跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 09:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪烱斌
研究生(外文):Jiong-Bin Hong
論文名稱:利用巨大芽孢桿菌將豆渣轉化為生物製造 蛋白質原料之綠色循環模組
論文名稱(外文):A green circular module for converting soybean residue into biomass protein raw material using Bacillus megaterium
指導教授:王柏翔王柏翔引用關係
指導教授(外文):Po-Hsiang Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所在職專班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:76
中文關鍵詞:微生物工程嗜熱性蛋白酶農業廢棄物再利用豆渣水解循環經濟資源回收
外文關鍵詞:Microbial EngineeringThermophilic ProteaseAgricultural Waste ReutilizationSoybean Residue HydrolysisCircular Economyresource recovery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:11
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用Bacillus megaterium YYBM1,實現豆渣的有效循環利用,以符合聯合國永續發展目標(SDGs)第12項目標—負責任的消費和生產。透過建立一個將豆渣轉化為含豐富胺基酸培養基的可持續循環水解系統,進而達到農業廢棄物的有效轉化和資源回收,同時減少了廢棄物的環境影響。本研究,通過異源表達的TET aminopeptidase在B. megaterium YYBM1細胞中成功表達。確定了最佳的蛋白質表達條件,特別是7小時的最佳誘導時間。值得注意的是,即使在不添加傳統的誘導劑—木糖的情況下,豆渣培養基也能有效地誘導TETamp蛋白的表達,甚至效率高於Luria Bertani商業培養基,突顯豆渣培養基之高營養價值與可商業化應用性。此外,探討鎂濃度和糖蜜添加對蛋白質表達的影響,發現這些因素在本研究設置中對TETamp蛋白的表達量無顯著影響。研究還發現,以5 g/L的細胞濃度進行水解是最低有效的細胞使用量,足以實現豆渣的有效水解。通過該系統,每次水解後能從原始1升培養基中獲得額外53.6%的豆渣水解溶液,提高了資源的循環利用效率。綜上所述,本研究為農業廢棄物的有效處理和再利用提供了一個創新模型,也為全球面臨的廢棄物管理問題提供了實用的解決方案。這一豆渣水解製造蛋白之綠色循環模組的成功開發為微生物技術在促進綠色循環經濟和可持續發展中的應用開闢了新的選擇。
This study utilizes Bacillus megaterium YYBM1 to achieve the effective recycling of soybean residue, aligning with the United Nations Sustainable Development Goal (SDG) 12 - Responsible Consumption and Production. By establishing a sustainable cyclic hydrolysis system that transforms soybean residue into a nutrient-rich amino acid medium, this approach facilitates the effective conversion and resource recovery of agricultural waste, simultaneously reducing environmental impact. The heterologous expression of TET aminopeptidase was successfully executed within B. megaterium YYBM1 cells. Optimal protein expression conditions were determined, notably a prime induction time of 7 hours. Importantly, even without the addition of the traditional inducer - xylose, the soybean residue medium efficiently induced TETamp protein expression, surpassing the efficiency seen with Luria Bertani commercial medium, thus highlighting the high nutritional value and potential commercial applicability of the soybean residue medium. Furthermore, the study explored the impact of magnesium concentration and molasses addition on protein expression, finding no significant effects on TETamp protein expression within this research setup. It was also found that hydrolyzing with a cell concentration of 5 g/L was the minimum effective dosage for efficient soybean residue hydrolysis. Through this system, each hydrolysis cycle yielded an additional 53.6% of soybean residue hydrolysate from the original 1-liter medium, enhancing resource recycling efficiency. In summary, this research provides an innovative model for the effective treatment and reuse of agricultural waste, offering practical solutions to the global waste management challenge. The successful development of this soybean residue hydrolysis and protein manufacturing green cycle module opens new avenues for the application of microbial technology in promoting a green circular economy and sustainable development.
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 ix
符號說明 x
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 2
第二章 文獻回顧 4
2.1 聯合國永續發展目標 4
2.2 5+2產業創新政策 6
2.3 豆渣 7
2.4 細菌細胞結構 10
2.5 巨大芽孢桿菌 (Bacillus megaterium) 11
2.6 豆渣培養基 12
2.7 微生物生長培養基 13
2.7.1 碳源 13
2.7.2 金屬離子 13
2.8 蛋白質水解 14
2.8.1 化學水解 14
2.8.2 酵素水解 15
2.9 酵素 16
2.9.1 蛋白酶 19
2.9.2 Alcalase內肽酶 22
2.9.3 TET aminopeptidase 22
第三章 材料與方法 24
3.1 實驗架構 24
3.2 實驗材料 25
3.2.1 實驗藥品 25
3.2.2 實驗設備 26
3.3 菌種保存及培養 27
3.3.1菌種保存 27
3.3.2 菌種培養 27
3.4 微生物操作 28
3.4.1 DNA操作 (DNA manipulation) 29
3.4.2 分子克隆 (Molecular cloning) 30
3.4.3 轉形作用 (Transformation) 30
3.5 蛋白質實驗分析 31
3.5.1 目標蛋白表達 31
3.5.2 目標蛋白純化 31
3.5.3 目標蛋白定性 32
3.6 豆渣培養基製作 33
3.7 最佳生長條件實驗分析 34
3.7.1 不同誘導時間 34
3.7.2 不同鎂濃度 34
3.7.3 不同糖蜜濃度 34
3.7.4 不同細胞重量 35
3.8 特性分析 35
3.8.1 細胞活性分析 35
3.8.2 蛋白質定量 35
3.8.3 胺基酸定量 37
第四章 結果與討論 39
4.1 異源蛋白表達 39
4.2 水解豆渣 41
4.3 最佳條件TETamp異源蛋白比較 42
4.3.1 誘導時間 42
4.3.2 鎂濃度 46
4.3.3 糖蜜 47
4.4 循環模組建立 49
4.4.1 豆渣培養基蛋白表達 49
4.4.2 細胞水解豆渣分析 50
4.4.3 細胞產量 51
4.4.4 永續水解豆渣培養基 52
結論與建議 54
5.1 結論 54
5.2 建議 55
參考文獻 56
Anderson, R. L., & Wolf, W. J. (1995). Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing. J Nutr, 125(3 Suppl), 581s-588s.
Anitha, T. S., & Palanivelu, P. (2013). Purification and characterization of an extracellular keratinolytic protease from a new isolate of Aspergillus parasiticus. Protein Expression and Purification, 88(2), 214-220.
Appolaire, A., Colombo, M., Basbous, H., Gabel, F., Girard, E., & Franzetti, B. (2016). TET peptidases: A family of tetrahedral complexes conserved in prokaryotes. Biochimie, 122, 188-196.
Auer, G. K., & Weibel, D. B. (2017). Bacterial Cell Mechanics. Biochemistry, 56(29), 3710-3724.
Canaan, J. M. M., Brasil, G. S. A. P., de Barros, N. R., Mussagy, C. U., Guerra, N. B., & Herculano, R. D. (2022). Soybean processing wastes and their potential in the generation of high value added products. Food Chemistry, 373, 131476.
Choi, I. S., Kim, Y. G., Jung, J. K., & Bae, H.-J. (2015). Soybean waste (okara) as a valorization biomass for the bioethanol production. Energy, 93, 1742-1747.
da Silva, C. M. L., Spinelli, E., & Rodrigues, S. V. (2015). Fast and sensitive collagen quantification by alkaline hydrolysis/hydroxyproline assay. Food Chemistry, 173, 619-623.
Daliri, E. B.-M., Oh, D. H., & Lee, B. H. (2017). Bioactive Peptides. Foods, 6(5), 32.
Drag, M., & Salvesen, G. S. (2010). Emerging principles in protease-based drug discovery. Nature reviews Drug discovery, 9(9), 690-701.
Durá, M. A., Receveur-Brechot, V., Andrieu, J.-P., Ebel, C., Schoehn, G., Roussel, A., & Franzetti, B. (2005). Characterization of a TET-like aminopeptidase complex from the hyperthermophilic archaeon Pyrococcus horikoshii. Biochemistry, 44(9), 3477-3486.
Fayaz, G., Plazzotta, S., Calligaris, S., Manzocco, L., & Nicoli, M. C. (2019). Impact of high pressure homogenization on physical properties, extraction yield and biopolymer structure of soybean okara. LWT, 113, 108324.
Feng, J.-Y., Wang, R., Thakur, K., Ni, Z.-J., Zhu, Y.-Y., Hu, F., Zhang, J.-G., & Wei, Z.-J. (2021). Evolution of okara from waste to value added food ingredient: An account of its bio-valorization for improved nutritional and functional effects. Trends in Food Science & Technology, 116, 669-680.
Gicana, R. G., Huang, M.-H., Jia, T. Z., Chiang, Y.-R., & Wang, P.-H. (2023). Upcycling soybean pulp for sustainable amino acid and subsequent protein biomanufacturing via a one-pot thermophilic protease cascade treatment. Chemical Engineering Journal, 474, 145925.
Gicana, R. G., Yeh, F.-I., Hsiao, T.-H., Chiang, Y.-R., Yan, J.-S., & Wang, P.-H. (2022). Valorization of fish waste and sugarcane bagasse for Alcalase production by Bacillus megaterium via a circular bioeconomy model. Journal of the Taiwan Institute of Chemical Engineers, 135, 104358.
Godfrey, T., & West, S. (1996). Industrial enzymology (2nd ed.). Macmillan London.
Gupta, R., Beg, Q., & Lorenz, P. (2002). Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology, 59(1), 15-32.
Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R., & Meybeck, A. (2011). Global food losses and food waste. In: FAO Rome.
He, J.-S., & Fulco, A. (1991). A barbiturate-regulated protein binding to a common sequence in the cytochrome P450 genes of rodents and bacteria. Journal of Biological Chemistry, 266(12), 7864-7869.
Hebeda, R., Styrlund, C., & Teague, W. (1988). Benefits of Bacillus megaterium amylase in dextrose production. Starch‐Stärke, 40(1), 33-36.
Heng, X., Chen, H., Lu, C., Feng, T., Li, K., & Gao, E. (2022). Study on synergistic fermentation of bean dregs and soybean meal by multiple strains and proteases. LWT, 154, 112626.
Herpandi, N. H., Rosma, A., & Wan Nadiah, W. (2011). The tuna fishing industry: A new outlook on fish protein hydrolysates. Comprehensive Reviews in Food Science and Food Safety, 10(4), 195-207.
Hu, Y., Piao, C., Chen, Y., Zhou, Y., Wang, D., Yu, H., & Xu, B. (2019). Soybean residue (okara) fermentation with the yeast Kluyveromyces marxianus. Food Bioscience, 31, 100439.
Jahan-Mihan, A., Luhovyy, B. L., Khoury, D. E., & Anderson, G. H. (2011). Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract. Nutrients, 3(5), 574-603.
Khare, S. K., Jha, K., & Gandhi, A. P. (1995). Citric acid production from Okara (soy-residue) by solid-state fermentation. Bioresource Technology, 54(3), 323-325.
Kirk, O., Borchert, T. V., & Fuglsang, C. C. (2002). Industrial enzyme applications. Current Opinion in Biotechnology, 13(4), 345-351.
Kittsteiner-Eberle, R., Ogbomo, I., & Schmidt, H.-L. (1989). Biosensing devices for the semi-automated control of dehydrogenase substrates in fermentations. Biosensors, 4(2), 75-85.
Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Dairy Journal, 16(9), 945-960.
Korneli, C., David, F., Biedendieck, R., Jahn, D., & Wittmann, C. (2013). Getting the big beast to work—Systems biotechnology of Bacillus megaterium for novel high-value proteins. Journal of biotechnology, 163(2), 87-96.
Korneli, C., David, F., Godard, T., & Franco‐Lara, E. (2011). Influence of fructose and oxygen gradients on fed‐batch recombinant protein production using Bacillus megaterium. Engineering in Life Sciences, 11(4), 338-349.
Kristinsson, H. G., & Rasco, B. A. (2000). Fish protein hydrolysates: production, biochemical, and functional properties. Critical reviews in food science and nutrition, 40(1), 43-81.
Křížová, L., Dadáková, K., Kašparovská, J., & Kašparovský, T. (2019). Isoflavones. Molecules, 24(6), 1076.
López-Otín, C., & Bond, J. S. (2008). Proteases: multifunctional enzymes in life and disease. Journal of Biological Chemistry, 283(45), 30433-30437.
López-Otín, C., & Overall, C. M. (2002). Protease degradomics: a new challenge for proteomics. Nature reviews Molecular cell biology, 3(7), 509-519.
Lahl, W. J., & Braun, S. D. (1994). Enzymatic production of protein hydrolysates for food use. Food technology (Chicago), 48(10), 68-71.
Lenihan, P., Orozco, A., O’Neill, E., Ahmad, M. N. M., Rooney, D. W., & Walker, G. M. (2010). Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal, 156(2), 395-403.
Li, B., Lu, F., Nan, H., & Liu, Y. (2012). Isolation and Structural Characterisation of Okara Polysaccharides. Molecules, 17(1), 753-761.
Li, B., Yang, W., Nie, Y., Kang, F., Goff, H. D., & Cui, S. W. (2019). Effect of steam explosion on dietary fiber, polysaccharide, protein and physicochemical properties of okara. Food Hydrocolloids, 94, 48-56.
Li, H., Long, D., Peng, J., Ming, J., & Zhao, G. (2012). A novel in-situ enhanced blasting extrusion technique—Extrudate analysis and optimization of processing conditions with okara. Innovative Food Science & Emerging Technologies, 16, 80-88.
Li, S., Wang, L., Song, C., Hu, X., Sun, H., Yang, Y., Lei, Z., & Zhang, Z. (2014). Utilization of soybean curd residue for polysaccharides by Wolfiporia extensa (Peck) Ginns and the antioxidant activities in vitro. Journal of the Taiwan Institute of Chemical Engineers, 45(1), 6-11.
Li, S., Zhu, D., Li, K., Yang, Y., Lei, Z., & Zhang, Z. (2013). Soybean Curd Residue: Composition, Utilization, and Related Limiting Factors. ISRN Industrial Engineering, 2013, 423590.
Lu, F., Liu, Y., & Li, B. (2013). Okara dietary fiber and hypoglycemic effect of okara foods. Bioactive Carbohydrates and Dietary Fibre, 2(2), 126-132.
Martín, L., Prieto, M. A., Cortes, E., & García, J. (1995). Cloning and sequencing of the pac gene encoding the penicillin G acylase of Bacillus megaterium ATCC 14945. FEMS microbiology letters, 125(2-3), 287-292.
Mateos-Aparicio, I., Mateos-Peinado, C., Jiménez-Escrig, A., & Rupérez, P. (2010). Multifunctional antioxidant activity of polysaccharide fractions from the soybean byproduct okara. Carbohydrate Polymers, 82(2), 245-250.
Mateos-Aparicio, I., Redondo-Cuenca, A., Villanueva-Suárez, M.-J., Zapata-Revilla, M.-A., & Tenorio-Sanz, M.-D. (2010). Pea pod, broad bean pod and okara, potential sources of functional compounds. LWT-Food Science and Technology, 43(9), 1467-1470.
Metz, R. J., Allen, L. N., Cao, T. M., & Zeman, N. W. (1988). Nucleotide sequence of an amylase gene from Bacillus megaterium. Nucleic acids research, 16(11), 5203-5203.
Morita, M., Tomita, K., Ishizawa, M., Takagi, K., Kawamura, F., Takahashi, H., & Morino, T. (1999). Cloning of oxetanocin A biosynthetic and resistance genes that reside on a plasmid of Bacillus megaterium strain NK84-0128. Bioscience, biotechnology, and biochemistry, 63(3), 563-566.
Nagao, T., Mitamura, T., Wang, X. H., Negoro, S., Yomo, T., Urabe, I., & Okada, H. (1992). Cloning, nucleotide sequences, and enzymatic properties of glucose dehydrogenase isozymes from Bacillus megaterium IAM1030. Journal of bacteriology, 174(15), 5013-5020.
Overall, C. M., & Blobel, C. P. (2007). In search of partners: linking extracellular proteases to substrates. Nature reviews Molecular cell biology, 8(3), 245-257.
Ovissipour, M., Abedian Kenari, A., Motamedzadegan, A., & Nazari, R. M. (2012). Optimization of Enzymatic Hydrolysis of Visceral Waste Proteins of Yellowfin Tuna (Thunnus albacares). Food and Bioprocess Technology, 5(2), 696-705.
Papargyropoulou, E., Lozano, R., K. Steinberger, J., Wright, N., & Ujang, Z. b. (2014). The food waste hierarchy as a framework for the management of food surplus and food waste. Journal of Cleaner Production, 76, 106-115.
Paritosh, K., Kushwaha, S. K., Yadav, M., Pareek, N., Chawade, A., & Vivekanand, V. (2017). Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling. BioMed Research International, 2017, 2370927.
Pasupuleti, V. K., & Braun, S. (2010). State of the art manufacturing of protein hydrolysates. Protein hydrolysates in biotechnology, 11-32.
Pattanakittivorakul, S., Lertwattanasakul, N., Yamada, M., & Limtong, S. (2019). Selection of thermotolerant Saccharomyces cerevisia e for high temperature ethanol production from molasses and increasing ethanol production by strain improvement. Antonie Van Leeuwenhoek, 112, 975-990.
Pojić, M., Mišan, A., & Tiwari, B. (2018). Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends in Food Science & Technology, 75, 93-104.
Rahman, M. M., Mat, K., Ishigaki, G., & Akashi, R. (2021). A review of okara (soybean curd residue) utilization as animal feed: Nutritive value and animal performance aspects. Animal Science Journal, 92(1), e13594.
RAUX, E., LANOIS, A., Warren, M. J., Rambach, A., & THERMES, C. (1998). Cobalamin (vitamin B12) biosynthesis: identification and characterization of a Bacillus megaterium cobI operon. Biochemical Journal, 335(1), 159-166.
Reyes-Turcu, F. E., Ventii, K. H., & Wilkinson, K. D. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annual review of biochemistry, 78, 363-397.
Sambrook, J., Russell, D. W., Irwin, C. A., & Janssen, K. A. (2001). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press.
Schmidt, S., Wolf, N., Strey, J., Nahrstedt, H., Meinhardt, F., & Waldeck, J. (2005). Test systems to study transcriptional regulation and promoter activity in Bacillus megaterium. Applied Microbiology and Biotechnology, 68, 647-655.
SHIMADA, N., HASEGAWA, S., HARADA, T., TOMISAWA, T., FUJII, A., & TAKITA, T. (1986). Oxetanocin, a novel nucleoside from bacteria. The Journal of antibiotics, 39(11), 1623-1625.
Shiota, H., Nitta, K., Naito, T., Mimura, Y., & Maruyama, T. (1996). Clinical evaluation of carbocyclic oxetanocin G eyedrops in the treatment of herpes simplex corneal ulcers. British journal of ophthalmology, 80(5), 413-415.
Sánchez, A., & Vázquez, A. (2017). Bioactive peptides: A review. Food Quality and Safety, 1(1), 29-46.
Stammen, S., Müller, B. K., Korneli, C., Biedendieck, R., Gamer, M., Franco-Lara, E., & Jahn, D. (2010). High-Yield Intra- and Extracellular Protein Production Using Bacillus megaterium. Applied and Environmental Microbiology, 76(12), 4037-4046.
SUGA, K. I., Shiba, Y., Sorai, T., Shioya, S., & Ishimura, F. (1990). Reaction kinetics and mechanism of immobilized penicillin acylase from Bacillus megaterium. Annals of the New York Academy of Sciences, 613(1), 808-815.
Tacias-Pascacio, V. G., Morellon-Sterling, R., Siar, E.-H., Tavano, O., Berenguer-Murcia, Á., & Fernandez-Lafuente, R. (2020). Use of Alcalase in the production of bioactive peptides: A review. International Journal of Biological Macromolecules, 165, 2143-2196.
Takasaki, Y. (1989). Novel maltose-producing amylase from Bacillus megaterium G-2. Agricultural and biological chemistry, 53(2), 341-347.
Tavano, O. L. (2013). Protein hydrolysis using proteases: An important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic, 90, 1-11.
Tseng, C. K., Marquez, V. E., Milne, G. W., Wysocki Jr, R. J., Mitsuya, H., Shirasaki, T., & Driscoll, J. S. (1991). A ring-enlarged oxetanocin A analog as an inhibitor HIV infectivity. Journal of medicinal chemistry, 34(1), 343-349.
Turk, B. (2006). Targeting proteases: successes, failures and future prospects. Nature reviews Drug discovery, 5(9), 785-799.
Turk, B., Turk, D., & Turk, V. (2000). Lysosomal cysteine proteases: more than scavengers. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1477(1-2), 98-111.
Turk, B., Turk, D., & Turk, V. (2012). Protease signalling: the cutting edge. The EMBO Journal, 31(7), 1630-1643.
United Nations. (2015). Sustainable Development Goals. https://sdgs.un.org/goals#goals
Vary, P. (1992). Development of genetic engineering in Bacillus megaterium. Biotechnology (Reading, Mass.), 22, 251-310.
Vary, P. S., Biedendieck, R., Fuerch, T., Meinhardt, F., Rohde, M., Deckwer, W.-D., & Jahn, D. (2007). Bacillus megaterium—from simple soil bacterium to industrial protein production host. Applied Microbiology and Biotechnology, 76(5), 957-967.
Vary, P. S., Biedendieck, R., Fuerch, T., Meinhardt, F., Rohde, M., Deckwer, W. D., & Jahn, D. (2007). Bacillus megaterium--from simple soil bacterium to industrial protein production host. Appl Microbiol Biotechnol, 76(5), 957-967.
Vihinen, M., & Mantsiila, P. (1989). Microbial amylolytic enzyme. Critical reviews in biochemistry and molecular biology, 24(4), 329-418.
Vong, W. C., & Liu, S.-Q. (2016). Biovalorisation of okara (soybean residue) for food and nutrition. Trends in Food Science & Technology, 52, 139-147.
Wang, F., Zeng, J., Gao, H., & Sukmanov, V. (2021). Effects of different physical technology on compositions and characteristics of bean dregs. Innovative Food Science & Emerging Technologies, 73, 102789.
Watthanasakphuban, N., Nguyen, L. V., Cheng, Y.-S., Show, P.-L., Sriariyanun, M., Koffas, M., & Rattanaporn, K. (2023). Development of a Molasses-Based Medium for Agrobacterium tumefaciens Fermentation for Application in Plant-Based Recombinant Protein Production. Fermentation, 9(2), 149.
Webb, M. (1951). The influence of magnesium on cell division: 4. The specificity of magnesium. Microbiology, 5(3), 480-484.
Wittchen, K. D., & Meinhardt, F. (1995). Inactivation of the major extracellular protease from Bacillus megaterium DSM319 by gene replacement. Appl Microbiol Biotechnol, 42(6), 871-877.
Wolf, J. B., & Brey, R. N. (1986). Isolation and genetic characterizations of Bacillus megaterium cobalamin biosynthesis-deficient mutants. Journal of bacteriology, 166(1), 51-58.
Yang, Y., Biedendieck, R., Wang, W., Gamer, M., Malten, M., Jahn, D., & Deckwer, W.-D. (2006). High yield recombinant penicillin G amidase production and export into the growth medium using Bacillus megaterium. Microbial Cell Factories, 5(1), 36.
Zhang, S., Wang, J., & Jiang, H. (2021). Microbial production of value-added bioproducts and enzymes from molasses, a by-product of sugar industry. Food Chemistry, 346, 128860.
Zheng, L., Yu, X., Wei, C., Qiu, L., Yu, C., Xing, Q., Fan, Y., & Deng, Z. (2020). Production and characterization of a novel alkaline protease from a newly isolated Neurospora crassa through solid-state fermentation. LWT, 122, 108990.
Zhou, Y., Yang, X., Li, Q., Peng, Z., Li, J., & Zhang, J. (2023). Optimization of fermentation conditions for surfactin production by B. subtilis YPS-32. BMC Microbiology, 23(1), 117.
循環經濟推動方案. (2019).
https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/18ef26a4-5d05-4fb3963e-6b228e713576
張基隆, 胡祐甄, 黃姿菁, 鄭筱翎, & 謝寶萱 (2020). 生物化學. In: 華杏出版機構.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top