|
Agrawal, R., Imielinski, T., & Swami, A. (1993). Database mining: A performance perspective. IEEE Transactions on Knowledge and Data Engineering, 5(6), 914–925. https://doi.org/10.1109/69.250074 Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. Proceedings of the Eleventh International Conference on Data Engineering, 3–14. https://doi.org/10.1109/ICDE.1995.380415 Aini, Q., Fetrina, E., & Epriani, N. C. (2023). WebQual 4.0 Plus: An Approach to Measure Customer Satisfaction toward Website Quality. 2023 11th International Conference on Cyber and IT Service Management (CITSM), 1–6. https://doi.org/10.1109/CITSM60085.2023.10455371 Akçapınar, G., Altun, A., & Aşkar, P. (2019). Using learning analytics to develop early-warning system for at-risk students. International Journal of Educational Technology in Higher Education, 16(1), 40. https://doi.org/10.1186/s41239-019-0172-z Ariyani, S., Sudarma, M., & Wicaksana, P. A. (2021). Analysis of Functional Suitability and Usability in Sales Order Procedure to Determine Management Information System Quality. INTENSIF: Jurnal Ilmiah Penelitian Dan Penerapan Teknologi Sistem Informasi, 5(2), 234–248. https://doi.org/10.29407/intensif.v5i2.15537 Arnold, K. E., Lonn, S., & Pistilli, M. D. (2014). An exercise in institutional reflection: The learning analytics readiness instrument (LARI). Proceedings of the Fourth International Conference on Learning Analytics And Knowledge, 163–167. https://doi.org/10.1145/2567574.2567621 Arnold, K. E., & Pistilli, M. D. (2012). Course signals at Purdue: Using learning analytics to increase student success. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, 267–270. https://doi.org/10.1145/2330601.2330666 Asthana, A., & Olivieri, J. (2009). Quantifying software reliability and readiness. 2009 IEEE International Workshop Technical Committee on Communications Quality and Reliability, 1–6. https://doi.org/10.1109/CQR.2009.5137352 Baker, R. S. (2019). Challenges for the Future of Educational Data Mining: The Baker Learning Analytics Prizes. 11(1). Baker, R., & Siemens, G. (2014). Educational Data Mining and Learning Analytics. In R. K. Sawyer (Ed.), The Cambridge Handbook of the Learning Sciences (2nd ed., pp. 253–272). Cambridge University Press. https://doi.org/10.1017/CBO9781139519526.016 Bakker, J., Denessen, E., & Brus‐Laeven, M. (2007). Socio‐economic background, parental involvement and teacher perceptions of these in relation to pupil achievement. Educational Studies, 33(2), 177–192. https://doi.org/10.1080/03055690601068345 Bañeres, D., Rodríguez, M. E., Guerrero-Roldán, A. E., & Karadeniz, A. (2020). An Early Warning System to Detect At-Risk Students in Online Higher Education. Applied Sciences, 10(13), 4427. https://doi.org/10.3390/app10134427 Bergdahl, N., Nouri, J., Karunaratne, T., Afzaal, M., & Saqr, M. (2020). Learning Analytics for Blended Learning: A Systematic Review of Theory, Methodology, and Ethical Considerations. International Journal of Learning Analytics and Artificial Intelligence for Education (iJAI), 2(2), 46. https://doi.org/10.3991/ijai.v2i2.17887 Blum, A., & Mitchell, T. (1998). Combining Labeled and Unlabeled Data with Co-Training y. Breiman, L. (2001). Random Forests. In Machine Learning (Vol. 45, pp. 5–32). Budiman, E., Puspitasari, N., Taruk, M., & Maria, E. (2019). Webqual 4.0 and ISO/IEC 9126 Method for website quality evaluation of higher education. Cheung, S. K. S., Kwok, L. F., Phusavat, K., & Yang, H. H. (2021). Shaping the future learning environments with smart elements: Challenges and opportunities. International Journal of Educational Technology in Higher Education, 18(1), 16, s41239-021-00254–1. https://doi.org/10.1186/s41239-021-00254-1 Corbett, A. T., & Anderson, J. R. (1995). Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modelling and User-Adapted Interaction, 4(4), 253–278. https://doi.org/10.1007/BF01099821 Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/BF00994018 Costa, R. S., Tan, Q., Pivot, F., Zhang, X., & Wang, H. (2021). Personalized and adaptive learning: Educational practice and technological impact. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. Cunningham, P., Cord, M., & Delany, S. J. (2008). Supervised Learning. In M. Cord & P. Cunningham (Eds.), Machine Learning Techniques for Multimedia (pp. 21–49). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-75171-7_2 Defrizal, D., Redaputri, A. P., Narundana, V. T., Nurdiawansyah, N., & Dharmawan, Y. Y. (2022). The Merdeka Belajar Kampus Merdeka Program: An Analysis of the Success Factors. Nusantara: Jurnal Pendidikan Indonesia, 2(1), 123–140. https://doi.org/10.14421/njpi.2022.v2i1-8 Diasti, K. S., & Mbato, C. L. (2020). Exploring Undergraduate Students’ Motivation-regulation Strategies in Thesis Writing. Language Circle: Journal of Language and Literature, 14(2), 176–183. https://doi.org/10.15294/lc.v14i2.23450 Direktorat Jenderal Pendidikan Tinggi Kementerian Pendidikan dan Kebudayaan. (2020). Buku Panduan Merdeka Belajar—Kampus Merdeka. Direktorat Jenderal Pendidikan Tinggi Kemendikbud RI. Ferguson, R., & Buckingham Shum, S. (2012). Social learning analytics: Five approaches. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, 23–33. https://doi.org/10.1145/2330601.2330616 Ferguson, R., & Clow, D. (2015). Examining engagement: Analysing learner subpopulations in massive open online courses (MOOCs). Proceedings of the Fifth International Conference on Learning Analytics And Knowledge, 51–58. https://doi.org/10.1145/2723576.2723606 Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5). https://doi.org/10.1214/aos/1013203451 Guerra, J., Ortiz-Rojas, M., Zúñiga‐Prieto, M. A., Scheihing, E., Jiménez, A., Broos, T., De Laet, T., & Verbert, K. (2020). Adaptation and evaluation of a learning analytics dashboard to improve academic support at three Latin American universities. British Journal of Educational Technology, 51(4), 973–1001. https://doi.org/10.1111/bjet.12950 Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. (Vol. 2). Springer. Herodotou, C., Hlosta, M., Boroowa, A., Rienties, B., Zdrahal, Z., & Mangafa, C. (2019). Empowering online teachers through predictive learning analytics. British Journal of Educational Technology, 50(6), 3064–3079. https://doi.org/10.1111/bjet.12853 Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression (Third edition). Wiley. Hung, H.-C., Liu, I.-F., Liang, C.-T., & Su, Y.-S. (2020). Applying Educational Data Mining to Explore Students’ Learning Patterns in the Flipped Learning Approach for Coding Education. Symmetry, 12(2), 213. https://doi.org/10.3390/sym12020213 Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651–666. https://doi.org/10.1016/j.patrec.2009.09.011 Jin Huang, & Ling, C. X. (2005). Using AUC and accuracy in evaluating learning algorithms. IEEE Transactions on Knowledge and Data Engineering, 17(3), 299–310. https://doi.org/10.1109/TKDE.2005.50 Kabathova, J., & Drlik, M. (2021). Towards Predicting Student’s Dropout in University Courses Using Different Machine Learning Techniques. Applied Sciences, 11(7), 3130. https://doi.org/10.3390/app11073130 Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., & Melançon, G. (2008). Visual Analytics: Definition, Process, and Challenges. In A. Kerren, J. T. Stasko, J.-D. Fekete, & C. North (Eds.), Information Visualization (Vol. 4950, pp. 154–175). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-70956-5_7 Kementrian Pendidikan dan Kebudayaan. (2024). Analitik PTNBH - Direktorat Kelembagaan Kemdikbud. https://sinta.kemdikbud.go.id/ptnbhanalytics/v2/affiliations/detail/430 Krishnapatria, K. (2021). Merdeka Belajar-Kampus Merdeka (MBKM) Curriculum in English Studies Program: Challenges and Opportunities. ELF in Focus, 4(1). Ling, C. X., Huang, J., & Zhang, H. (2003). AUC: a Statistically Consistent and more Discriminating Measure than Accuracy. Lund, A. M. (2001). Measuring Usability with the USE Questionnaire. M. S. França, J., & S. Soares, M. (2015). SOAQM: Quality Model for SOA Applications based on ISO 25010: Proceedings of the 17th International Conference on Enterprise Information Systems, 60–70. https://doi.org/10.5220/0005369100600070 Macfadyen, L. P., & Dawson, S. (2024). Numbers Are Not Enough. Why e-Learning Analytics Failed to Inform an Institutional Strategic Plan. Maqsood, R., Ceravolo, P., Ahmad, M., & Sarfraz, M. S. (2023). Examining students’ course trajectories using data mining and visualization approaches. International Journal of Educational Technology in Higher Education, 20(1), 55. https://doi.org/10.1186/s41239-023-00423-4 Marbouti, F., Ulas, J., & Wang, C.-H. (2021). Academic and Demographic Cluster Analysis of Engineering Student Success. IEEE Transactions on Education, 64(3), 261–266. https://doi.org/10.1109/TE.2020.3036824 Martínez, I. M., Youssef-Morgan, C. M., Chambel, M. J., & Marques-Pinto, A. (2019). Antecedents of academic performance of university students: Academic engagement and psychological capital resources. Educational Psychology, 39(8), 1047–1067. https://doi.org/10.1080/01443410.2019.1623382 Mat Nawi, F. A., Ahmad, N. L., Abdullah, M. Z., Omar, N. F., Dzulkarnain, N., Abu Bakar, S. M. S., & Mohd Fauzi, M. W. (2023). The Regression Analysis of Factors Contribute to University Students’ Academic Performance. Information Management and Business Review, 15(4(SI)I), 456–464. https://doi.org/10.22610/imbr.v15i4(SI)I.3620 Mitchell, T. M. (1997). Machine Learning. McGraw-Hill. Munir, J., Faiza, M., Jamal, B., Daud, S., & Iqbal, K. (2023). The Impact of Socio-economic Status on Academic Achievement. Journal of Social Sciences Review, 3(2), 695–705. https://doi.org/10.54183/jssr.v3i2.308 Nielsen, J. (1994). Usability Engineering. Morgan Kaufmann Publishers Inc. Olsina, L., & Rossi, G. (2002). Measuring Web application quality with WebQEM. IEEE Multimedia, 9(4), 20–29. https://doi.org/10.1109/MMUL.2002.1041945 Papamitsiou, Z., & Economides, A. A. (2014). Learning Analytics and Educational Data Mining in Practice: A Systematic Literature Review of Empirical Evidence. Educational Technology & Society, 17(4), 49–64. Parra, D., & Brusilovsky, P. (2015). User-controllable personalization: A case study with SetFusion. International Journal of Human-Computer Studies, 78, 43–67. https://doi.org/10.1016/j.ijhcs.2015.01.007 Pereira, F. D., Oliveira, E. H. T., Oliveira, D. B. F., Cristea, A. I., Carvalho, L. S. G., Fonseca, S. C., Toda, A., & Isotani, S. (2020). Using learning analytics in the Amazonas: Understanding students’ behaviour in introductory programming. British Journal of Educational Technology, 51(4), 955–972. https://doi.org/10.1111/bjet.12953 Picciano, A. G. (2012). The Evolution of Big Data and Learning Analytics in American Higher Education. Online Learning, 16(3). https://doi.org/10.24059/olj.v16i3.267 Prinsloo, P., & Slade, S. (2017). An elephant in the learning analytics room: The obligation to act. Proceedings of the Seventh International Learning Analytics & Knowledge Conference, 46–55. https://doi.org/10.1145/3027385.3027406 Purwoningsih, T., Santoso, H. B., & Hasibuan, Z. A. (2020). Data Analytics of Students’ Profiles and Activities in a Full Online Learning Context. 2020 Fifth International Conference on Informatics and Computing (ICIC), 1–8. https://doi.org/10.1109/ICIC50835.2020.9288540 Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106. https://doi.org/10.1007/BF00116251 Rahman, S. R., Islam, Md. A., Akash, P. P., Parvin, M., Moon, N. N., & Nur, F. N. (2021). Effects of co-curricular activities on student’s academic performance by machine learning. Current Research in Behavioral Sciences, 2, 100057. https://doi.org/10.1016/j.crbeha.2021.100057 Rienties, B., Lewis, T., McFarlane, R., Nguyen, Q., & Toetenel, L. (2018). Analytics in online and offline language learning environments: The role of learning design to understand student online engagement. Computer Assisted Language Learning, 31(3), 273–293. https://doi.org/10.1080/09588221.2017.1401548 Romero, C., & Ventura, S. (2010). Educational Data Mining: A Review of the State of the Art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601–618. https://doi.org/10.1109/TSMCC.2010.2053532 Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/10.1002/widm.1355 Saito, T., & Rehmsmeier, M. (2015). The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLOS ONE, 10(3), e0118432. https://doi.org/10.1371/journal.pone.0118432 Scudder, H. (1965). Probability of error of some adaptive pattern-recognition machines. IEEE Transactions on Information Theory, 11(3), 363–371. https://doi.org/10.1109/TIT.1965.1053799 Shiao, Y.-T., Chen, C.-H., Wu, K.-F., Chen, B.-L., Chou, Y.-H., & Wu, T.-N. (2023). Reducing dropout rate through a deep learning model for sustainable education: Long-term tracking of learning outcomes of an undergraduate cohort from 2018 to 2021. Smart Learning Environments, 10(1), 55. https://doi.org/10.1186/s40561-023-00274-6 Shneiderman, B. (2019). The Emergence of Human-Computer Interaction. In B. Shneiderman, Encounters with HCI Pioneers (pp. 1–23). Springer International Publishing. https://doi.org/10.1007/978-3-031-02224-1_1 Shulruf, B., Hattie, J., Turneraq, R., Tumen, S., & Li, M. (2009). Enhancing equal opportunities in higher education: A new merit-based admission model. Cypriot Journal of Educational Sciences. Shute, V. J., & Zapata-Rivera, D. (2012). Adaptive Educational Systems. In P. J. Durlach & A. M. Lesgold (Eds.), Adaptive Technologies for Training and Education (1st ed., pp. 7–27). Cambridge University Press. https://doi.org/10.1017/CBO9781139049580.004 Siemens, G., & Baker, R. S. J. D. (2012). Learning analytics and educational data mining: Towards communication and collaboration. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, 252–254. https://doi.org/10.1145/2330601.2330661 Syahidi, A. A., Asyikin, A. N., & Subandi, S. (2019). Measuring User Assessments and Expectations: The Use of WebQual 4.0 Method and Importance-Performance Analysis (IPA) to Evaluate the Quality of School Websites. Journal of Information Technology and Computer Science, 4(1), 76–89. https://doi.org/10.25126/jitecs.20194198 Tsai, S.-C., Chen, C.-H., Shiao, Y.-T., Ciou, J.-S., & Wu, T.-N. (2020). Precision education with statistical learning and deep learning: A case study in Taiwan. International Journal of Educational Technology in Higher Education, 17(1), 12. https://doi.org/10.1186/s41239-020-00186-2 VanLEHN, K. (2011). The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Systems, and Other Tutoring Systems. Educational Psychologist, 46(4), 197–221. https://doi.org/10.1080/00461520.2011.611369 Verbert, K., Duval, E., Klerkx, J., Govaerts, S., & Santos, J. L. (2013). Learning Analytics Dashboard Applications. American Behavioral Scientist, 57(10), 1500–1509. https://doi.org/10.1177/0002764213479363 Von Davier, M., & Yamamoto, K. (2007). Mixture-Distribution and HYBRID Rasch Models. In C. H. Carstensen (Ed.), Multivariate and Mixture Distribution Rasch Models (pp. 99–115). Springer New York. https://doi.org/10.1007/978-0-387-49839-3_6 Wang, M., & Fredricks, J. A. (2014). The Reciprocal Links Between School Engagement, Youth Problem Behaviors, and School Dropout During Adolescence. Child Development, 85(2), 722–737. https://doi.org/10.1111/cdev.12138 Wibowo, A. T., & Fitrianah, D. (2018). A K-NEAREST ALGORITHM BASED APPLICATION TO PREDICT SNMPTN ACCEPTANCE FOR HIGH SCHOOL STUDENTS IN INDONESIA. International Research Journal of Computer Science, 5(01). Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a Standard Process Model for Data Mining. Yağcı, M. (2022). Educational data mining: Prediction of students’ academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 11. https://doi.org/10.1186/s40561-022-00192-z Yang, T.-C., Liu, Y.-L., & Wang, L.-C. (2021). Using an Institutional Research Perspective to Predict Undergraduate Students’ Career Decisions in the Practice of Precision Education. Educational Technology & Society, 24(1), 280–296. Yau, C., Karimzadeh, M., Surakitbanharn, C., Elmqvist, N., & Ebert, D. S. (2019). Bridging the Data Analysis Communication Gap Utilizing a Three‐Component Summarized Line Graph. Computer Graphics Forum, 38(3), 375–386. https://doi.org/10.1111/cgf.13696 Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent Trends in Deep Learning Based Natural Language Processing (arXiv:1708.02709). arXiv. http://arxiv.org/abs/1708.02709
|