跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 11:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林哲毅
研究生(外文):Zhe-Yi Lin
論文名稱:四軸飛行器單一馬達失效之辨識及控制方法
指導教授:黃衍任
指導教授(外文):Yean-Ren Huang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:88
中文關鍵詞:四軸飛行器故障偵測及診斷故障容忍控制STM32PID控制實時作業系統
外文關鍵詞:quadrotorFault Detection and DiagnosisFault-Tolerant ControlSTM32PID controlRTOS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:9
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  近年來,無人機商業化及軍事化越趨普遍,尤其典型的四軸飛行器應用最為廣泛。其僅需四個致動器就能完成全姿態運動,雖然本身為不穩定(unstable)、耦合(coupled)、欠驅動(underactuated)系統,但得益於其低成本、相對容易控制的特性,使其經常成為驗證控制理論或是實現應用的工具。
  由於系統有上述特性,一旦槳葉損壞或是馬達失效,便可能使飛行器因缺少自由度而無法控制部分姿態。主要應對方法為避免碰撞或以失效狀態進行控制,第一種通常在機身適當位置配有距離感測器,結合演算法進行避障,另一種則需先識別出失效模型,再以當前模型進行控制。
  本研究探討單顆馬達部分失效情況,在飛行過程模擬馬達故障,僅依靠姿態資料及直覺的旋轉誤差正負號判斷方式進行失效辨識,並使用P-PID控制及四軸飛行器耦合特性進行故障補償及控制。目標使飛行器在一定高度且缺少偏轉(yaw)自由度下進行故障控制。在高度為4 m時,馬達剩餘效率為0.8、0.6及0.2的情況下,落地前可將傾角控制在0.2 (rad)以內,且接觸地面時之衝量皆在 3.2 (kg ‧ m/s)內,以保證機身以水平姿態較慢地落地,並讓衝擊分散到四個機臂。
  實驗部分先透過假設來簡化系統,模擬從正常飛行到失效後的識別及控制情況,最後再以實際戶外飛行來驗證控制方法。
In recent years, the commercialization and militarization of unmanned arial vehicles (UAVs) have become increaseingly common, with quadcopters being particularly prevalent in various applications. Despite being inherently unstable, coupled, and underactuated systems, quadcopters benefit from their low cost and relatively easy controllability, which often makes them a tool for validating control theories or implementing applications.
Due to the aforementioned characteristics of the system, if a propeller blade is damaged or a motor fails, the aircraft may lose certain degrees of freedom and become uncontrollable in certain attitudes. The main approaches to address this issue are collision avoidance and control under failure conditions. The first approach typically involves equipping the aircraft with distance sensors at appropriate locations on the fuselage, combined with algorithms for obstacle avoidance. The second approach requires identifying the failure model first and then implementing control based on the current model.
This study investigates the partial failure of a single motor in a quadcopter. Motor failure is simulated during flight, and failure identification is conducted using only attitude data and an intuitive method of determining the sign of the rotational error. P-PID control and the coupling characteristics of the quadcopter are employed for fault compensation and control. The goal is to achieve fault control while maintaining the aircraft at a certain altitude and without the yaw degree of freedom. At an altitude of 4 meters, with remaining motor efficiencies of 0.8, 0.6, and 0.2, the tilt angle can be controlled within 0.2 radians before landing, and the impulse upon ground contact is kept within 3.2 (kg ‧ m/s). This ensures that the fuselage lands slowly in a horizontal attitude, allowing the impact to be distributed across the four arms.
In the experimental phase, the system is initially simplified through assumptions to simulate the identification and control process from normal flight to failure. Subsequently, the control methods are verified through actual outdoor flights.
摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xi
符號說明 xii
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 1
1-3 文獻回顧 2
1-4 論文架構 3
第二章 基礎理論 4
2-1 四元數旋轉表示法 4
2-2 四軸飛行器動力系統 6
2-3 回授控制系統 8
2-4 數位控制系統 9
第三章 系統架構 11
3-1 飛行器架構 11
3-2 控制器及硬體周邊 12
3-2-1 微控制器 13
3-2-2 感測器 14
3-2-3 MicroSD卡 15
3-2-4 2.4G無線傳輸模組 16
3-2-5 控制器轉板 16
3-3 遙控器 18
3-4 實時作業系統(RTOS) 20
3-4-1 即時系統追蹤分析工具 20
3-4-2 任務介紹 21
第四章 研究方法 23
4-1 姿態解算 23
4-2 故障識別及控制方法 25
4-2-1 正常飛行之控制方法 25
4-2-2 故障識別方法 28
4-2-3 故障時之控制方法 29
4-3 故障識別及控制模擬 31
4-3-1 模擬相關介紹 31
4-3-2 模擬結果 34
4-3-2-1 η = 0.8 34
4-3-2-2 η = 0.6 41
4-3-2-3 η = 0.2 48
第五章 實驗結果與討論 55
5-1 η = 0.8 55
5-2 η = 0.6 59
5-3 η = 0.2 62
第六章 結論與未來展望 66
6-1 結論 66
6-2 未來展望 66
參考文獻 67
[1] J. G. Leishman, “Principles of Helicopter Aerodynamics with CD Extra”,
2nd Edn, London: Cambridge University Press, 2006
[2] S. N. Ghazbi, Y. Aghli, M. Alimohammadi, A. A. Akbari, “Quadrotors Unmanned Aerial Vehicles: A Review”, International Journal on Smart Sensing and Intelligent Systems, Vol. 9, No. 1, pp. 309-333, 2016
[3] G. K. Fourlas and G. C. Karras, “A Survey on Fault Diagnosis and Fault-Tolerant Control Methods for Unmanned Aerial Vehicles”, Machines, Vol. 9, No. 9, pp. 15-18, 2021
[4] M. H. Amoozgar, A. Vhamseddine, and Y. Zhang, “Experimental Test of a Two-Stage Kalman Filter for Actuator Fault Detection and Diagnosis of an Unmanned Quadrotor Helicopter”, Journal of Intelligent & Robotic Systems, Vol. 70, No. 1, pp. 107-117, 2013
[5] Y. Zhong, Y. Zhang, W. Zhang, and H. Zhan, “Actuator and Sensor Fault Detection and Diagnosis for Unmanned Quadrotor Helicopters”, International Federation of Automatic Control, Vol. 51, No. 14, pp. 998-1003, 2018
[6] V. Lippiello, F. Ruggiero, and D. Serra, “Emergency landing for a quadrotor in case of a propeller failure: A PID based approach”, 2014 IEEE International Symposium on Safety, Security, and Rescue Robotic , Hokkaido, Japan, pp. 1-7, 2014
[7] N. Fang, S. Sihao, F. Philipp, and S. Davide, “Nonlinear MPC for Quadrotor Fault-Tolerant Control”, IEEE Robotics and Automation Letters, Vol. 7, No. 2, pp. 5047-5054, 2022

[8] J. Vince, “Quaternions for Computer Graphics”, 2nd Edn, Springer, 2011
[9] N. Micheal, D. Mellinger, Q. Lindsey, and V. Kumar, “The grasp multiple micro-uav testbed”, IEEE Robotics & Automation Magazine, Vol. 17, No. 3, pp. 56-65, 2010
[10] N. H. Sahrir and M. A. Mohd Basri, “Modeling and Manual Tuning PID Control of Quadcopter”, Control Instrumentation and Mechatronics: Theory and Practice (pp. 346-357), Springer, 2022
[11] L. Martins, C. Cardeira, and P. Oliveira, “Linear quadratic regulator for trajectory tracking of quadrotor”, IFAC-PapersOnLine, Vol. 52, pp. 176-181, 2019
[12] M. Herrera, W. Chamorro, A. P. Gomez and O. Camacho, “Sliding mode control: An approach to control a quadrotor”, Asia-Pacific Conference on Computer Aided System Engineering, pp. 314-319, 2015
[13] I. D. Landau, G. Zito, “Digital Control Systems: Design, Identification and Implementation”, 1st Edn, Springer, 2006
[14] R. Mahony, T. Hamel, J.-M. Pflimlin, “Nonlinear complementary filters on special orthogonal group”, IEEE Trans. Autom. Control, Vol 53, No. 5, pp. 1203-1218, 2008
電子全文 電子全文(網際網路公開日期:20290619)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊