  • 被引用被引用:0
  • 點閱點閱:8
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以無電沉積融合液滴沉積的技術,進行銀金屬粒子沉積在多孔矽(Porous Silicon)基板上之製程,實現更加簡便和高效的區域沉積,提高製程的靈活性,在無電沉積融合液滴的沉積製程中,除了有高覆蓋率以及高拉曼檢測強度外,對於控制液滴沉積銀的面積也有更加深入的討論,沉積面積的大小會直接影響銀的覆蓋率及該面積形成之接觸角,都會影響到後續的檢測結果,因此不論是銀的沉積濃度或是銀的沉積面積進行檢測,針對不同的沉積參數優化其實驗結果。在銀沉積點(LocAg-PS)上利用液滴形成液滴透鏡進行訊號增強時,首先需要對液滴形成的不同接觸角進行模擬,在確定最佳的液滴接觸角後,光線在對準液滴透鏡時,在不同的位置射入光線也產生各種不同的折射效果,經過鏡頭攝像機校正後,便可以將光線校正至液滴透鏡正中心或其附近進行檢測,隨後對不同樣本沉積方式進行分析,分別為直接乾燥、純水透鏡及樣本透鏡,在經過分析發現樣本透鏡可以提供更高的拉曼檢測訊號。因此在本論文中,除了探討銀沉積濃度對拉曼訊號造成的影響,以及光線經液滴折射聚集後產生較小的照射面積以提升光強度,在光線接觸液滴表面時也會將光線引導至銀沉積點上,並對於光線照射到液滴不同位置的影響進行探討。最後從實驗結果顯示,在以純水液滴以及樣本液滴進行拉曼檢測中,拉曼增強因子皆可以達到1.35×106和7.34×106,而與直接乾燥相比,拉曼檢測訊號分別增強了2倍和6倍,並且沒有任何雜訊的產生。
This paper presents a technique that combines electroless deposition with droplet deposition to deposit silver nanoparticles onto a porous silicon (PS) substrate. This method simplifies and enhances the efficiency of localized deposition, offering greater flexibility in the process. In the deposition process combining electroless deposition with droplet deposition, we achieved high coverage and strong Raman detection intensity. We also delved deeper into controlling the area of silver deposition by the droplet. The size of the deposition area directly affects the coverage rate of silver and the contact angle formed by that area, both of which influence subsequent detection results. Therefore, we optimized experimental results based on different deposition parameters, including silver deposition concentration and area.When using droplet lenses to enhance signals at the silver deposition points (LocAg-PS), we first simulated different contact angles formed by the droplets. After determining the optimal droplet contact angle, we studied the refraction effects of light entering the droplet lens at various positions. Through calibration with a camera lens, we adjusted the light to focus at or near the center of the droplet lens for detection. We then analyzed different sample deposition methods, including direct drying, pure water lenses, and sample lenses. The analysis revealed that sample lenses provided higher Raman detection signals.
In this paper, we discuss not only the impact of silver deposition concentration on Raman signals but also the enhancement of light intensity due to the smaller illuminated area caused by light refraction and focusing through the droplet. Additionally, we investigate the effects of light irradiation at different positions on the droplet surface on the silver deposition points. Experimental results showed that using pure water droplets and sample droplets for Raman detection achieved enhancement factors of 1.35×106 and 7.34×106, respectively. Compared to direct drying, the Raman detection signal was enhanced by 2 times and 6 times, respectively, without any noise generation.
摘要 v
Abstract vi
目錄 viii
圖目錄 x
第一章 前言 1
1-1表面增強拉曼散射及其應用 1
1-2基板材料及結構 1
1-2-1飛秒雷射脈衝 2
1-2-2電子束微影 2
1-2-3金屬輔助化學蝕刻 3
1-3無電沉積 5
1-4光學透鏡及應用 6
1-4-1固體微透鏡 6
1-4-2液滴微透鏡 9
1-5研究動機 12
第二章 實驗材料及設備 13
2-1實驗材料及設備 13
2-1-1實驗材料以及化學品 13
2-1-2實驗相關設備與分析儀器 13
2-2實驗方法 13
2-2-1多孔矽(Porous silicon,PS)製備 13
2-2-2局部銀沉積(Localized silver deposition , LocAg - PS)製備 14
2-3表面形貌的檢測 15
2-4接觸角量測 15
2-5拉曼實驗設置 16
2-6光學模擬軟體設置 18
第三章 結果與討論 19
3-1銀沉積點晶片製程 19
3-2銀沉積濃度對拉曼檢測的影響 25
3-3液滴大小及接觸角對雷射光源的影響 29
3-4液滴吸收率及蒸發問題 34
3-5 不同沉積方式對拉曼訊號的影響 36
3-6 液滴滴定量影響拉曼增強的程度 42
3-7液滴透鏡對不同儀器和雷射光波長的影響 43
3-8銀沉積點對真實樣本拉曼檢測的影響 45
第四章 結論 47
參考文獻 48
附錄 53
參考文獻
1. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166.
2. Jeanmaire, D.L. and R.P. Van Duyne, Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977. 84(1): p. 1-20.
3. Albrecht, M.G. and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the american chemical society, 1977. 99(15): p. 5215-5217.
4. Moskovits, M., Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. The Journal of Chemical Physics, 1978. 69(9): p. 4159-4161.
5. Moskovits, M., Surface-enhanced spectroscopy. Reviews of modern physics, 1985. 57(3): p. 783.
6. Aroca, R., Surface-enhanced vibrational spectroscopy. 2006: John Wiley & Sons.
7. Le Ru, E. and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects. 2008: Elsevier.
8. Lombardi, J.R. and R.L. Birke, A unified view of surface-enhanced Raman scattering. Accounts of chemical research, 2009. 42(6): p. 734-742.
9. Otto, A., The ‘chemical’(electronic) contribution to surface‐enhanced Raman scattering. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 2005. 36(6‐7): p. 497-509.
10. Otto, A., Charge transfer in first layer enhanced Raman scattering and surface resistance. Quarterly Phys Rev, 2017. 3.
11. Ma, Y., et al., Intrinsic Raman signal of polymer matrix induced quantitative multiphase SERS analysis based on stretched PDMS film with anchored Ag nanoparticles/Au nanowires. Chemical Engineering Journal, 2020. 381: p. 122710.
12. Chang, K., et al., Advances in metal-organic framework-plasmonic metal composites based SERS platforms: Engineering strategies in chemical sensing, practical applications and future perspectives in food safety. Chemical Engineering Journal, 2023. 459: p. 141539.
13. Liu, K., et al., Porous Au–Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis. Nano Letters, 2016. 16(6): p. 3675-3681.
14. Liu, H., et al., SERS Tags for Biomedical Detection and Bioimaging. Theranostics, 2022. 12(4): p. 1870-1903.
15. Sahin, F., et al., Antifouling superhydrophobic surfaces with bactericidal and SERS activity. Chemical Engineering Journal, 2022. 431: p. 133445.
16. Liu, X., et al., Plasmonic Coupling of Au Nanoclusters on a Flexible MXene/Graphene Oxide Fiber for Ultrasensitive SERS Sensing. ACS Sensors, 2023. 8(3): p. 1287-1298.
17. Zhang, C., et al., Magnetic surface-enhanced Raman scattering (MagSERS) biosensors for microbial food safety: Fundamentals and applications. Trends in Food Science & Technology, 2021. 113: p. 366-381.
18. Hu, B., H. Pu, and D.-W. Sun, Multifunctional cellulose based substrates for SERS smart sensing: Principles, applications and emerging trends for food safety detection. Trends in Food Science & Technology, 2021. 110: p. 304-320.
19. Li, C., et al., Local hot charge density regulation: Vibration-free pyroelectric nanogenerator for effectively enhancing catalysis and in-situ surface enhanced Raman scattering monitoring. Nano Energy, 2021. 81: p. 105585.
20. Li, C., et al., Shaped femtosecond laser induced photoreduction for highly controllable Au nanoparticles based on localized field enhancement and their SERS applications. 2020. 9(3): p. 691-702.
21. Youfu, G., et al., Femtosecond Laser Ablated Polymer SERS Fiber Probe With Photoreduced Deposition of Silver Nanoparticles. IEEE Photonics Journal, 2016. 8(5): p. 1-6.
22. Dina, N.E., et al. Structural Changes Induced in Grapevine (Vitis vinifera L.) DNA by Femtosecond IR Laser Pulses: A Surface-Enhanced Raman Spectroscopic Study. Nanomaterials, 2016. 6, DOI: 10.3390/nano6060096.
23. Han, Y., et al., Surface enhanced Raman scattering silica substrate fast fabrication by femtosecond laser pulses. Applied Physics A, 2009. 97(3): p. 721-724.
24. Wu, T. and Y.-W. Lin, Surface-enhanced Raman scattering active gold nanoparticle/nanohole arrays fabricated through electron beam lithography. Applied Surface Science, 2018. 435: p. 1143-1149.
25. Petti, L., et al., A plasmonic nanostructure fabricated by electron beam lithography as a sensitive and highly homogeneous SERS substrate for bio-sensing applications. Vibrational Spectroscopy, 2016. 82: p. 22-30.
26. Liu, X., et al., Black silicon: fabrication methods, properties and solar energy applications. Energy & Environmental Science, 2014. 7(10): p. 3223-3263.
27. Huang, Z., et al., Metal-Assisted Chemical Etching of Silicon: A Review. Advanced Materials, 2011. 23(2): p. 285-308.
28. Chartier, C., S. Bastide, and C. Lévy-Clément, Metal-assisted chemical etching of silicon in HF–H2O2. Electrochimica Acta, 2008. 53(17): p. 5509-5516.
29. Pu, S.D., et al., Achieving Ultrahigh-Rate Planar and Dendrite-Free Zinc Electroplating for Aqueous Zinc Battery Anodes. Advanced Materials, 2022. 34(28): p. 2202552.
30. Qi, H., et al., Graphdiyne Oxides as Excellent Substrate for Electroless Deposition of Pd Clusters with High Catalytic Activity. Journal of the American Chemical Society, 2015. 137(16): p. 5260-5263.
31. Liu, L., et al., Space confined electroless deposition of silver nanoparticles for highly-uniform SERS detection. Sensors and Actuators B: Chemical, 2018. 255: p. 1401-1406.
32. Fang, H., et al., Silver catalysis in the fabrication of silicon nanowire arrays. Nanotechnology, 2006. 17(15): p. 3768.
33. Huang, Z., H. Fang, and J. Zhu, Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density. Advanced Materials, 2007. 19(5): p. 744-748.
34. Milenko, K., et al., Micro-lensed optical fibers for a surface-enhanced Raman scattering sensing probe. Optics Letters, 2018. 43(24): p. 6029-6032.
35. Milenko, K., et al., Optimization of SERS Sensing With Micro-Lensed Optical Fibers and Au Nano-Film. Journal of Lightwave Technology, 2020. 38(7): p. 2081-2085.
36. Tran, W., et al., Analysis of Thin-Film Polymers Using Attenuated Total Internal Reflection–Raman Microspectroscopy. Applied Spectroscopy, 2015. 69(2): p. 230-238.
37. Christinck, J., et al., Bright single-photon emission from a GeV center in diamond under a microfabricated solid immersion lens at room temperature. Journal of Applied Physics, 2023. 133(19).
38. Chan, K.L.A. and S.G. Kazarian, Correcting the effect of refraction and dispersion of light in FT-IR spectroscopic imaging in transmission through thick infrared windows. Analytical chemistry, 2013. 85(2): p. 1029-1036.
39. Woodhead, C.S., et al., Increasing the light extraction and longevity of TMDC monolayers using liquid formed micro-lenses. 2D Materials, 2016. 4(1): p. 015032.
40. Yang, F., et al., A sandwich SERS detection system based on optical convergence and synergistic enhancement effects. Analyst, 2021. 146(20): p. 6132-6138.
41. Yang, F., et al., High-performance surface-enhanced Raman spectroscopy chip integrated with a micro-optical system for the rapid detection of creatinine in serum. Biomedical Optics Express, 2021. 12(8): p. 4795-4806.
42. Jin, C.M., J.B. Joo, and I. Choi, Facile Amplification of Solution-State Surface-Enhanced Raman Scattering of Small Molecules Using Spontaneously Formed 3D Nanoplasmonic Wells. Analytical Chemistry, 2018. 90(8): p. 5023-5031.
43. Kim, Y.-T., et al., Interference micro/nanolenses of salts for local modulation of Raman scattering. RSC advances, 2023. 13(46): p. 32487-32491.
44. Kim, Y.-T., et al., Hygroscopic Micro/Nanolenses along Carbon Nanotube Ion Channels. Nano Letters, 2020. 20(2): p. 812-819.
45. Kim, Y.T., et al., Aqueous Microlenses for Localized Collection and Enhanced Raman Spectroscopy of Gaseous Molecules. Advanced Optical Materials, 2021. 9(22).
46. Zillohu, A.U., et al., Biomimetic Transferable Surface for a Real Time Control over Wettability and Photoerasable Writing with Water Drop Lens. Scientific Reports, 2014. 4(1): p. 7407.
47. Li, R., et al., Self-Concentrated Surface-Enhanced Raman Scattering-Active Droplet Sensor with Three-Dimensional Hot Spots for Highly Sensitive Molecular Detection in Complex Liquid Environments. ACS Sensors, 2020. 5(11): p. 3420-3431.
48. Shin, S., et al., A Droplet-Based High-Throughput SERS Platform on a Droplet-Guiding-Track-Engraved Superhydrophobic Substrate. Small, 2017. 13(7): p. 1602865.
49. Tsao, C.-W., et al., Surface-enhanced Raman scattering (SERS) spectroscopy on localized silver nanoparticle-decorated porous silicon substrate. Analyst, 2021. 146(24): p. 7645-7652.
50. Hauffe, K., In hydrofluoric acid corrosion-resistant materials. Zeitschrift fuer Werkstofftechnik, 1985. 16(8): p. 259-270.
51. Al-Sharafi, A., et al., Influence of thermalcapillary and buoyant forces on flow characteristics in a droplet on hydrophobic surface. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2016. 102: p. 239-253.
52. Lee, H.J., C.K. Choi, and S.H. Lee, Local heating effect on thermal Marangoni flow and heat transfer characteristics of an evaporating droplet. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022. 195.
53. Shi, W.Y., et al., Marangoni convection instability in a sessile droplet with low volatility on heated substrate. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2017. 117: p. 274-286.
54. Zhu, J.L. and W.Y. Shi, Instability patterns of Marangoni flow in evaporating droplets on lyophobic surface. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2023. 141.
55. Ren, J., A. Crivoi, and F. Duan, Disk-Ring Deposition in Drying a Sessile Nanofluid Droplet with Enhanced Marangoni Effect and Particle Surface Adsorption. Langmuir, 2020. 36(49): p. 15064-15074.
56. Thayyil Raju, L., et al., Evaporation of a Sessile Colloidal Water–Glycerol Droplet: Marangoni Ring Formation. Langmuir, 2022. 38(39): p. 12082-12094.
57. Thokchom, A.K. and S. Shin, Dynamical Clustering and Band Formation of Particles in a Marangoni Vortexing Droplet. Langmuir, 2019. 35(27): p. 8977-8983.
58. Cheng, Z.-Q., et al., Improved SERS Performance and Catalytic Activity of Dendritic Au/Ag Bimetallic Nanostructures Based on Ag Dendrites. Nanoscale Research Letters, 2020. 15(1): p. 117.
59. Liu, T., et al., Silver morphology indicating the evolution of concentration heterogeneity. Chemical Engineering and Processing - Process Intensification, 2018. 134: p. 38-44.
60. Shen, R., et al., A dendritic Ag induced by the polyaniline on copper sheet for facilely and highly efficient SERS detection. Materials Chemistry and Physics, 2022. 287: p. 126346.
61. Volochanskyi, O., et al., Electroless deposition via galvanic displacement as a simple way for the preparation of silver, gold, and copper SERS-active substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. 616: p. 126310.
62. Wang, Y.Q., et al., Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array. Applied Surface Science, 2012. 258(15): p. 5881-5885.
63. Anyfantakis, M., et al., Modulation of the Coffee-Ring Effect in Particle/Surfactant Mixtures: the Importance of Particle–Interface Interactions. Langmuir, 2015. 31(14): p. 4113-4120.
64. Ji, B., et al., Suppression of coffee-ring effect via periodic oscillation of substrate for ultra-sensitive enrichment towards surface-enhanced Raman scattering. Nanoscale, 2019. 11(43): p. 20534-20545.
65. Parsa, M.M., Wetting and evaporation of nanosuspension droplets. 2017.
66. Trueman, R.E., et al., Auto-stratification in drying colloidal dispersions: A diffusive model. Journal of Colloid and Interface Science, 2012. 377(1): p. 207-212.
67. de Gennes, P.G., Solvent evaporation of spin cast films: “crust” effects. The European Physical Journal E, 2002. 7(1): p. 31-34.
68. Lin, X.M., et al., Formation of Long-Range-Ordered Nanocrystal Superlattices on Silicon Nitride Substrates. The Journal of Physical Chemistry B, 2001. 105(17): p. 3353-3357.
69. Li, Y., et al., Rate-dependent interface capture beyond the coffee-ring effect. Scientific Reports, 2016. 6(1): p. 24628.
70. Yang, H., et al., Femtosecond laser patterned superhydrophobic/hydrophobic SERS sensors for rapid positioning ultratrace detection. Optics Express, 2021. 29(11): p. 16904-16913.
71. Jiao, L., et al., IR laser caused droplet evaporation on the hydrophobic surface. International Journal of Heat and Mass Transfer, 2016. 94: p. 180-190.
72. Kim, M., J.-H. Lee, and J.-M. Nam, Plasmonic Photothermal Nanoparticles for Biomedical Applications. Advanced Science, 2019. 6(17): p. 1900471.
73. Caldarola, M., et al., Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nature Communications, 2015. 6(1): p. 7915.
74. Sacco, A., et al., Development of a candidate reference sample for the characterization of tip-enhanced Raman spectroscopy spatial resolution. RSC advances, 2018. 8(49): p. 27863-27869.
75. Xu, R., et al., An Efficient Strategy to Prepare Ultra-High Sensitivity SERS-Active Substrate Based on Laser-Induced Selective Metallization of Polymers. ACS Sustainable Chemistry & Engineering, 2021. 9(14): p. 5038-5049.
76. Olea-Mejía, O., et al., SERS-active Ag, Au and Ag–Au alloy nanoparticles obtained by laser ablation in liquids for sensing methylene blue. Applied Surface Science, 2015. 348: p. 66-70.
77. Yilmaz, M., et al., The fabrication of plasmonic nanoparticle-containing multilayer films via a bio-inspired polydopamine coating. RSC advances, 2016. 6(15): p. 12638-12641.
78. Hussain, A., D.-W. Sun, and H. Pu, SERS detection of urea and ammonium sulfate adulterants in milk with coffee ring effect. Food Additives & Contaminants: Part A, 2019. 36(6): p. 851-862.
79. Du, X., et al., Qualitative and Quantitative Determination of Melamine by Surface-Enhanced Raman Spectroscopy Using Silver Nanorod Array Substrates. Applied Spectroscopy, 2010. 64(7): p. 781-785.
電子全文 電子全文(網際網路公開日期:20290805)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top