跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/05 02:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳鐿夫
研究生(外文):Yi-Fu Chen
論文名稱:低溫熱裂解技術去除鈉系與鈣系焚化飛灰中戴奧辛之效率探討
論文名稱(外文):Removing Dioxin from Municipal Waste Incinerator Fly Ash via Thermal Pyrolysis
指導教授:張木彬張木彬引用關係
指導教授(外文):Moo-Been, Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:110
中文關鍵詞:焚化飛灰戴奧辛/呋喃熱裂解都市垃圾焚化爐鹼劑脫氯反應
外文關鍵詞:MSWI-FAPCDD/FsThermal pyrolysisMunicipal solid waste incineratorAlkaline sorbentsDechlorination
相關次數:
  • 被引用被引用:0
  • 點閱點閱:12
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
伴隨人類活動與文明發展,焚燒廢棄物將產生具有高毒性的焚化飛灰,礙於台灣地狹人稠,以往的水泥固化法掩埋,已無法支撐逐年累積的飛灰產量,其去化途徑儼然成為人們無法逃避的難題,達成飛灰再利用之目標蔚為新的趨勢。近年來,國內空污控制技術的革新搭配鹼劑的替換,使焚化飛灰成分大幅改變。本研究期以低熱裂解技術,作為焚化飛灰處理的方法,降低飛灰中戴奧辛/呋喃的濃度至歐盟最終廢棄物再利用標準(≤ 20 pg TEQ/g),計算各樣品的氯化程度與物種反應速率,同時探討兩種飛灰之物化性質差異及降解機制。結果顯示,所有樣品經實驗後,氯化程度都有所降低,物種濃度有往低氯數物種集中之趨勢,代表整體去的反應式以脫氯為主。鈉系飛灰在350°C實驗條件下,PCDD/Fs質量濃度去除效率均超過99%。反應時間為5、15和30分鐘時,毒性當量濃度分別降至0.0059、0.0013和0.0011 ng I-TEQ/g,達到歐盟最終廢棄物再利用標準。後續結合水洗技術能進一步提升PCDD/Fs的去除效率,300°C下,特別是鈣系飛灰之毒性當量濃度明顯降低,證實氯含量的對去除效率的影響力。綜上所述,鈉系飛灰較鈣系飛灰普遍具有更良好的戴奧辛去除效率,主要原因推測為飛灰中氯含量與金屬化合物的成分的差異導致。此外,裂解實驗後之氣相與固相戴奧辛分佈,經檢測尾氣排放濃度為0.44 ng I-TEQ/Nm3,發現有0.19%的質量濃度被脫附出來,以毒性當量濃度計算則佔1.91%。本研究對國內廢棄物去化處理提供見解,飛灰熱裂解技術在本國未來廢棄物處理領域深具發展潛力。
Incineration of waste generates highly toxic fly ash. Given Taiwan's limited land and dense population, traditional cement solidification and landfill methods can no longer accommodate the increasing fly ash production. Finding effective treatment and disposal methods has become an unavoidable challenge, and achieving the goal of fly ash reuse has emerged as a new trend. In recent years, development of innovative air pollution control technologies coupled with the replacement of alkaline sorbents, have significantly altered the composition of incineration fly ash. This study aims to apply low-temperature pyrolysis as a method for treating incineration fly ash, reducing the concentration of PCDD/Fs in the fly ash to meet the EU-EoW criteria (≤ 20 pg TEQ/g). The study calculates the chlorination degree of PCDD/Fs in the samples while examining the differences in the physicochemical properties and degradation mechanisms of the two types of fly ash. The results show that all samples experienced a reduction in chlorination degree after pyrolysis, with the concentration of species trending towards lower-chlorinated compounds, indicating that dechlorination was the primary reaction mechanism. Sodium-based fly ash achieved over 99% removal efficiency of PCDD/Fs based on mass concentration when operated at 350°C. The toxic equivalency concentration decreased to 0.0059, 0.0013, and 0.0011 ng I-TEQ/g after reaction of 5, 15, and 30 minutes, respectively, meeting the EU-EoW criteria. Subsequent combination with water washing techniques further improved PCDD/Fs removal efficiency, especially for calcium-based fly ash at 300°C, confirming the influence of chloride content on removal efficiency. In summary, sodium-based fly ash generally exhibited better dioxin removal efficiency compared to calcium-based fly ash. This is likely due to the differences in chloride content and the composition of metal compounds in the fly ash. Additionally, the distribution of gaseous and solid-phase dioxins in pyrolysis revealed that 0.19% of the mass concentration was desorbed, accounting for 1.91% of the toxic equivalency concentration, translating to an exhaust emission concentration of 0.44 ng I-TEQ/Nm3. This study provides insights into domestic waste disposal methods, demonstrating that fly ash pyrolysis technology holds significant potential for future waste management in Taiwan.
摘要 i
英文摘要 ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 3
2.1戴奧辛 3
2.1.1基本特性介紹 3
2.1.2人體健康風險與環境危害 6
2.1.3 毒性當量因子 6
2.1.4戴奧辛來源 9
2.2都市垃圾焚化爐焚化飛灰 11
2.2.1焚化飛灰基本特性與危害 11
2.2.2 焚化飛灰處理技術簡介 15
2.3 飛灰低溫熱裂解技術 19
2.4國內焚化廠現況 22
2.4.1技術與政策 23
2.4.2 焚化廠空污處理設備差異比較 24
第三章 研究方法 29
3.1研究方法與流程設計 29
3.2 飛灰樣品來源與採集 30
3.3 飛灰熱裂解系統 31
3.4 戴奧辛淨化分析程序及檢測方法 32
3.5 氯含量檢測方法 33
3.6 實驗藥品與儀器設備 35
3.6.1 實驗藥品 35
3.6.2 實驗鋼瓶 36
3.6.3 實驗材料 36
3.6.4 實驗設備 36
3.7 相關計算公式 40
第四章 結果與討論 42
4.1 焚化飛灰基本特性分析 42
4.1.1 鈉系飛灰與鈣系飛灰之元素分析鑑定 42
4.1.2 鈉系飛灰與鈣系飛灰之X射線螢光光譜(XRF)分析 43
4.1.3 鈉系飛灰與鈣系飛灰之原始戴奧辛含量 46
4.1.4 鈉系飛灰與鈣系飛灰之粒徑分析與BET分析 48
4.2 鈉系飛灰與鈣系飛灰之熱裂解 50
4.2.1 鈉系飛灰與鈣系飛灰於300°C與350°C熱裂解 52
4.2.2 鈉系飛灰與鈣系飛灰於250°C熱裂解 56
4.2.3 熱裂解破壞效率 61
4.3 鈉系飛灰與鈣系飛灰裂解成效影響因素差異探討 64
4.3.1 物理性質 64
4.3.2 金屬化合物 66
4.3.3 氯含量 68
第五章 結論與建議 72
5.1 結論 72
5.2 建議 73
參考文獻 74
附錄 86
Abad, B., & Esteban. (2008). Long-term worldwide QA/QC of dioxins and dioxin-like PCBs in environmental samples. Analytical Chemistry, 80(11), 3956-3964.
Addink, R., Govers, H. A., & Olie, K. (1995). Desorption behaviour of polychlorinated dibenzo-p-dioxins/dibenzofurans on a packed fly ash bed. Chemosphere, 31(8), 3945-3950.
Anderson, D. R., & Fisher, R. (2002). Sources of dioxins in the United Kingdom: the steel industry and other sources. Chemosphere, 46(3), 371-381.
Aramendı́a, M., Borau, V., Garcıa, I., Jimenez, C., Lafont, F., Marinas, A., Marinas, J., & Urbano, F. (1999). Influence of the reaction conditions and catalytic properties on the liquid-phase hydrodechlorination of chlorobenzene over palladium-supported catalysts: activity and deactivation. Journal of Catalysis, 187(2), 392-399.
Baker, J. I., & Hites, R. A. (2000). Is combustion the major source of polychlorinated dibenzo-p-dioxins and dibenzofurans to the environment? A mass balance investigation. Environmental Science & Technology, 34(14), 2879-2886.
Bertazzi, P. A., Consonni, D., Bachetti, S., Rubagotti, M., Baccarelli, A., Zocchetti, C., & Pesatori, A. C. (2001). Health effects of dioxin exposure: a 20-year mortality study. American Journal of Epidemiology, 153(11), 1031-1044.
Bertazzi, P. A., Zocchetti, C., Guercilena, S., Consonni, D., Tironi, A., Landi, M. T., & Pesatori, A. C. (1997). Dioxin exposure and cancer risk: a 15-year mortality study after the “Seveso accident”. Epidemiology, 8(6), 646.
Bhargava, S. K., Tardio, J., Prasad, J., Föger, K., Akolekar, D. B., & Grocott, S. C. (2006). Wet oxidation and catalytic wet oxidation. Industrial & Engineering Chemistry Research, 45(4), 1221-1258.
Bie, R., Chen, P., Song, X., & Ji, X. (2016). Characteristics of municipal solid waste incineration fly ash with cement solidification treatment. Journal of the Energy Institute, 89(4), 704-712.
Bonte, J. L., Fritsky, K. J., Plinke, M. A., & Wilken, M. (2002). Catalytic destruction of PCDD/F in a fabric filter: experience at a municipal waste incinerator in Belgium. Waste Management, 22(4), 421-426.
Cao, Y.n., Luo, J.j., & Sun, S.q. (2021). Characteristics of MSWI fly ash with acid leaching treatment. Journal of Fuel Chemistry and Technology, 49(8), 1208-1218.
Chandler, A. J., Eighmy, T. T., Hjelmar, O., Kosson, D., Sawell, S., Vehlow, J., Van der Sloot, H., & Hartlén, J. (1997). Municipal Solid Waste Incinerator Residues. Elsevier.
Chen, Z., Zhang, S., Lin, X., & Li, X. (2020). Decomposition and reformation pathways of PCDD/Fs during thermal treatment of municipal solid waste incineration fly ash. Journal of Hazardous Materials, 394, 122526.
Conesa, J. A. (2021). Sewage sludge as inhibitor of the formation of persistent organic pollutants during incineration. Sustainability, 13(19), 10935.
Council, N. R. (2000). Understanding health effects of incineration. In Waste Incineration & Public Health. National Academies Press (US).
De Marchi, B., Funtowicz, S., & Ravetz, J. (1996). Seveso: A paradoxical classic disaster. The long Road to Recovery: Community Responses to Industrial Disaster, 86, 120.
Dwivedi, A., & Jain, M. K. (2014). Fly ash–waste management and overview: A Review. Recent Research in Science and Technology, 6(1).
Dyke, P., & Stratford, J. (2002). Changes to the TEF schemes can have significant impacts on regulation and management of PCDD/F and PCB. Chemosphere, 47(2), 103-116.
Eskenazi, B., Mocarelli, P., Warner, M., Needham, L., Patterson Jr, D. G., Samuels, S., Turner, W., Gerthoux, P. M., & Brambilla, P. (2004). Relationship of serum TCDD concentrations and age at exposure of female residents of Seveso, Italy. Environmental Health Perspectives, 112(1), 22-27.
Fan, C., Wang, B., & Zhang, T. (2018). Review on cement stabilization/solidification of municipal solid waste incineration fly ash. Advances in Materials Science and Engineering, 2018(1), 5120649.
Fritsky, K. J., Kumm, J. H., & Wilken, M. (2001). Combined PCDD/F destruction and particulate control in a baghouse: experience with a catalytic filter system at a medical waste incineration plant. Journal of the Air & Waste Management Association, 51(12), 1642-1649.
Fujimori, T., Tanino, Y., & Takaoka, M. (2011). Role of zinc in MSW fly ash during formation of chlorinated aromatics. Environmental Science & Technology, 45(18), 7678-7684.
Fulekar, M., & Dave, J. (1986). Disposal of fly ash—an environmental problem. International Journal of Environmental Studies, 26(3), 191-215.
Gdbarra, P., Cogollo, A., Recasens, F., Fernandez‐Escobar, I., Abad, E., & Bayona, J. (1999). Supercritical fluid process for removal of polychlorodibenzodioxin and dibenzofuran from fly ash. Environmental Progress, 18(1), 40-49.
Goto, M. (2009). Chemical recycling of plastics using sub-and supercritical fluids. The Journal of Supercritical Fluids, 47(3), 500-507.
Gullett, B. K., Bruce, K. R., & Beach, L. O. (1990). The effect of metal catalysts on the formation of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran precursors. Chemosphere, 20(10-12), 1945-1952.
Gupta, D. K., Rai, U. N., Tripathi, R. D., & Inouhe, M. (2002). Impacts of fly-ash on soil and plant responses. Journal of Plant Research, 115, 401-409.
Hagenmaier, H., Brunner, H., Haag, R., & Kraft, M. (1987). Copper-catalyzed dechlorination/hydrogenation of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and other chlorinated aromatic compounds. Environmental Science & Technology, 21(11), 1085-1088.
Hagenmaier, H., Kraft, M., Brunner, H., & Haag, R. (1987). Catalytic effects of fly ash from waste incineration facilities on the formation and decomposition of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Environmental Science & Technology, 21(11), 1080-1084.
Huang, B., Gan, M., Ji, Z., Fan, X., Zhang, D., Chen, X., Sun, Z., Huang, X., & Fan, Y. (2022). Recent progress on the thermal treatment and resource utilization technologies of municipal waste incineration fly ash: A review. Process Safety and Environmental Protection, 159, 547-565.
Hung, P. C., Chang, S. H., Lin, S. H., Buekens, A., & Chang, M. B. (2014). Pilot tests on the catalytic filtration of dioxins. Environmental Science & Technology, 48(7), 3995-4001.
Hung, P. C., Chen, Q. H., & Chang, M. B. (2013). Pyrolysis of MWI fly ash–Effect on dioxin-like congeners. Chemosphere, 92(7), 857-863.
Ishida, M., Shiji, R., Nie, P., Nakamura, N., & Sakai, S.-i. (1998). Full-scale plant study on low temperature thermal dechlorination of PCDDs/PCDFs in fly ash. Chemosphere, 37(9-12), 2299-2308.
Kakuta, Y., Matsuto, T., Tanaka, N., & Masuda, T. (2005). Influence of residual carbon on the decomposition process of PCDD/Fs in MSWI fly ash. Chemosphere, 58(7), 969-975.
Kanan, S., & Samara, F. (2018). Dioxins and furans: A review from chemical and environmental perspectives. Trends in Environmental Analytical Chemistry, 17, 1-13.
Katami, T., Yasuhara, A., Okuda, T., & Shibamoto, T. (2002). Formation of PCDDs, PCDFs, and coplanar PCBs from polyvinyl chloride during combustion in an incinerator. Environmental Science & Technology, 36(6), 1320-1324.
Kim, B. H., Lee, S. J., Mun, S. J., & Chang, Y. S. (2005). A case study of dioxin monitoring in and around an industrial waste incinerator in Korea. Chemosphere, 58(11), 1589-1599.
Kirkelund, G. M., Skevi, L., & Ottosen, L. M. (2020). Electrodialytically treated MSWI fly ash use in clay bricks. Construction and Building Materials, 254, 119286.
Kjeller, L. O., & Rappe, C. (1995). Time trends in levels, patterns, and profiles for polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in a sediment core from the Baltic proper. Environmental Science & Technology, 29(2), 346-355.
Kubo, T., & Tabira, Y. (2013). Dioxins discharged from liquid organic waste incineration facilities at Nagasaki University. Journal of Environment and Safety, 4(2), 2_121-122_125.
Kulkarni, P. S., Crespo, J. G., & Afonso, C. A. (2008). Dioxins sources and current remediation technologies—a review. Environment International, 34(1), 139-153.
Leofanti, G., Padovan, M., Tozzola, G., & Venturelli, B. (1998). Surface area and pore texture of catalysts. Catalysis Today, 41(1-3), 207-219.
Li, W., Li, L., Wen, Z., Yan, D., Liu, M., Huang, Q., & Zhu, Z. (2023). Removal of dioxins from municipal solid waste incineration fly ash by low-temperature thermal treatment: Laboratory simulation of degradation and ash discharge stages. Waste Management, 168, 45-53.
Li, W., Yan, D., Li, L., Wen, Z., Liu, M., Lu, S., & Huang, Q. (2023). Review of thermal treatments for the degradation of dioxins in municipal solid waste incineration fly ash: Proposing a suitable method for large-scale processing. Science of The Total Environment, 875, 162565.
Lu, S., Yan, J., Li, X., Ni, M., Cen, K., & Dai, H. (2007). Effects of inorganic chlorine source on dioxin formation using fly ash from a fluidized bed incinerator. Journal of Environmental Sciences, 19(6), 756-761.
Lu, S., Huang, J., Peng, Z., Li, X., & Yan, J. (2012). Ball milling 2, 4, 6-trichlorophenol with calcium oxide: Dechlorination experiment and mechanism considerations. Chemical Engineering Journal, 195, 62-68.
Lundin, L., Aurell, J., & Marklund, S. (2011). The behavior of PCDD and PCDF during thermal treatment of waste incineration ash. Chemosphere, 84(3), 305-310.
Lundin, L., & Marklund, S. (2005). Thermal degradation of PCDD/F in municipal solid waste ashes in sealed glass ampules. Environmental Science & Technology, 39(10), 3872-3877.
Lundin, L., & Marklund, S. (2008). Distribution of mono to octa-chlorinated PCDD/Fs in fly ash from a municipal solid-waste incinerator. Environmental Science & Technology, 42(4), 1245-1250.
Lundqvist, C., Zuurbier, M., Leijs, M., Johansson, C., Ceccatelli, S., Saunders, M., Schoeters, G., TUSSCHER, G. T., & Koppe, J. G. (2006). The effects of PCBs and dioxins on child health. Acta Paediatrica, 95, 55-64.
Ma, J., Dong, X., Yu, Y., Zheng, B., & Zhang, M. (2014). The effects of alkalis on the dechlorination of o-chlorophenol in supercritical water: Molecular dynamics simulation and experiment. Chemical Engineering Journal, 241, 268-272.
Mackay, D., Shiu, W. Y., & Lee, S. C. (2006). Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. CRC press.
Marinković, N., Pašalić, D., Ferenčak, G., Gršković, B., & Rukavina, A. (2010). Dioxins and human toxicity. Archives of Industrial Hygiene and Toxicology, 61(4), 445-453.
Min, Y., Qin, C., Shi, P., Liu, C., Feng, Y., & Liu, B. (2017). Effect of municipal solid waste incineration fly ash addition on the iron ore sintering process, mineral phase and metallurgical properties of iron ore sinter. The Iron and Steel Institute of Japan International, 57(11), 1955-1961.
Mizukoshi, H., Masui, M., Namiki, N., Kim, J. C., & Otani, Y. (2007). Suppression of solidification of calcium-rich incinerator fly ash during thermal treatment for decomposition/detoxification of dioxins. Advanced Powder Technology, 18(2), 143-154.
Montinaro, S., Concas, A., Pisu, M., & Cao, G. (2008). Immobilization of heavy metals in contaminated soils through ball milling with and without additives. Chemical Engineering Journal, 142(3), 271-284.
Ni, M., Du, Y., Lu, S., Peng, Z., Li, X., Yan, J., & Cen, K. (2013). Study of ashes from a medical waste incinerator in China: physical and chemical characteristics on fly ash, ash deposits and bottom ash. Environmental Progress & Sustainable Energy, 32(3), 496-504.
Olie, K., Vermeulen, R., & Hutzinger, O. (1977). Chlorodibenzo-pdioxins and dibenzofurans as trace components of fly ash and flue gas of some municipal incinerators in the Netherlands. Chemosphere, 6, 455-459.
Pa, B. (1998). The Seveso studies on early and long-term effects of dioxin exposure: A review. Environ Health Perspect, 106(2), 625-633.
Pan, S., Yao, Q., Cai, W., Peng, Y., Luo, Y., Wang, Z., Jiang, C., Li, X., & Lu, S. (2022). Characterization of dioxins and heavy metals in chelated fly ash. Energies, 15(13), 4868.
Pan, X., Yan, J., & Xie, Z. (2013). Detoxifying PCDD/Fs and heavy metals in fly ash from medical waste incinerators with a DC double arc plasma torch. Journal of Environmental Sciences, 25(7), 1362-1367.
Pan, Y., Yang, L., Zhou, J., Liu, J., Qian, G., Ohtsuka, N., Motegi, M., Oh, K., & Hosono, S. (2013). Characteristics of dioxins content in fly ash from municipal solid waste incinerators in China. Chemosphere, 92(7), 765-771.
Pandey, V. C., & Singh, N. (2010). Impact of fly ash incorporation in soil systems. Agriculture, Ecosystems & Environment, 136(1-2), 16-27.
Paria, S., & Yuet, P. K. (2006). Solidification–stabilization of organic and inorganic contaminants using portland cement: a literature review. Environmental Reviews, 14(4), 217-255.
Pham, M. T. N., Hoang, A. Q., Nghiem, X. T., Tu, B. M., Dao, T. N., & Vu, D. N. (2019). Residue concentrations and profiles of PCDD/Fs in ash samples from multiple thermal industrial processes in Vietnam: Formation, emission levels, and risk assessment. Environmental Science and Pollution Research, 26, 17719-17730.
Qin, J., Zhang, Y., Heberlein, S., Lisak, G., & Yi, Y. (2022). Characterization and comparison of gasification and incineration fly ashes generated from municipal solid waste in Singapore. Waste Management, 146, 44-52.
Qin, J., Zhang, Y., & Yi, Y. (2023). Water washing and acid washing of gasification fly ash from municipal solid waste: Heavy metal behavior and characterization of residues. Environmental Pollution, 320, 121043.
Quina, M. J., Bordado, J. C., & Quinta-Ferreira, R. M. (2009). The influence of pH on the leaching behaviour of inorganic components from municipal solid waste APC residues. Waste Management, 29(9), 2483-2493.
Robert, R., Barbati, S., Ricq, N., & Ambrosio, M. (2002). Intermediates in wet oxidation of cellulose: identification of hydroxyl radical and characterization of hydrogen peroxide. Water Research, 36(19), 4821-4829.
Rotard, W., Christmann, W., & Knoth, W. (1994). Background levels of PCDD/F in soils of Germany. Chemosphere, 29(9-11), 2193-2200.
Ruokojärvi, P. H., Halonen, I. A., Tuppurainen, K. A., Tarhanen, J., & Ruuskanen, J. (1998). Effect of gaseous inhibitors on PCDD/F formation. Environmental Science & Technology, 32(20), 3099-3103.
Sharma, R., Sharma, M., Sharma, R., & Sharma, V. (2013). The impact of incinerators on human health and environment. Reviews on Environmental Health, 28(1), 67-72.
Sharma, S., Fulekar, M., Jayalakshmi, C., & Straub, C. P. (1989). Fly ash dynamics in soil‐water systems. Critical Reviews in Environmental Science and Technology, 19(3), 251-275.
Shiu, W. Y., Doucette, W., Gobas, F. A., Andren, A., & Mackay, D. (1988). Physical-chemical properties of chlorinated dibenzo-p-dioxins. Environmental Science & Technology, 22(6), 651-658.
Siewers, S., & Schacht, U. (1994). Untersuchungen zur dioxinne-bildung beim compostierungprozess-unter realen bedingungen. Organohalogen Compounds, 18, 180-185.
Sinfelt, J. H. (2002). Role of surface science in catalysis. Surface Science, 500(1-3), 923-946.
Smith, D. S., Alzina, A., Bourret, J., Nait Ali, B., Pennec, F., Tessier Doyen, N., Otsu, K., Matsubara, H., Elser, P., & Gonzenbach, U. T. (2013). Thermal conductivity of porous materials. Journal of Materials Research, 28(17), 2260-2272.
Sun, R. D., Irie, H., Nishikawa, T., Nakajima, A., Watanabe, T., & Hashimoto, K. (2003). Suppressing effect of CaCO3 on the dioxins emission from poly (vinyl chloride) (PVC) incineration. Polymer Degradation and Stability, 79(2), 253-256.
Sun, Z., Takahashi, F., Odaka, Y., Fukushi, K., Oshima, Y., & Yamamoto, K. (2007). Effects of potassium alkalis and sodium alkalis on the dechlorination of o-chlorophenol in supercritical water. Chemosphere, 66(1), 151-157.
Thompson, J., & Anthony, H. (2005). The health effects of waste incinerators. Journal of Nutritional & Environmental Medicine, 15(2-3), 115-156.
Thuan, N. T., & Chang, M. B. (2012). Investigation of the degradation of pentachlorophenol in sandy soil via low-temperature pyrolysis. Journal of Hazardous Materials, 229, 411-418.
Tiernan, T., Wagel, D., Garrett, J., VanNess, G., Solch, J., Harden, L., & Rogers, C. (1989). Laboratory and field tests to demonstrate the efficacy of KPEG reagent for detoxification of hazardous wastes containing polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) and soils contaminated with such chemical wastes. Chemosphere, 18(1-6), 835-841.
Tiernan, T., Wagel, D., Vanness, G., Garrett, J., Solch, J., & Rogers, C. (1989). Dechlorination of PCDD and PCDF sorbed on activated carbon using the KPEG reagent. Chemosphere, 19(1-6), 573-578.
Trinh, M. M., & Chang, M. B. (2021). Catalytic pyrolysis: New approach for destruction of POPs in MWIs fly ash. Chemical Engineering Journal, 405, 126718.
Trinh, M. M., & Chang, M. B. (2022). Transformation of mono-to octa-chlorinated dibenzo-p-dioxins and dibenzofurans in MWI fly ash during catalytic pyrolysis process. Chemical Engineering Journal, 427, 130907.
Tundo, P., Perosa, A., Selva, M., & Zinovyev, S. S. (2001). A mild catalytic detoxification method for PCDDs and PCDFs. Applied Catalysis B: Environmental, 32(1-2), L1-L7.
Tysklind, M., Faengmark, I., Marklund, S., Lindskog, A., Thaning, L., & Rappe, C. (1993). Atmospheric transport and transformation of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environmental Science & Technology, 27(10), 2190-2197.
Ukisu, Y., & Miyadera, T. (2003). Hydrogen-transfer hydrodechlorination of polychlorinated dibenzo-p-dioxins and dibenzofurans catalyzed by supported palladium catalysts. Applied Catalysis B: Environmental, 40(2), 141-149.
Ukisu, Y., & Miyadera, T. (2004). Dechlorination of dioxins with supported palladium catalysts in 2-propanol solution. Applied Catalysis A: General, 271(1-2), 165-170.
Urbano, F., & Marinas, J. (2001). Hydrogenolysis of organohalogen compounds over palladium supported catalysts. Journal of Molecular Catalysis A: Chemical, 173(1-2), 329-345.
Uzgiris, E. E., Edelstein, W. A., Philipp, H. R., & Iben, I. T. (1995). Complex thermal desorption of PCBs from soil. Chemosphere, 30(2), 377-387.
Van der Bruggen, B., Vogels, G., Van Herck, P., & Vandecasteele, C. (1998). Simulation of acid washing of municipal solid waste incineration fly ashes in order to remove heavy metals. Journal of Hazardous Materials, 57(1-3), 127-144.
Vehlow, J., Bergfeldt, B., & Hunsinger, H. (2006). PCDD/F and related compounds in solid residues from municipal solid waste incineration-a literature review. Waste Management & Research, 24(5), 404-420.
Wang, M. S., Chen, S. J., Lai, Y. C., Huang, K. L., & Chang Chien, G. P. (2010). Characterization of persistent organic pollutants in ash collected from different facilities of a municipal solid waste incinerator. Aerosol and Air Quality Research, 10(4), 391-402.
Wang, S. (2008). Application of solid ash based catalysts in heterogeneous catalysis. Environmental Science & Technology, 42(19), 7055-7063.
Wang, Y., Wang, L., Hsieh, L., Li, H., Jiang, H., Lin, Y., & Tsai, C. (2012). Effect of temperature and CaO addition on the removal of polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash from a medical waste incinerator. Aerosol and Air Quality Research, 12(2), 191-199.
Weber, R., Takasuga, T., Nagai, K., Shiraishi, H., Sakurai, T., Matuda, T., & Hiraoka, M. (2002). Dechlorination and destruction of PCDD, PCDF and PCB on selected fly ash from municipal waste incineration. Chemosphere, 46(9-10), 1255-1262.
Wei, G., Liu, H., Zhang, R., Zhu, Y., & Xu, X. (2016). Mass concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and heavy metals in different size fractions of hospital solid waste incinerator fly ash particles. Aerosol and Air Quality Research, 16(7), 1569-1578.
Wielgosiński, G., Namiecińska, O., Łechtańska, P., & Grochowalski, A. (2016). Effect of selected additions on de novo synthesis of polychlorinated dioxins and furans. Ecological Chemistry and Engineering S, 23(2), 249-257.
Wong, G., Fan, X., Gan, M., Ji, Z., Ye, H., Zhou, Z., & Wang, Z. (2020). Resource utilization of municipal solid waste incineration fly ash in iron ore sintering process: A novel thermal treatment. Journal of Cleaner Production, 263, 121400.
Wong, G., Gan, M., Fan, X., Ji, Z., Chen, X., & Wang, Z. (2021). Co-disposal of municipal solid waste incineration fly ash and bottom slag: A novel method of low temperature melting treatment. Journal of Hazardous Materials, 408, 124438.
Wu, H., Lu, S., Yan, J., Li, X., & Chen, T. (2011). Thermal removal of PCDD/Fs from medical waste incineration fly ash–effect of temperature and nitrogen flow rate. Chemosphere, 84(3), 361-367.
He, X., Zhu, S., & Hwang, J. (2016). Physical and chemical properties of MSWI fly ash. Characterization of Minerals, Metals, and Materials 2016, 451-459.
Xu, Z., Fritsky, K., Graham, J., & Dellinger, B. (2000). Catalytic destruction of PCDD/F: laboratory test and performance in a medical waste incinerator. Organohalogen Compounds, 45, 419-422.
Yan, D., Peng, Z., Yu, L., Sun, Y., Yong, R., & Karstensen, K. H. (2018). Characterization of heavy metals and PCDD/Fs from water-washing pretreatment and a cement kiln co-processing municipal solid waste incinerator fly ash. Waste Management, 76, 106-116.
Yan, J., Peng, Z., Lu, S., Li, X., Ni, M., Cen, K., & Dai, H. (2007). Degradation of PCDD/Fs by mechanochemical treatment of fly ash from medical waste incineration. Journal of Hazardous Materials, 147(1-2), 652-657.
Yan, M., Li, X., Yang, J., Chen, T., Lu, S., Buekens, A. G., Olie, K., & Yan, J. (2012). Sludge as dioxins suppressant in hospital waste incineration. Waste Management, 32(7), 1453-1458.
Yang, Z., Tian, S., Ji, R., Liu, L., Wang, X., & Zhang, Z. (2017). Effect of water-washing on the co-removal of chlorine and heavy metals in air pollution control residue from MSW incineration. Waste Management, 68, 221-231.
Yasuhara, A., Katami, T., Okuda, T., Ohno, N., & Shibamoto, T. (2001). Formation of dioxins during the combustion of newspapers in the presence of sodium chloride and poly (vinyl chloride). Environmental Science & Technology, 35(7), 1373-1378.
You, J. C., Jeon, S., Youn, S., Joo, C., Kim, S., & Choi, K. (2004). Study of indicator isomer in dioxin analysis.
Yuan, G., & Keane, M. A. (2004). Liquid phase hydrodechlorination of chlorophenols over Pd/C and Pd/Al2O3: a consideration of HCl/catalyst interactions and solution pH effects. Applied Catalysis B: Environmental, 52(4), 301-314.
Yuan, W. y., Xu, W. t., Zheng, J. l., Wang, X. y., & Zhang, Q. w. (2019). Immobilization of Pb, Cu and Zn in contaminated soil using ball milling technique. Journal of Contaminant Hydrology, 225, 103514.
Zhang, M., & Buekens, A. (2016). De novo synthesis of dioxins: a review. International Journal of Environment and Pollution, 60(1-4), 63-110.
Zhang, M., Buekens, A., & Li, X. (2017). Open burning as a source of dioxins. Critical Reviews in Environmental Science and Technology, 47(8), 543-620.
Zhang, M., Guo, M., Zhang, B., Li, F., Wang, H., & Zhang, H. (2020). Stabilization of heavy metals in MSWI fly ash with a novel dithiocarboxylate-functionalized polyaminoamide dendrimer. Waste Management, 105, 289-298.
Zhang, M., Yang, J., Buekens, A., Olie, K., & Li, X. (2016). PCDD/F catalysis by metal chlorides and oxides. Chemosphere, 159, 536-544.
Zhang, Y., Wang, L., Chen, L., Ma, B., Zhang, Y., Ni, W., & Tsang, D. C. (2021). Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives. Journal of Hazardous Materials, 411, 125132.
Zhang, Z., Li, A., Wang, X., & Zhang, L. (2016). Stabilization/solidification of municipal solid waste incineration fly ash via co-sintering with waste-derived vitrified amorphous slag. Waste Management, 56, 238-245.
Chen, Z., Tang, M., Lu, S., Ding, J., Qiu, Q., Wang, Y., & Yan, J. (2018). Evolution of PCDD/F-signatures during mechanochemical degradation in municipal solid waste incineration filter ash. Chemosphere, 208, 176-184.
三井造船 (2005), 三井造船技報No. 185。
張君偉, 林洋宇, 黃琛徽, & 薛人豪 (2019). 碳酸氫鈉於廢棄物焚化爐除酸系統之應用. 工業污染防治, 147, 207.
楊義榮 (1986). 焚化爐廢氣乾式滌氣系統. 工業污染防治, 5(3), 70-75.
電子全文 電子全文(網際網路公開日期:20260731)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊