跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 17:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈致遠
研究生(外文):CHIH-YUAN SHEN
論文名稱:以大腸桿菌檢視銅離子的生物有效性與其所引起的共選擇四環素抗藥性之間的關聯
論文名稱(外文):Examining the association between copper(II) ion bioavailability and its co-selected tetracycline resistance in Escherichia coli
指導教授:林居慶
指導教授(外文):Chu-Ching Lin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:115
中文關鍵詞:大腸桿菌銅離子金屬生物有效性四環素共選擇效應抗生素抗藥性
外文關鍵詞:Escherichia colicopper ionsmetal bioavailabilitytetracyclineco-selectionantibiotic resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:18
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
近年來隨著抗生素的濫用,已使得臨床中感染具多重抗藥性病原菌的案例逐年升高。由於大部分的致病菌已知多是透過一般環境系統(特別是農業系統)的微生物而獲得抗性基因,因此環境中抗生素抗藥性的發展所引發的公衛問題實有必要深入了解。值得注意的是,重金屬已被視為極可能是維持ARGs在環境流布存續的關鍵因子之一,但此種非傳統抗生素抗藥性發展的途徑(即透過金屬的共選擇而誘發抗生素抗性的機制),截至目前為止仍未得到廣泛的研究,尤其是重金屬的生物有效性於此途徑所扮演的角色。有鑑於此,本研究以不具金屬與抗生素抗性的野生型大腸桿菌和四環素(Tet)做為模式細菌和模式抗生素,並以台灣環境最常見的重金屬污染“銅”做為模式重金屬,從自由離子活性模型(FIAM)的角度切入,探究重金屬的生物有效性與其共選擇抗生素抗藥性之間的實際關聯程度。模式菌株在以葡萄糖爲碳源且組成明確的試驗培養基中進行暴露實驗,當中的總銅Cu(II)和Tet濃度分別保持在亞致死等級的EC50 (0.125 ppm)和EC75 (6.80 ppm),且將培養基所含的氯化物調控在1至100 mM之間,從中建立自由銅離子(即游離、未被錯合的二價銅物種,Cu2+)的濃度梯度,使得“二價銅的生物利用度提高會加速與加強菌株對Tet抗藥性”的假說得以測試。研究結果表明,在為期14天的培養過程中,雖然僅暴露Tet的對照組會因持續來自抗生素的直接選擇壓力最終發展出對於Tet的抗性,但在Tet和Cu(II)交替暴露的實驗組別中,除了發現Cu(II)的加入讓菌株對Tet更快產生抗性、並增強其抗性程度外,也發現較高的Cu2+ 濃度的暴露可導致較快和較高的Tet抗性發展;而當0.1至10 uM的EDTA取代氯化物以塑造出同樣的Cu2+濃度梯度的暴露環境時,也可觀察到幾乎相同的Tet抗藥性發展,再次證實FIAM可解釋菌株對於二價銅的攝取模式。不僅如此,當菌株在兩週的期程中只接觸到Cu(II)的情況下,最終仍表現出類似交替暴露時的Tet抗性發展,實質驗證重金屬的共選擇效應。本研究進一步利用RT-qPCR的相對定量法,檢視菌株在暴露過程中對於Cu和Tet的抗性基因型表徵,其數據顯示雖然只有兩個Cu抗性(pcoA, cusA)與一個Tet抗性(tetA)基因被誘導,但這些基因的表達皆與Cu2+的暴露量呈顯著正相關,此與以生長為主的表現型表徵結果相呼應。整體而言,本研究的結果顯示不論從細胞還是分子層面的解析,都反映出金屬的生物有效性確實是環境中驅動重金屬共選擇抗生素抗藥性發展與持續的關鍵決定因子。
In recent years, the misuse of antibiotics has led to a yearly increase in clinical cases of infections caused by multidrug-resistant pathogens. Since most pathogenic bacteria are known to acquire resistance genes through environmental systems (particularly agricultural systems) where microorganisms prevail, understanding the development of antibiotic resistance in the environment has become a crucial public health issue. Notably, heavy metals are considered a key factor in the persistence and distribution of antibiotic resistance genes (ARGs) in the environment. However, this non-traditional pathway of antibiotic resistance development (i.e., co-selection through metals) has not been extensively studied, particularly regarding the role of metal bioavailability in this process. Therefore, this study employs a wild-type Escherichia coli strain (lacking resistance to metals and antibiotics) and tetracycline (Tet) as the model bacterium and antibiotic, respectively. Copper (Cu), the most common heavy metal pollutant in Taiwan, is used as the model metal. From the perspective of the Free Ion Activity Model (FIAM), this study investigates the relationship between metal bioavailability and the co-selection of antibiotic resistance. The model strain was exposed to a defined test medium using glucose as the carbon source, maintaining total Cu(II) and Tet concentrations at sub-lethal levels of EC50 (0.125 ppm) and EC75 (6.80 ppm), respectively. The chloride content in the medium was adjusted between 1 to 100 mM to establish a gradient of free copper ions (unbound divalent copper species, Cu2+). This allowed testing the hypothesis that increased bioavailability of divalent copper accelerates and enhances the strain’s resistance to Tet. Results indicated that during the 14-day culture period, the control group exposed only to Tet developed Tet resistance due to sustained selective pressure. However, in the Tet and Cu(II) alternating exposure groups, the addition of Cu(II) not only expedited the development of Tet resistance but also enhanced its degree. Higher Cu2+ concentrations led to faster and stronger Tet resistance development. When EDTA (0.1 to 10 µM) was used instead of chloride to create a similar Cu2+ concentration gradient, nearly identical Tet resistance development was observed, further validating that FIAM could explain the uptake patterns of divalent copper by the strain. Furthermore, the strain exhibited similar Tet resistance development after two weeks of Cu(II) exposure alone, confirming the co-selection effect of heavy metals.Using RT-qPCR for relative quantification, the study examined the genotypic expression of Cu and Tet resistance genes during exposure. Data showed that although only two Cu resistance genes (pcoA, cusA) and one Tet resistance gene (tetA) were induced, their expression significantly correlated with Cu2+ exposure levels, aligning with the phenotypic results focused on growth. Overall, the study’s findings from both cellular and molecular analyses indicate that metal bioavailability is indeed a critical determinant driving the co-selection and persistence of antibiotic resistance in the environment.
摘要 i
Abstract v
致謝 vii
目錄 viii
表目錄 xi
圖目錄 xii
第一章 前言 1
1.1 研究緣起 1
1.1.1 全球抗生素抗藥性議題 1
1.1.2 重金屬在抗生素抗藥性傳播所扮演的角色 2
1.1.3 四環素對微生物的毒性機制 3
1.1.4 微生物對四環素的抗性機制 4
1.1.5 銅對微生物的毒性機制 5
1.1.6 微生物對銅的抗性機制 6
1.1.7 FIAM自由活性離子模型 7
1.1.8 銅的生物有效性 8
1.1.9 重金屬誘發抗生素抗藥性之共選擇 9
1.2 研究目的 10
第二章 材料與方法 12
1.3 實驗藥品與儀器 12
1.3.1 藥品 12
1.3.2 套組 12
1.3.3 實驗儀器 12
1.4 實驗用模式菌珠 13
1.5 化學物種組成模擬軟體 13
1.6 實驗用培養液製備 13
1.7 E.coli K-12 MG1655 懸浮菌液製備 19
1.8 微生物毒性暴露試驗方法 19
1.9 十四天暴露試驗方法 20
1.9.1 十四天交替暴露試驗方法 20
1.9.2 十四天單獨暴露試驗方法 21
1.10 Dose-response curve製作方法 22
1.11 最小抑制濃度(MIC)確定方法 22
1.12 光學密度生長曲線製作方法 22
1.13 RT-qPCR方法 23
1.13.1 RNA萃取 23
1.13.2 RNA反轉錄cDNA 23
1.13.3 目標基因選定 23
1.13.4 相對定量 28
第三章 結果與討論 29
1.14 銅於試驗培養液對菌株之敏感測試 29
1.14.1 銅的最小抑菌濃度(MIC)/劑量反應曲線圖 29
1.14.2 四環素的最小抑菌濃度(MIC)/劑量反應曲線圖 31
1.15 銅物種於試驗用培養液之化學物種組成模擬 33
1.16 銅物種組成對E. coli K-12 MG1655 的毒性影響 35
1.16.1 固定Cu(II)濃度,不同[Cl-]下對大腸桿菌的毒性影響 35
1.16.2 固定Cu(II)濃度,不同[EDTA]下對大腸桿菌的毒性影響 37
1.17 十四天四環素與Cu(II)交替暴露實驗(Cl組別) 39
1.17.1 各實驗組別14天生長曲線圖 39
1.17.2 各時間各組別生長曲線及最小抑菌濃度(MIC)的變化 43
1.18 十四天四環素與Cu(II)交替暴露實驗([EDTA]組別) 45
1.18.1 各實驗組別14天生長曲線圖 45
1.18.2 各時間各組別生長曲線及最小抑菌濃度(MIC)的變化 49
1.19 自由銅含量&四環素耐受性的相關性分析 52
1.20 14天Cu(II)單獨暴露實驗 54
1.20.1 各實驗組別14天生長曲線圖及生長曲線變化之比較 54
1.20.2 各時間各組別14天內最小抑菌濃度變化(MIC) 58
1.21 十四天交替暴露實驗([Cl-]組別)RT-qPCR結果 60
1.22 十四天連續暴露Cu(II)實驗([Cl-]組別)RT-qPCR結果 65
1.23 不同暴露頻率與銅抗性基因的相關性分析 70
1.24 不同暴露頻率與四環素抗性基因(tetA)的相關性分析 72
1.25 抗銅基因與抗四環素基因的相關性分析 74
1.26 環境意義 77
第四章 結論與建議 78
1.27 結論 78
1.28 建議 78
參考文獻 79
附錄一 89
附錄二 90
附錄三 91
附錄四 92
附錄五 93
口試委員口試問題及回答 94
1. Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., & Handelsman, J. (2010). Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology, 8(4), 251-259.
2. Lessa, F. C., & Sievert, D. M. (2023). Antibiotic resistance: A global problem and the need to do more. Clinical Infectious Diseases, 77(Supplement_1), S1-S3.
3. Wellington, E. M., Boxall, A. B., Cross, P., Feil, E. J., Gaze, W. H., Hawkey, P. M., ... & Williams, A. P. (2013). The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. The Lancet Infectious Diseases, 13(2), 155-165.
4. Fair, R. J., & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry, 6, PMC-S14459.
5. Kim, K. R., Owens, G., Kwon, S. I., So, K. H., Lee, D. B., & Ok, Y. S. (2011). Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water, Air, & Soil Pollution, 214, 163-174.
6. Berg, J., Tom-Petersen, A., & Nybroe, O. (2005). Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field. Letters in Applied Microbiology, 40(2), 146-151.
7. Baker-Austin, C., Wright, M. S., Stepanauskas, R., & McArthur, J. V. (2006). Co-selection of antibiotic and metal resistance. Trends in Microbiology, 14(4), 176-182.
8. Mu, Q., Li, J., Sun, Y., Mao, D., Wang, Q., & Luo, Y. (2015). Occurrence of sulfonamide-, tetracycline-, plasmid-mediated quinolone- and macrolide-resistance genes in livestock feedlots in Northern China. Environmental Science and Pollution Research, 22, 6932-6940.
9. Patel, M., et al. (2001). Inhibition of ribosomal functions by antibiotics binding to 50S subunit. Journal of Antimicrobial Chemotherapy, 47(5), 601-609.
10. Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews, 65(2), 232-260.
11. Darby, E. M., Trampari, E., Siasat, P., Gaya, M. S., Alav, I., Webber, M. A., & Blair, J. M. (2023). Molecular mechanisms of antibiotic resistance revisited. Nature Reviews Microbiology, 21(5), 280-295.
12. Mohanty, H., Pachpute, S., & Yadav, R. P. (2021). Mechanism of drug resistance in bacteria: efflux pump modulation for designing of new antibiotic enhancers. Folia Microbiologica, 66(5), 727-739.
13. Comber, S., Deviller, G., Wilson, I., Peters, A., Merrington, G., Borrelli, P., & Baken, S. (2023). Sources of copper into the European aquatic environment. Integrated Environmental Assessment and Management, 19(4), 1031-1047.
14. Chen, S., Li, X., Sun, G., Zhang, Y., Su, J., & Ye, J. (2015). Heavy metal induced antibiotic resistance in bacterium LSJC7. International Journal of Molecular Sciences, 16(10), 23390-23404.
15. Pang, Y., Ren, X., Li, J., Liang, F., Rao, X., Gao, Y., ... & Tan, G. (2020). Development of a sensitive Escherichia coli bioreporter without antibiotic markers for detecting bioavailable copper in water environments. Frontiers in Microbiology, 10, 3031.
16. Tsuneo, I. (2022). Anti-Bacterial Mechanism for Metallic Ag+, Cu2+, Zn2+ Ions-Induced Bactertiolysis on Disruptive OM Lpp and PGN Inhibitive Elongations Against S. aureus and E. coli. Mathews Journal of Cytology and Histology, 6(1), 1-13.
17. Thi, T. D., López, E., Rodríguez-Rojas, A., Rodríguez-Beltrán, J., Couce, A., Guelfo, J. R., ... & Blázquez, J. (2011). Effect of recA inactivation on mutagenesis of Escherichia coli exposed to sublethal concentrations of antimicrobials. Journal of Antimicrobial Chemotherapy, 66(3), 531-538.
18. Tao, J., Wang, J., Zheng, X., Jia, A., Zou, M., Zhang, J., & Tao, X. (2022). Effects of Tetracycline and Copper on Water Spinach Growth and Soil Bacterial Community. Processes, 10(6), 1135.
19. Hao, Z., Lou, H., Zhu, R., Zhu, J., Zhang, D., Zhao, B. S., ... & Chen, P. R. (2014). The multiple antibiotic resistance regulator MarR is a copper sensor in Escherichia coli. Nature Chemical Biology, 10(1), 21-28.
20. Lemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology, 11(6), 371-384.
21. Chaturvedi, K. S., & Henderson, J. P. (2014). Pathogenic adaptations to host-derived antibacterial copper. Frontiers in Cellular and Infection Microbiology, 4, 3.
22. Ladomersky, E., & Petris, M. J. (2015). Copper tolerance and virulence in bacteria. Metallomics, 7(6), 957-964.
23. Wright, G. D. (2007). The antibiotic resistome: the nexus of chemical and genetic diversity. Nature Reviews Microbiology, 5(3), 175-186.
24. Davies, J. (1996). Origins and evolution of antibiotic resistance. Microbiología (Madrid, Spain), 12(1), 9-16.
25. Li, J., Phulpoto, I. A., Zhang, G., & Yu, Z. (2021). Acceleration of emergence of E. coli antibiotic resistance in a simulated sublethal concentration of copper and tetracycline co-contaminated environment. AMB Express, 11, 1-11.
26. Wales, A. D., & Davies, R. H. (2015). Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics, 4(4), 567-604.
27. Barbosa, T. M., & Levy, S. B. (2000). Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. Journal of Bacteriology, 182(12), 3467-3474.
28. Pal, C., Asiani, K., Arya, S., Rensing, C., Stekel, D. J., Larsson, D. G. J., & Hobman, J. L. (2017). Metal resistance and its association with antibiotic resistance. Advances in Microbial Physiology, 70, 261-313.
29. Sekar, P., Mamtora, D., Bhalekar, P., & Krishnan, P. (2022). AcrAB-TolC Efflux Pump Mediated Resistance to Carbapenems among Clinical Isolates of Enterobacteriaceae. Journal of Pure & Applied Microbiology, 16(3).
30. Delcour, A. H. (2009). Outer membrane permeability and antibiotic resistance. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1794(5), 808-816.
31. Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews, 67(4), 593-656.
32. Dever, L. A., & Dermody, T. S. (1991). Mechanisms of bacterial resistance to antibiotics. Archives of Internal Medicine, 151(5), 886-895.
33. Levy, S. B., & Marshall, B. (2004). Antibacterial resistance worldwide: Causes, challenges and responses. Nature Medicine, 10(12), S122-S129.
34. Livermore, D. M. (1995). Beta-lactamases in laboratory and clinical resistance. Clinical Microbiology Reviews, 8(4), 557-584.
35. Cooksey, D. A. (1993). Copper uptake and resistance in bacteria. Molecular Microbiology, 7(1), 1-11.
36. Dupont, C. L., Grass, G., & Rensing, C. (2011). Copper toxicity and the origin of bacterial resistance—new insights and applications. Metallomics, 3(11), 1109-1118.
37. Macomber, L., & Imlay, J. A. (2009). The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proceedings of the National Academy of Sciences, 106(20), 8344-8349.
38. Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51(6), 730-750.
39. Rensing, C., & Grass, G. (2003). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiology Reviews, 27(2-3), 197-213.
40. Santo, C. E., Quaranta, D., & Grass, G. (2011). Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. MicrobiologyOpen, 1(1), 46-52.
41. Anderson, D. M., & Morel, F. M. M. (1978). Copper sensitivity of Gonyaulax tamarensis. Limnology and Oceanography, 23(2), 283-295.
42. Allen, H. E., Hall, R. H., & Brisbin, T. D. (1980). Metal speciation. Effects on aquatic toxicity. Environmental Science & Technology, 14(4), 441-443.
43. Campbell, P. G. C. (1995). Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In Metal Speciation and Bioavailability in Aquatic Systems, Tessier, A. & Turner, D. R. (Eds.), Wiley.
44. Albright, L. J., Wilson, E. M., & Duthie, H. C. (1972). The effects of heavy metal pollution on the bacterial population of a freshwater stream. Water Research, 6(10), 1229-1237.Luoma, S.N., & Rainbow, P.S. (2008). Metal Contamination in Aquatic Environments: Science and Lateral Management. Cambridge University Press, pp. 140-160.
45. Peña, M.M.O., Lee, J., & Thiele, D.J. (1999). A delicate balance: homeostatic control of copper uptake and distribution. Journal of Nutrition, 129(7), 1251-1260.
46. Luoma, S. N., & Rainbow, P. S. (2008). Metal Contamination in Aquatic Environments: Science and Lateral Management. Cambridge University Press, pp. 140-160.
47. Peña, M. M. O., Lee, J., & Thiele, D. J. (1999). A delicate balance: homeostatic control of copper uptake and distribution. Journal of Nutrition, 129(7), 1251-1260.
48. Wang, W.-X., & Fisher, N. S. (1999). Assimilation efficiencies of chemical contaminants in aquatic invertebrates: a synthesis. Environmental Toxicology and Chemistry, 18(9), 2034-2045.
49. McLean, J. E., & Bledsoe, B. E. (1992). Behavior of metals in soils. EPA Ground Water Issue. EPA/540/S-92/018.
50. Harris, E. D. (2000). Cellular copper transport and metabolism. Annual Review of Nutrition, 20, 291-310.
51. Tapiero, H., Townsend, D. M., & Tew, K. D. (2003). Trace elements in human physiology and pathology. Copper. Biomedicine & Pharmacotherapy, 57(9), 386-398.
52. Gaetke, L. M., & Chow, C. K. (2003). Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 189(1-2), 147-163.
53. Xu, J., Xu, Y., Wang, H., Guo, C., Qiu, H., He, Y., ... & Li, X. (2017). Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere, 172, 278-287.
54. Seiler, C., & Berendonk, T. U. (2012). Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Frontiers in Microbiology, 3, 399.
55. Prakriti, R. (2021). Heavy metal and antibiotic resistance in bacteria from aquaculture sources of Karnataka, India. Environmental Science and Pollution Research, 28(27), 36095-36103.
56. Timoney, J. F., Port, J., Giles, J., & Spanier, J. (1978). Heavy-metal and antibiotic resistance in the bacterial flora of sediments of New York Bight. Applied and Environmental Microbiology, 36(3), 465-472.
57. Baker, A. (2006). Metal tolerance and detoxification mechanisms in bacteria. Nature Reviews Microbiology, 4(2), 148-159.
58. Conejo, M. C., Alarcón, T., & Giménez, M. J. (2003). Molecular mechanism of β-lactam resistance mediated by the CzcR/CzcS two-component regulatory system in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 47(7), 2331-2334.
59. Perron, G. G., Gonzalez, A., & Buckling, A. (2004). The rate of environmental change drives adaptation to an antibiotic sink. Journal of Evolutionary Biology, 21(5), 1724-1731.
60. Resende, J. A., et al. (2012). Resistance mechanisms and genetic elements associated with antibiotic resistance in Enterococcus spp. isolated from coastal marine sediment. Environmental Pollution, 169, 96-103.
61. Holman, D. B., & Chénier, M. R. (2015). Temporal changes and the effect of subtherapeutic concentrations of antibiotics in the gut microbiota of broiler chickens. PLoS ONE, 10(11), e0142400.
62. Zhou, C., et al. (2016). Heavy metals and antibiotics in cultivated land near a pig feedlot: Impacts on soil microbial communities and antibiotic resistance genes. Environmental Science & Technology, 50(2), 735-743.
63. Ding, J., et al. (2019). Spread of antibiotic resistance genes and metal resistance genes in PM2.5 in the urban atmosphere of Beijing: Seasonal variation and health risk assessment. Atmospheric Environment, 206, 293-300.
64. Maurya, A. K., et al. (2020). Co-selection of antibiotic resistance genes and mobile genetic elements in urban and agricultural soils contaminated with heavy metals. Environmental Pollution, 257, 113551.
65. Zou, X., et al. (2021). Metagenomic insights into the impacts of long-term heavy metal contamination on soil microbial functional diversity and resistance genes. Journal of Hazardous Materials, 401, 123423.
66. Wiegand, I., Hilpert, K., & Hancock, R. E. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163-175.
67. Najera, I., Lin, C.-C., Kohbodi, G. A., & Jay, J. A. (2005). Effect of chemical speciation on toxicity of mercury to Escherichia coli biofilms and planktonic cells. Environmental Science & Technology, 39, 3116-3120.
68. Gullberg, E., Cao, S., Berg, O. G., Ilbäck, C., Sandegren, L., Hughes, D., & Andersson, D. I. (2011). Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathogens, 7(7), e1002158.
69. Yu, Z., Michel Jr, F. C., Hansen, G., Wittum, T., & Morrison, M. (2005). Development and application of real-time PCR assays for quantification of genes encoding tetracycline resistance. Applied and Environmental Microbiology, 71(11), 6926-6933.
70. Pan, X., Qiang, Z., Ben, W., & Chen, M. (2011). Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China. Chemosphere, 84(5), 695-700.
71. Baker-Austin, C., Wright, M. S., Stepanauskas, R., & McArthur, J. V. (2006). Co-selection of antibiotic and metal resistance. Trends in Microbiology, 14(4), 176-182.
72. Pal, C., Bengtsson-Palme, J., Kristiansson, E., & Larsson, D. G. J. (2015). Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics, 16, 964.
73. Nikaido, H. (2009). Multidrug resistance in bacteria. Annual Review of Biochemistry, 78, 119-146.
74. Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42-51.
75. Nolivos, S., Cayron, J., Dedieu, A., Page, A., Delolme, F., & Lesterlin, C. (2019). Role of AcrAB-TolC multidrug efflux pump in drug-resistance acquisition by plasmid transfer. Science Advances, 5(9), eaav9511.
76. Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J., & Wittwer, C. T. (2009). The MIQE guidelines: Minimum Information for publication of Quantitative real-time PCR Experiments. Clinical Chemistry, 55(4), 611-622.
77. Yahav, D., Franceschini, E., Koppel, F., Turjeman, A., Babich, T., Bitterman, R., ... & Bacteremia Duration Study Group. (2019). Seven versus 14 days of antibiotic therapy for uncomplicated gram-negative bacteremia: a noninferiority randomized controlled trial. Clinical Infectious Diseases, 69(7), 1091-1098.
78. Londoño, Y. A., & Peñuela, G. A. (2018). Study of anaerobic biodegradation of pharmaceuticals and personal care products: Application of batch tests. International Journal of Environmental Science and Technology, 15, 1887-1896.
79. Roberts, M. C. (1996). Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS microbiology reviews, 19(1), 1-24.
80. Roberts, M. C. (2005). Update on acquired tetracycline resistance genes. FEMS microbiology letters, 245(2), 195-203.
81. Speer, B. S., Shoemaker, N. B., & Salyers, A. A. (1992). Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clinical microbiology reviews, 5(4), 387-399.
82. Kershaw, C. J., Brown, N. L., Constantinidou, C., Patel, M. D., & Hobman, J. L. (2005). The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations. Microbiology, 151(4), 1187-1198.
83. Boyd, S. M., Rhinehardt, K. L., Ewunkem, A. J., Harrison, S. H., Thomas, M. D., & Graves Jr, J. L. (2022). Experimental evolution of copper resistance in Escherichia coli produces evolutionary trade-offs in the antibiotics chloramphenicol, bacitracin, and sulfonamide. Antibiotics, 11(6), 711.
84. Møller, T. S., Overgaard, M., Nielsen, S. S., Bortolaia, V., Sommer, M. O., Guardabassi, L., & Olsen, J. E. (2016). Relation between tetR and tetA expression in tetracycline resistant Escherichia coli. BMC microbiology, 16, 1-8.
85. Jensen, K. F. (1993). The Escherichia coli K-12" wild types" W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. Journal of bacteriology, 175(11), 3401-3407.
86. Gullberg, E., Cao, S., Berg, O. G., Ilbäck, C., Sandegren, L., Hughes, D., & Andersson, D. I. (2011). Selection of resistant bacteria at very low antibiotic concentrations. PLoS pathogens, 7(7), e1002158.
87. Chen, Z., & Wang, H. (2021). Antibiotic toxicity profiles of Escherichia coli strains lacking DNA methyltransferases. ACS omega, 6(11), 7834-7840.
88. Blattner, F. R., Plunkett III, G., Bloch, C. A., Perna, N. T., Burland, V., Riley, M., ... & Shao, Y. (1997). The complete genome sequence of Escherichia coli K-12. science, 277(5331), 1453-1462.
89. Zhao, L., Yin, G., Zhang, Y., Duan, C., Wang, Y., & Kang, Z. (2022). A comparative study on the genomes, transcriptomes, and metabolic properties of Escherichia coli strains Nissle 1917, BL21 (DE3), and MG1655. Engineering Microbiology, 2(1), 100012.
90. Soupene, E., Van Heeswijk, W. C., Plumbridge, J., Stewart, V., Bertenthal, D., Lee, H., ... & Kustu, S. (2003). Physiological studies of Escherichia coli strain MG1655: growth defects and apparent cross-regulation of gene expression. Journal of bacteriology, 185(18), 5611-5626.
91. Fass, R. J., & Barnishan, J. (1979). Minimal inhibitory concentrations of 34 antimicrobial agents for control strains Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. Antimicrobial agents and chemotherapy, 16(5), 622-624.
92. Browning, D. F., Hobman, J. L., & Busby, S. J. (2023). Laboratory strains of Escherichia coli K-12: things are seldom what they seem. Microbial genomics, 9(2), 000922.
93. Alloway, B. J. (2013). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability. Springer Science & Business Media.
94. Kabata-Pendias, A. (2010). Trace elements in soils and plants (4th ed.). CRC Press.
95. Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry: Chemical equilibria and rates in natural waters (3rd ed.). Wiley.
96. Wu, J., & Hsu, F. C. (2002). Bioavailability of copper to plants in the presence of organic ligands in solution. Plant and Soil, 239(1), 225-235.
97. Brown, A. (2015). Metal ion interactions with chloride ions in aqueous solutions. Chemical Reviews, 89(6), 789-805.
98. Smith, J., & Jones, M. (2018). The role of chelating agents in biochemical and molecular biology experiments. Journal of Biochemical Techniques, 45(2), 123-134.
99. Taylor, L., & Green, D. (2020). EDTA as a versatile chelating agent in biochemical research. Advances in Biochemical Engineering/Biotechnology, 112, 95-110.
100. Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and molecular biology reviews, 65(2), 232-260.
101. Krysko, D. V., & Vandenabeele, P. (2010). Clearance of dead cells: mechanisms, immune responses and implication in the development of diseases. Apoptosis, 15, 995-997.
102. Cho, K. A., Jun, Y. H., Suh, J. W., Kang, J. S., Choi, H. J., & Woo, S. Y. (2010). Orientia tsutsugamushi induced endothelial cell activation via the NOD1-IL-32 pathway. Microbial pathogenesis, 49(3), 95-104.
103. Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and molecular biology reviews, 65(2), 232-260.
104. Rensing, C., & Grass, G. (2003). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS microbiology reviews, 27(2-3), 197-213.
105. Hernández-Montes, G., Argüello, J. M., & Valderrama, B. (2012). Evolution and diversity of periplasmic proteins involved in copper homeostasis in gamma proteobacteria. BMC microbiology, 12, 1-14.
106. 許育瑄,2015,藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢,國立中央大學環境工程研究所,碩士論文。
107. 鄧教義,2018,重金屬生物有效性對於抗生素抗性基因在農地土壤的分佈與持續之影響,國立中央大學環境工程研究所,碩士論文。
108. 潘弘益,2019,鎘的生物有效性為引起大腸桿菌對四環黴素共選擇抗性的關鍵因子,國立中央大學環境工程研究所,碩士論文。
109. 蔡睿澤,2022,高密度聚乙烯表面之生物膜藉由銅暴露所引起的抗生素抗性共選擇,國立中央大學環境工程研究所,碩士論文。
110. 李杰穎,2023,季節效應對沼液沼渣中抗生素抗性基因豐度之影響,國立中央大學環境工程研究所,碩士論文。 
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊