|
Anderson, R. L., & Wolf, W. J. (1995). Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing. J Nutr, 125(3 Suppl), 581s-588s. Anitha, T. S., & Palanivelu, P. (2013). Purification and characterization of an extracellular keratinolytic protease from a new isolate of Aspergillus parasiticus. Protein Expression and Purification, 88(2), 214-220. Appolaire, A., Colombo, M., Basbous, H., Gabel, F., Girard, E., & Franzetti, B. (2016). TET peptidases: A family of tetrahedral complexes conserved in prokaryotes. Biochimie, 122, 188-196. Auer, G. K., & Weibel, D. B. (2017). Bacterial Cell Mechanics. Biochemistry, 56(29), 3710-3724. Canaan, J. M. M., Brasil, G. S. A. P., de Barros, N. R., Mussagy, C. U., Guerra, N. B., & Herculano, R. D. (2022). Soybean processing wastes and their potential in the generation of high value added products. Food Chemistry, 373, 131476. Choi, I. S., Kim, Y. G., Jung, J. K., & Bae, H.-J. (2015). Soybean waste (okara) as a valorization biomass for the bioethanol production. Energy, 93, 1742-1747. da Silva, C. M. L., Spinelli, E., & Rodrigues, S. V. (2015). Fast and sensitive collagen quantification by alkaline hydrolysis/hydroxyproline assay. Food Chemistry, 173, 619-623. Daliri, E. B.-M., Oh, D. H., & Lee, B. H. (2017). Bioactive Peptides. Foods, 6(5), 32. Drag, M., & Salvesen, G. S. (2010). Emerging principles in protease-based drug discovery. Nature reviews Drug discovery, 9(9), 690-701. Durá, M. A., Receveur-Brechot, V., Andrieu, J.-P., Ebel, C., Schoehn, G., Roussel, A., & Franzetti, B. (2005). Characterization of a TET-like aminopeptidase complex from the hyperthermophilic archaeon Pyrococcus horikoshii. Biochemistry, 44(9), 3477-3486. Fayaz, G., Plazzotta, S., Calligaris, S., Manzocco, L., & Nicoli, M. C. (2019). Impact of high pressure homogenization on physical properties, extraction yield and biopolymer structure of soybean okara. LWT, 113, 108324. Feng, J.-Y., Wang, R., Thakur, K., Ni, Z.-J., Zhu, Y.-Y., Hu, F., Zhang, J.-G., & Wei, Z.-J. (2021). Evolution of okara from waste to value added food ingredient: An account of its bio-valorization for improved nutritional and functional effects. Trends in Food Science & Technology, 116, 669-680. Gicana, R. G., Huang, M.-H., Jia, T. Z., Chiang, Y.-R., & Wang, P.-H. (2023). Upcycling soybean pulp for sustainable amino acid and subsequent protein biomanufacturing via a one-pot thermophilic protease cascade treatment. Chemical Engineering Journal, 474, 145925. Gicana, R. G., Yeh, F.-I., Hsiao, T.-H., Chiang, Y.-R., Yan, J.-S., & Wang, P.-H. (2022). Valorization of fish waste and sugarcane bagasse for Alcalase production by Bacillus megaterium via a circular bioeconomy model. Journal of the Taiwan Institute of Chemical Engineers, 135, 104358. Godfrey, T., & West, S. (1996). Industrial enzymology (2nd ed.). Macmillan London. Gupta, R., Beg, Q., & Lorenz, P. (2002). Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology, 59(1), 15-32. Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R., & Meybeck, A. (2011). Global food losses and food waste. In: FAO Rome. He, J.-S., & Fulco, A. (1991). A barbiturate-regulated protein binding to a common sequence in the cytochrome P450 genes of rodents and bacteria. Journal of Biological Chemistry, 266(12), 7864-7869. Hebeda, R., Styrlund, C., & Teague, W. (1988). Benefits of Bacillus megaterium amylase in dextrose production. Starch‐Stärke, 40(1), 33-36. Heng, X., Chen, H., Lu, C., Feng, T., Li, K., & Gao, E. (2022). Study on synergistic fermentation of bean dregs and soybean meal by multiple strains and proteases. LWT, 154, 112626. Herpandi, N. H., Rosma, A., & Wan Nadiah, W. (2011). The tuna fishing industry: A new outlook on fish protein hydrolysates. Comprehensive Reviews in Food Science and Food Safety, 10(4), 195-207. Hu, Y., Piao, C., Chen, Y., Zhou, Y., Wang, D., Yu, H., & Xu, B. (2019). Soybean residue (okara) fermentation with the yeast Kluyveromyces marxianus. Food Bioscience, 31, 100439. Jahan-Mihan, A., Luhovyy, B. L., Khoury, D. E., & Anderson, G. H. (2011). Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract. Nutrients, 3(5), 574-603. Khare, S. K., Jha, K., & Gandhi, A. P. (1995). Citric acid production from Okara (soy-residue) by solid-state fermentation. Bioresource Technology, 54(3), 323-325. Kirk, O., Borchert, T. V., & Fuglsang, C. C. (2002). Industrial enzyme applications. Current Opinion in Biotechnology, 13(4), 345-351. Kittsteiner-Eberle, R., Ogbomo, I., & Schmidt, H.-L. (1989). Biosensing devices for the semi-automated control of dehydrogenase substrates in fermentations. Biosensors, 4(2), 75-85. Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Dairy Journal, 16(9), 945-960. Korneli, C., David, F., Biedendieck, R., Jahn, D., & Wittmann, C. (2013). Getting the big beast to work—Systems biotechnology of Bacillus megaterium for novel high-value proteins. Journal of biotechnology, 163(2), 87-96. Korneli, C., David, F., Godard, T., & Franco‐Lara, E. (2011). Influence of fructose and oxygen gradients on fed‐batch recombinant protein production using Bacillus megaterium. Engineering in Life Sciences, 11(4), 338-349. Kristinsson, H. G., & Rasco, B. A. (2000). Fish protein hydrolysates: production, biochemical, and functional properties. Critical reviews in food science and nutrition, 40(1), 43-81. Křížová, L., Dadáková, K., Kašparovská, J., & Kašparovský, T. (2019). Isoflavones. Molecules, 24(6), 1076. López-Otín, C., & Bond, J. S. (2008). Proteases: multifunctional enzymes in life and disease. Journal of Biological Chemistry, 283(45), 30433-30437. López-Otín, C., & Overall, C. M. (2002). Protease degradomics: a new challenge for proteomics. Nature reviews Molecular cell biology, 3(7), 509-519. Lahl, W. J., & Braun, S. D. (1994). Enzymatic production of protein hydrolysates for food use. Food technology (Chicago), 48(10), 68-71. Lenihan, P., Orozco, A., O’Neill, E., Ahmad, M. N. M., Rooney, D. W., & Walker, G. M. (2010). Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal, 156(2), 395-403. Li, B., Lu, F., Nan, H., & Liu, Y. (2012). Isolation and Structural Characterisation of Okara Polysaccharides. Molecules, 17(1), 753-761. Li, B., Yang, W., Nie, Y., Kang, F., Goff, H. D., & Cui, S. W. (2019). Effect of steam explosion on dietary fiber, polysaccharide, protein and physicochemical properties of okara. Food Hydrocolloids, 94, 48-56. Li, H., Long, D., Peng, J., Ming, J., & Zhao, G. (2012). A novel in-situ enhanced blasting extrusion technique—Extrudate analysis and optimization of processing conditions with okara. Innovative Food Science & Emerging Technologies, 16, 80-88. Li, S., Wang, L., Song, C., Hu, X., Sun, H., Yang, Y., Lei, Z., & Zhang, Z. (2014). Utilization of soybean curd residue for polysaccharides by Wolfiporia extensa (Peck) Ginns and the antioxidant activities in vitro. Journal of the Taiwan Institute of Chemical Engineers, 45(1), 6-11. Li, S., Zhu, D., Li, K., Yang, Y., Lei, Z., & Zhang, Z. (2013). Soybean Curd Residue: Composition, Utilization, and Related Limiting Factors. ISRN Industrial Engineering, 2013, 423590. Lu, F., Liu, Y., & Li, B. (2013). Okara dietary fiber and hypoglycemic effect of okara foods. Bioactive Carbohydrates and Dietary Fibre, 2(2), 126-132. Martín, L., Prieto, M. A., Cortes, E., & García, J. (1995). Cloning and sequencing of the pac gene encoding the penicillin G acylase of Bacillus megaterium ATCC 14945. FEMS microbiology letters, 125(2-3), 287-292. Mateos-Aparicio, I., Mateos-Peinado, C., Jiménez-Escrig, A., & Rupérez, P. (2010). Multifunctional antioxidant activity of polysaccharide fractions from the soybean byproduct okara. Carbohydrate Polymers, 82(2), 245-250. Mateos-Aparicio, I., Redondo-Cuenca, A., Villanueva-Suárez, M.-J., Zapata-Revilla, M.-A., & Tenorio-Sanz, M.-D. (2010). Pea pod, broad bean pod and okara, potential sources of functional compounds. LWT-Food Science and Technology, 43(9), 1467-1470. Metz, R. J., Allen, L. N., Cao, T. M., & Zeman, N. W. (1988). Nucleotide sequence of an amylase gene from Bacillus megaterium. Nucleic acids research, 16(11), 5203-5203. Morita, M., Tomita, K., Ishizawa, M., Takagi, K., Kawamura, F., Takahashi, H., & Morino, T. (1999). Cloning of oxetanocin A biosynthetic and resistance genes that reside on a plasmid of Bacillus megaterium strain NK84-0128. Bioscience, biotechnology, and biochemistry, 63(3), 563-566. Nagao, T., Mitamura, T., Wang, X. H., Negoro, S., Yomo, T., Urabe, I., & Okada, H. (1992). Cloning, nucleotide sequences, and enzymatic properties of glucose dehydrogenase isozymes from Bacillus megaterium IAM1030. Journal of bacteriology, 174(15), 5013-5020. Overall, C. M., & Blobel, C. P. (2007). In search of partners: linking extracellular proteases to substrates. Nature reviews Molecular cell biology, 8(3), 245-257. Ovissipour, M., Abedian Kenari, A., Motamedzadegan, A., & Nazari, R. M. (2012). Optimization of Enzymatic Hydrolysis of Visceral Waste Proteins of Yellowfin Tuna (Thunnus albacares). Food and Bioprocess Technology, 5(2), 696-705. Papargyropoulou, E., Lozano, R., K. Steinberger, J., Wright, N., & Ujang, Z. b. (2014). The food waste hierarchy as a framework for the management of food surplus and food waste. Journal of Cleaner Production, 76, 106-115. Paritosh, K., Kushwaha, S. K., Yadav, M., Pareek, N., Chawade, A., & Vivekanand, V. (2017). Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling. BioMed Research International, 2017, 2370927. Pasupuleti, V. K., & Braun, S. (2010). State of the art manufacturing of protein hydrolysates. Protein hydrolysates in biotechnology, 11-32. Pattanakittivorakul, S., Lertwattanasakul, N., Yamada, M., & Limtong, S. (2019). Selection of thermotolerant Saccharomyces cerevisia e for high temperature ethanol production from molasses and increasing ethanol production by strain improvement. Antonie Van Leeuwenhoek, 112, 975-990. Pojić, M., Mišan, A., & Tiwari, B. (2018). Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends in Food Science & Technology, 75, 93-104. Rahman, M. M., Mat, K., Ishigaki, G., & Akashi, R. (2021). A review of okara (soybean curd residue) utilization as animal feed: Nutritive value and animal performance aspects. Animal Science Journal, 92(1), e13594. RAUX, E., LANOIS, A., Warren, M. J., Rambach, A., & THERMES, C. (1998). Cobalamin (vitamin B12) biosynthesis: identification and characterization of a Bacillus megaterium cobI operon. Biochemical Journal, 335(1), 159-166. Reyes-Turcu, F. E., Ventii, K. H., & Wilkinson, K. D. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annual review of biochemistry, 78, 363-397. Sambrook, J., Russell, D. W., Irwin, C. A., & Janssen, K. A. (2001). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press. Schmidt, S., Wolf, N., Strey, J., Nahrstedt, H., Meinhardt, F., & Waldeck, J. (2005). Test systems to study transcriptional regulation and promoter activity in Bacillus megaterium. Applied Microbiology and Biotechnology, 68, 647-655. SHIMADA, N., HASEGAWA, S., HARADA, T., TOMISAWA, T., FUJII, A., & TAKITA, T. (1986). Oxetanocin, a novel nucleoside from bacteria. The Journal of antibiotics, 39(11), 1623-1625. Shiota, H., Nitta, K., Naito, T., Mimura, Y., & Maruyama, T. (1996). Clinical evaluation of carbocyclic oxetanocin G eyedrops in the treatment of herpes simplex corneal ulcers. British journal of ophthalmology, 80(5), 413-415. Sánchez, A., & Vázquez, A. (2017). Bioactive peptides: A review. Food Quality and Safety, 1(1), 29-46. Stammen, S., Müller, B. K., Korneli, C., Biedendieck, R., Gamer, M., Franco-Lara, E., & Jahn, D. (2010). High-Yield Intra- and Extracellular Protein Production Using Bacillus megaterium. Applied and Environmental Microbiology, 76(12), 4037-4046. SUGA, K. I., Shiba, Y., Sorai, T., Shioya, S., & Ishimura, F. (1990). Reaction kinetics and mechanism of immobilized penicillin acylase from Bacillus megaterium. Annals of the New York Academy of Sciences, 613(1), 808-815. Tacias-Pascacio, V. G., Morellon-Sterling, R., Siar, E.-H., Tavano, O., Berenguer-Murcia, Á., & Fernandez-Lafuente, R. (2020). Use of Alcalase in the production of bioactive peptides: A review. International Journal of Biological Macromolecules, 165, 2143-2196. Takasaki, Y. (1989). Novel maltose-producing amylase from Bacillus megaterium G-2. Agricultural and biological chemistry, 53(2), 341-347. Tavano, O. L. (2013). Protein hydrolysis using proteases: An important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic, 90, 1-11. Tseng, C. K., Marquez, V. E., Milne, G. W., Wysocki Jr, R. J., Mitsuya, H., Shirasaki, T., & Driscoll, J. S. (1991). A ring-enlarged oxetanocin A analog as an inhibitor HIV infectivity. Journal of medicinal chemistry, 34(1), 343-349. Turk, B. (2006). Targeting proteases: successes, failures and future prospects. Nature reviews Drug discovery, 5(9), 785-799. Turk, B., Turk, D., & Turk, V. (2000). Lysosomal cysteine proteases: more than scavengers. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1477(1-2), 98-111. Turk, B., Turk, D., & Turk, V. (2012). Protease signalling: the cutting edge. The EMBO Journal, 31(7), 1630-1643. United Nations. (2015). Sustainable Development Goals. https://sdgs.un.org/goals#goals Vary, P. (1992). Development of genetic engineering in Bacillus megaterium. Biotechnology (Reading, Mass.), 22, 251-310. Vary, P. S., Biedendieck, R., Fuerch, T., Meinhardt, F., Rohde, M., Deckwer, W.-D., & Jahn, D. (2007). Bacillus megaterium—from simple soil bacterium to industrial protein production host. Applied Microbiology and Biotechnology, 76(5), 957-967. Vary, P. S., Biedendieck, R., Fuerch, T., Meinhardt, F., Rohde, M., Deckwer, W. D., & Jahn, D. (2007). Bacillus megaterium--from simple soil bacterium to industrial protein production host. Appl Microbiol Biotechnol, 76(5), 957-967. Vihinen, M., & Mantsiila, P. (1989). Microbial amylolytic enzyme. Critical reviews in biochemistry and molecular biology, 24(4), 329-418. Vong, W. C., & Liu, S.-Q. (2016). Biovalorisation of okara (soybean residue) for food and nutrition. Trends in Food Science & Technology, 52, 139-147. Wang, F., Zeng, J., Gao, H., & Sukmanov, V. (2021). Effects of different physical technology on compositions and characteristics of bean dregs. Innovative Food Science & Emerging Technologies, 73, 102789. Watthanasakphuban, N., Nguyen, L. V., Cheng, Y.-S., Show, P.-L., Sriariyanun, M., Koffas, M., & Rattanaporn, K. (2023). Development of a Molasses-Based Medium for Agrobacterium tumefaciens Fermentation for Application in Plant-Based Recombinant Protein Production. Fermentation, 9(2), 149. Webb, M. (1951). The influence of magnesium on cell division: 4. The specificity of magnesium. Microbiology, 5(3), 480-484. Wittchen, K. D., & Meinhardt, F. (1995). Inactivation of the major extracellular protease from Bacillus megaterium DSM319 by gene replacement. Appl Microbiol Biotechnol, 42(6), 871-877. Wolf, J. B., & Brey, R. N. (1986). Isolation and genetic characterizations of Bacillus megaterium cobalamin biosynthesis-deficient mutants. Journal of bacteriology, 166(1), 51-58. Yang, Y., Biedendieck, R., Wang, W., Gamer, M., Malten, M., Jahn, D., & Deckwer, W.-D. (2006). High yield recombinant penicillin G amidase production and export into the growth medium using Bacillus megaterium. Microbial Cell Factories, 5(1), 36. Zhang, S., Wang, J., & Jiang, H. (2021). Microbial production of value-added bioproducts and enzymes from molasses, a by-product of sugar industry. Food Chemistry, 346, 128860. Zheng, L., Yu, X., Wei, C., Qiu, L., Yu, C., Xing, Q., Fan, Y., & Deng, Z. (2020). Production and characterization of a novel alkaline protease from a newly isolated Neurospora crassa through solid-state fermentation. LWT, 122, 108990. Zhou, Y., Yang, X., Li, Q., Peng, Z., Li, J., & Zhang, J. (2023). Optimization of fermentation conditions for surfactin production by B. subtilis YPS-32. BMC Microbiology, 23(1), 117. 循環經濟推動方案. (2019). https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/18ef26a4-5d05-4fb3963e-6b228e713576 張基隆, 胡祐甄, 黃姿菁, 鄭筱翎, & 謝寶萱 (2020). 生物化學. In: 華杏出版機構.
|