跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/26 00:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈毓豪
研究生(外文):SHEN,YU-HAO
論文名稱:系統性創新方法應用於建築物排水管疏通裝置之設計
論文名稱(外文):Systematic innovation method applied to the design of building drainage pipe dredging device
指導教授:張紹勳張紹勳引用關係林騰蛟林騰蛟引用關係陳德發陳德發引用關係李國義李國義引用關係
指導教授(外文):CHANG,SHAO-HSUNLIN,TENG-CHIAOCHEN,DE-FALI,KUO-YI
口試委員:謝俊宏林騰蛟張紹勳陳德發李國義姚凱超江金山黃俊明
口試委員(外文):HSIEH,CHUN-HUNGLIN,TENG-CHIAOCHANG,SHAO-HSUNCHEN,DE-FALI,KUO-YIYAO,KAI-CHAOCHIANG,CHIN-SHANHUANG,CHUN-MING
口試日期:2023-07-23
學位類別:博士
校院名稱:國立彰化師範大學
系所名稱:工業教育與技術學系
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:204
中文關鍵詞:演進線人因工程本質安全排水管疏通裝置
外文關鍵詞:Evolution LineTRIZHuman Factors EngineeringIntrinsic SafetyDrain Unclogging Device
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:1
由於一般建築物如餐廳或住家排水管,常因日常清洗使用時,夾帶的油垢或殘渣會直接排入建築物的排水管中,導致產生皂化現象不易清除而堆積在管道內,造成管道堵塞或排水不暢,嚴重時可能會導致水壓增加,水流逆流溢出產生異味和生長細菌,造成環境衛生和生活帶來極大的不便。本研究設計出系統性創新方法應用於建築物排水管疏通裝置,來達到完全疏通的效果。
研究方法包括QFD、技術演進線、TRIZ、人因工程、本質安全及通用設計方法。首先運用TRIZ方法中的技術矛盾矩陣,找出欲改善參數及避免惡化參數,然後利用人因工程方法找出符合人體工學的設計,再利用本質安全和通用設計方法,設計出一個疏通裝置。最後綜合上述方法,來作為設計產品的參考依據,並將設計完畢之結構雛型用繪圖軟體來繪製。
本研究結論包括三個設計方案:1.設計一個水管能夠完全暢通的疏通裝置;2.設計一個可顯示疏通狀況的疏通裝置;3.設計一個操作簡單及成本低廉的疏通裝置。其中,第一個方案將排水管分成三個部份,有固定座、噴水頭、水管並利用固定座防止水管偏擺。將原本清除髒汙的有機溶劑換成水柱,避免因使用化學溶劑導致水管的損壞;將水柱改成往後噴,利用反作用力加強水管前進速度,達到完全暢通的疏通裝置設計。第二個方案將顯示的區域分成內部跟外部,內部採微攝影機裝置在噴水管的前端,外部則是採透明蓋罩住水管路口,當水噴出後可直接看出髒污是否還有殘留,達到可顯示疏通狀況的疏通裝置設計。第三個方案是一個操作簡單及成本低廉的疏通裝置,使用時只需將噴水頭的水柱往後面前端,因反作用力的關係,自動往內無須使力,把水關掉水管抽出即可。且可先在透明蓋的旁邊開個通道,在裡面放置紗網,將髒污集中在袋子。
This paper describes a systematic innovative method for designing a drainage pipe dredging device for buildings. Grease or residue carried by daily cleaning of general building drainage pipes such as restaurants or homes is directly discharged into the building’s drainage pipes, causing saponification phenomenon that is difficult to remove and accumulates in the pipeline, causing blockage or poor drainage of the pipeline. In severe cases, it may cause an increase in water pressure, reverse flow of water, overflow, and bacterial growth, causing great inconvenience to environmental hygiene and life.
The research methods include QFD, technology evolution line, TRIZ, ergonomics, intrinsic safety, and universal design methods. First, the technical contradiction matrix in the TRIZ method is used to find the parameters to be improved and avoid the parameters to be worsened. Then, the ergonomics method is used to find a design that meets human ergonomics. Then, the intrinsic safety and universal design methods are used to design a dredging device. Finally, the above methods are integrated as a reference for the design product, and the completed structural prototype is drawn using drawing software.
The results of this study include three design plans: 1. Design a dredging device that can completely unblock the water pipe; 2. Design a dredging device that can display the dredging status; 3. Design a dredging device that is easy to operate and low in cost. Among them, the first plan divides the drainage pipe into three parts, with a fixed seat, a spray head, and a water pipe, and uses a fixed seat to prevent the water pipe from tilting. Replace the organic solvent that originally cleaned the dirt with a water column to avoid damage to the water pipe caused by the use of chemical solvents; change the water column to spray backward, and use the reaction force to increase the forward speed of the water pipe to achieve the design of a completely unblocked dredging device. The second plan divides the display area into internal and external parts. The internal part adopts a micro-camera device at the front end of the spray pipe, and the external part adopts a transparent cover to cover the water pipe junction. When the water is sprayed out, it can be seen directly whether there is any residue, achieving the design of a dredging device that can display the dredging status. The third plan is an easy-to-operate and low-cost dredging device. When using it, just move the water column of the spray head to the front end of the back. Due to the relationship of the reaction force, it will automatically move inward without the need for force. Turn off the water and pull out the water pipe. You can first open a channel next to the transparent cover, put a mesh inside to concentrate the dirt in the bag, and then directly discard the bag, achieving the design of an easy-to-operate and low-cost dredging device.
摘要...........................................................................I
ABSTRACT......................................................................II
謝誌..........................................................................IV
目錄...........................................................................V
表目錄......................................................................VIII
圖目錄.........................................................................X
第一章 緒論....................................................................1
第一節 研究背景與動機...........................................................1
第二節 研究目的.................................................................7
第三節 研究方法與步驟...........................................................9
第四節 研究範圍與限制..........................................................15
第五節 名詞釋義................................................................18
第二章 文獻探討................................................................22
第一節 排水管疏通裝置產品及其使用現況..........................................25
第二節 排水管疏通裝置相關專利之技術分析........................................30
第三節 QFD品質機能展開方法....................................................63
第四節 技術演進線............................................................70
第五節 TRIZ理論...............................................................76
第六節 人因工程................................................................87
第七節 本質安全................................................................93
第八節 通用設計................................................................98
第三章 研究設計與實施.........................................................104
第一節 研究架構...............................................................104
第二節 QFD方法導入系統性創新方法應用於建築物排水管疏通裝置.......................106
第三節 演進線研究方法導入系統性創新方法應用於建築物排水管疏通裝置.................115
第四節 設計一個水管能夠完全暢通的疏通裝置之設計..................................123
第五節設計一個可顯示疏通狀況的疏通裝置之設計.....................................129
第六節 探討一個操作簡單及成本低廉的疏通裝置之設計................................135
第四章 產品設計...............................................................141
第一節 建築物排水管疏通裝置之整體結構...........................................143
第二節 排水管完全暢通的疏通裝置之設計...........................................146
第三節 排水管可顯示疏通狀況的疏通裝置之設計.....................................151
第四節 排水管操作簡單及成本低廉的疏通裝置之設計..................................156
第五章 結論與建議.............................................................162
第一節 結論..................................................................162
第二節 建議..................................................................167
參考文獻 ....................................................................169
壹、中文部分.................................................................169
貳、英文部分.................................................................180
附錄........................................................................199

表目錄
表2-1三十七項演化趨勢參數列表................................ 71
表2-1三十七項演化趨勢參數列表(續上頁) ................... 72
表2-1三十七項演化趨勢參數列表(續上頁) ................... 73
表2-2三十九項工程參數 ............................................. 83
表2-3四十項發明原則 ................................................. 85
表2-4通用設計七項原則 ........................................... 101
表3-1水管疏通裝置相關專利之技術分析彙整表 ......... 106
表3-2問題調查表 ...................................................... 109
表3-3專家會議表 ....................................................... 111
表3-4排水管疏通裝置市場SWOT分析 ....................... 112
表3-5圖形配分表 ....................................................... 113
表3-6水管疏通裝置的顧客需求與設計需求QFD表 ..... 114
表3-7「建築物排水管疏通裝置」演化趨勢分析 ........... 116
表3-8「建築物排水管疏通裝置」演化趨勢分析 .......... 121
表3-9一個水管能夠完全暢通的疏通裝置之技術矛盾矩陣 .......... 124
表3-10一個水管能夠完全暢通的疏通裝置矛盾距陣所對應之發明原則 ....................................................................... 125
表3-11一個可顯示疏通狀況的疏通裝置之技術矛盾矩陣 ........... 130
表3-12一個可顯示疏通狀況的疏通裝置矛盾距陣所對應之發明原則131
表3-13一個操作簡單及成本低廉的疏通裝置之技術矛盾矩陣 ..... 136
表3-14一個操作簡單及成本低廉的疏通裝置矛盾距陣所對應之發明原則 ............. 137


圖目錄
圖1- 1 排水管皂化的情況 ............................................. 2
圖1- 2 排水管堵塞的情況 ............................................. 4
圖1- 3 排水管變形的情況 ............................................. 5
圖1- 4 研究步驟 ......................................................... 14
圖2- 1 G.T WATER PRODUCTS MP100 ......................... 26
圖2- 2 RIDGID K-400 DRAIN CLEANER ...................... 27
圖2-3 MILWAUKEE M18 FUEL DRAIN SNAKE WITH CABLE-DRIVE LOCKING FEED SYSTEM............ 28
圖2-4 氣壓式管道疏通器 ............................................ 29
圖2-5 DIY水管油垢逆流疏通器 ............................... 31
資料來源:陳瑞鄉,2017。 ......................................... 31
圖2-6 管路毛髮疏通器 ................................................ 32
圖2-7 在疏通管上設置反向噴孔之管路疏通器 ............. 33
圖2-8 智慧型排水管自動疏通系統 ............................... 35
圖2-9 能啟閉噴口之噴頭 ............................................ 36
圖2-10 喞筒式通管器 .................................................. 37
圖2-11 內視鏡導引配件 .............................................. 39
圖2-12 管道內視鏡之頭段與纜線之組合 ...................... 40
圖2-13 管道內視鏡之頭端與可撓頸部之組合結構 ........ 42
XI
圖2-14 微電腦水管清洗系統 ....................................... 43
圖2-15 高效率水管疏通器 ........................................... 45
圖2-16 通管器改良結構 .............................................. 46
圖2-17 水管疏通器結構 .............................................. 48
圖2-18 通管器結構 ..................................................... 50
圖2-19 水管疏通器 ..................................................... 52
圖2-20 疏通器結構 ..................................................... 54
圖2-21 疏通器 ............................................................ 56
圖2-22 氣壓式水管除塞裝置 ....................................... 58
圖2-23 馬桶異物疏通夾具 ........................................... 60
圖2-24 管路疏通裝置 .................................................. 62
圖2-25 QFD的品質屋 .................................................. 64
圖2-26 QFD 內容與連接圖 .......................................... 65
圖2- 27 演化潛力雷達圖 ............................................. 74
圖2- 28 TRIZ知識庫的價值 ......................................... 78
圖2- 29 TRIZ矛盾解決流程 ......................................... 80
圖2- 30 39×39技術矛盾矩陣 ........................................ 81
圖3- 1 排水管疏通裝置產品設計指標體系之架構 .............. 105
圖3- 2傳統排水管疏通裝置演進雷達圖 ....................... 118
圖3- 3本研究設計建築物排水管疏通裝置技術演進雷達圖 ........... 122
圖4-1 平面外觀圖 ..................................................... 144
圖4-2 建築物排水管疏通裝置之設計整體結構解說圖 . 144
圖4-3 建築物排水管疏通裝置之設計整體結構爆炸圖 . 145
圖4-4 噴水頭解說示意圖 .......................................... 147
圖4-5 強力水柱方向示意圖 ....................................... 148
圖4-6 水流路示意圖 ................................................. 148
圖4-7 水柱旋轉示意圖 .............................................. 149
圖4-8 髒汙收集示意圖 .............................................. 149
圖4-9 清除髒汙示意圖 .............................................. 150
圖4-10 偵測鏡頭解說圖 ............................................ 153
圖4-11 偵測鏡頭示意圖 ............................................ 153
圖4-12 鏡頭顯示水管堵住內部髒污示意圖 ................. 154
圖4-13 鏡頭顯示水管內部清潔示意圖 ....................... 155
圖4-14 放入彎曲管中操作圖 ..................................... 158
圖4-15 水管放入管內操作圖 ..................................... 159
圖4-16 強力水柱向後噴操作圖 .................................. 159
圖4-17 疏通裝置前進旋轉操作圖 .............................. 160
圖4-18 水管內部操作圖 ............................................ 160
圖4-19 水管內部清潔前後示意圖 .............................. 161
壹、中文部分
David(2007)。科技產業資訊室。財團法人國家實驗研究院科技政策研究與資訊中心。
Emerson Electric Co.(2023)。RIDGID K-400 Drain Cleaner。Emerson. Consider It Solved.™。
GT Water Products inc.(2023)。G.T Water Products MP100。G.T Water Products, inc。
Milwaukee Tool.(2023)。Milwaukee M18 FUEL Drain Snake with Cable-Drive Locking Feed System。Milwaukee Tool。
久大(2022)。通完水管後馬上又堵塞了。久大環保工程有限公司。
中華民國內政部營建署(2020)。建築物給水排水設備設計技術規範。
日村水總管(2017)。央視報道: 家庭水管清洗太重要。
王子彬(2015)。自動化捲胴機械本質安全設計探討。中原大學機械工程研究所學位論文,1-172。
王世煌(2002)。工業安全風險評估。台北:揚智文化事業公司。
王刊良(2003)。基於分類的企業電子商務模式創新方法。系統工程理論與實踐,23(3),18-23。
王柏村、黃思翰、易兵、鮑勁松(2020)。面向智能製造的人因工程研究與發展,機械工程學報, 56(16),240-25。
王清德、王靖欣、林錦志(2018)。新型木工作榫機設計需求策略之研究,管理學術研討會,742-753。
石裕川、紀佳芬、林瑞豐及林榮泰(2018)。臺灣人因工程與設計的回顧與發展,管理與系統,25(3),321-365。
何國群(2019)。馬桶異物疏通夾具。專利證書號為M582515。經濟部智慧財產局。
余木村(2015)。疏通器結構。專利證書號為M495389。經濟部智慧財產局。
吳桂坤(1987)。高效率水管疏通器。專利證書號為M091560。經濟部智慧財產局。
吳桂坤(2022)。喞筒式通管器。專利證書號為I761993。經濟部智慧財產局。
吳國信(2010)。知識經濟第一節危機與衝突。slidesplayer.com Inc。
呂先昌(2012)。努力提高設備、設施本質安全化,工業安全衛生月刊,277,57-62。
宋明弘(2012)。TRIZ萃智:系統性創新理論與應用。台北:鼎茂圖書出版股份有限公司。
李文進、陳志祺、廖志豪(2020)。智慧製造本質安全及新興職災風險預防之探討。臺灣勞工季刊,63,75 – 80。
李志華,吳阿清,陳濤,林恩水(2014)。應用本質安全原理加強化學類實驗室安全預防管理。實驗室研究與探索,33(5),283-286。
李佳,倪晶瑋(2020)。海峽兩岸空間領域通用設計之系統性文獻回顧。設計學研究,23(2),1-32。
李姍姍、王筱瑩(2021)。創新性海綿建設技術研究。國際建築學,3(10),178-178。
李明杰(2018)。安全變更管理系統化風險評估之研究-以電雷管製程之設計為例。交通大學工學院產業安全與防災學程學位論文。
李開偉(2013)。實用人因工程學,新北市:全華圖書股份有限公司。
杜珮君、李永輝、劉伯祥、陳紫昀、林琇寧、劉立文(2021)。重大職業災害的人因工程風險評估。勞動及職業安全衛生研究季刊,29(3),85-97。
來新陽(2017)。 [ISO 16355-1: 2015 品質機能展開 (QFD) 之一般原則與展望] 簡介,品質月刊,53(4),13-18。
周佩君、陳意超、吳欣儀(2021)。應用人因工程預防照顧服務員肌肉骨骼傷害。健康促進研究與實務,4(2),7-15。
周依穎(2014)。整合TRIZ發明原則與演化趨勢於產品研發之問題解決 -以電子防潮櫃為例。臺北科技大學工業工程與管理系碩士班學位論文,p1-56。
周登春(2016)。本質安全設計消除人為錯誤。工業安全衛生,321,64-70。
林士彥,劉宏裕,莊世滋,洪崇彬(2016)。結合 QFD 和 TRIZ 於節慶活動服務品質改善之研究─ 以端午節龍舟競賽為例。運動文化研究,(28),7-44.
林大發(2017)。廚房水管被油垢塞住了,用「疏通劑」有效嗎?中興環科博士:2個嚴重後果,你不能不知道。城邦文化事業股份有限公司。
林卓毅(2014)。新型專利技術報告於專利訴訟中之質量實證研究。交通大學管理學院科技法律學程學位論文,1-93。
林根安(2013)。氣壓式水管除塞裝置。專利證書號為M466733。經濟部智慧財產局。
林傳傑(2009)。系統性創新理論與晶圓薄化技術之整合研究。臺灣大學機械工程學研究所學位論文,1-163。
林照峰、林承詣、陳漢軒、羅泓凱、謝孟軒(2018)。智慧型排水管自動疏通系統。專利證書號為I682350。經濟部智慧財產局。
侯東旭及鄭世宏(2010)。人因工程。台北市:鼎茂圖書出版股份有限公司。
客服小天使KiKi(2017)。常用水管疏通劑,小心變形、脫膠、漏水跟著來。愛地球.綠大地。
柯震達(2010)。創新構思問題解決(TRIZ)演化趨勢之應用-以移動儲存裝置為例,國立台北科技大學工業工程與管理系碩士論文。
徐志華(2010)。由平面液晶顯示器設備採購程序強化設備本質安全,國立雲林科技大學環境與安全衛生系研究所碩士論文。
徐村和、林凌仲、田季達(2023)。應用模糊 QFD 於品牌依戀強化策略之研究*。Journal of Management & Systems,30(1)。
徐偉添(2018)。管路毛髮疏通器。專利證書號為I613343。經濟部智慧財產局。
翁國亮、陳水湶、林文燦、張世明(2008)。運用品質機能展開 QFD 手法於建築物規劃設計最佳化之研究-以建構獨棟住宅為例。管理學術研討會,455-470。
張若菡、宋庭郁(2022)。以通用設計為基礎之友善共餐桌設計準則與設計評估。福祉科技與服務管理學刊,10(3),190-212。
張國基(2013)。論本質較安全設計與高科技廠房安全感測系統。隨意窩。
張國基及陳俊瑜(2007)。高科技產業製程本質較安全設計與應用之研究,國立交通大學產業安全與防災所,工業技術論壇-工業安全科技。
許文燦(2006)。整合TRIZ 和QFD 兩工具的創新設計之研究-以HD-DVD 光碟機為例,立德管理學院工業管理研究所碩士論文。
許光城、梁軒齊(2019)。影像處理與視覺技術於機械金屬領域之應用。鍛造,28(3),17-26。
許為、陳勇、董文俊、董大勇、葛列眾(2021)。大型商用飛機單一飛行員駕駛的人因工程研究進展與展望。航空工程進展,13(1),1-18。
許榮輝(2009)。利用TRIZ演化趨勢進行創新產品構思-以電源保護器產業為例,國立台北科技大學工業工程與管理系碩士論文。
陳乙瑄(2023)。TRIZ 矛盾問題解構之智慧化分析模式研究。中原大學工業與系統工程學系學位論文,1-136。
陳元昊(2020)。高通專利技術投資與策略布局。臺灣大學商學研究所學位論文,1-94。
陳佩君(2015)。應用TRIZT創新法則於輔具設計之研究。遠東科技大學電腦應用工程研究所。碩士論文。
陳明石、呂佳珍(2014)。沐浴空間之通用設計原則,設計與環境,15,15-32。
陳俊龍(2012)。水管疏通器。專利證書號為M428806。經濟部智慧財產局。
陳建宇(2019)。房子多老水管就多老不可不做的水管清潔。ETtoday房產雲。
陳春盛,陳俊瑜,楊彩雲(2011)。以本質較安全設計策略探討高科技製程設備人因工程改善可行性研究。工業安全衛生,260,18-31。
陳琪琪(2013)。利用萃智(TRIZ)演化趨勢進行創新產品構思與佈局— 以食品包裝產業為例。臺北科技大學管理學院工業工程與管理EMBA專班學位論文,1-150。
陳瑞鄉(2017)。DIY水管油垢逆流疏通器。專利證書號為I589364。經濟部智慧財產局。
陳瑞鄉(2019)。在疏通管上設置反向噴孔之管路疏通器,專利證書號為I646280。經濟部智慧財產局。
陳瑞鄉(2020)。能啟閉噴口之噴頭。專利證書號為I687621。經濟部智慧財產局。
陳麒元(2010)。化工廠房之本質安全設計及防災訓練概述。工業安全衛生,250,7-12。
陳麒元(2020)。推展本質較安全設計規範以防止人為失誤的觀點,來充實職業安全衛生管理系統之不足。工業安全衛生,376,45-59。
陳麒元(2020)。推展本質較安全設計規範以防止人為失誤的觀點,來充實職業安全衛生管理系統之不足。工業安全衛生,376,45-59。
曾清枝、林萱瑋(2018)。整合 Kano 和品質機能展開以提升桃園國際機場之顧客滿意度.,品質學報,25(5),289-309。
黃莉芬(2023)。基於 QFD 與 DEMATEL 的產品工程特性分析: 以醫療器材收納盒為例。中原大學工業與系統工程學系學位論文,1-78。
黃鴻鈞、施信佑、陳一銘、許勝程(2017)。陸客來台觀光旅行業之困境與發展:運用TRIZ探討經營創新,產業與管理論壇,19(4),32-54。
黃耀榮(2022)。臺灣的高齡友善環境因應身心障礙者權利公約 (CRPD) 如何實踐通用設計之論述-以鄰里公園,長照機構,醫院為例。醫療品質雜誌,16(4),54-60。
楊永盟(2022)。管路疏通裝置。專利證書號為M630316。經濟部智慧財產局。
楊健炘、張珈瑋、林彥廷(2014)。疏通器。專利證書號為M480976。經濟部智慧財產局。
葉飛、王堅、田崇明、何彪、趙猛、韓興博、李永健(2020)。隧道排水管結晶堵塞病害研究現狀與防治技術。隧道與地下工程災害防治,2(3),13-22。
詹瑞通、莊仁榮、許正德、曾玉煌、劉柏曾(2022)。微電腦水管清洗系統。專利證書號為I756938。經濟部智慧財產局。
廖俊雄(2018)。機械安全風險評鑑與風險降低技術應用與探討。工業安全衛生,354,42-58。
網路家庭國際資訊股份有限公司(2023)。氣壓式管道疏通器。網路家庭國際資訊股份有限公司。
趙金榮、林久翔、馮文陽、姚怡然及曾楓億( 2011)。人因工程( R. S. Bridger)。新北市: 高立圖書有限公司(原著出版年:2009)。
劉志成、王水鐸、楊勝凱及黃誠智(2007)。TRIZ 方法於產品綠色設計之應用。遠東學報,24(2),131-142。
劉金生(2010)。通管器改良結構。專利證書號為M393532。經濟部智慧財產局。
劉品伶、張堅琦、陳志勇(2019)。導入人因工程於變化中的職業安全衛生-簡介國際人因工程協會及相關學術活動。勞動及職業安全衛生研究季刊,27(3),36-39。
劉時泳、洪珮蓁(2023)。以通用設計之原則分析百貨公共空間。中華建築技術學刊,12(1),59-66。
樓淑芬(2022)。建築給排水設計中的若干問題的探討。國際建築學,3(12),102-104。
歐姿漣、黃于玲(2021)。奈米材料於生醫科技上之發展及專利技術應用。理律新知,2021(5),16-17。
潘柏良(2022)。以系統性創新方法提升不鏽鋼研磨棒精密度—以 W 公司為例。中原大學企業管理學系學位論文,1-41。
蔡文鈞、陳佑俐(2022)。運用 TRIZ 演化趨勢於冰箱產品創新設計之研究.。International Journal of Systematic Innovation,7(2),75-87。
蔡宗和(2011)。水管疏通器結構。專利證書號為M417474。經濟部智慧財產局。
蔡宗和(2012)。通管器結構。專利證書號為M423773。經濟部智慧財產局。
鄭鴻麟(2019)。問題解決程序。產品創新問題解決方法之研究。
蕭景方(2000)。專案範疇管理制度之探討-以參與「業界科專」廠商為例,國立中央大學企業管理研究所碩士論文。
蕭景方(2000)。專案範疇管理制度之探討-以參與「業界科專」廠商為例,國立中央大學企業管理研究所碩士論文。
駱信昌(2022)。導入團隊導向學習於人因工程教學之成效。 人因工程學刊,23(1),61-74。
鍾雅柔(2022)。定點照護裝置之專利技術分析探討—以尿液多參數檢測系統為例。中原大學電子工程學系學位論文,1-88。
蘇政豪(2017)。內視鏡導引配件。專利證書號為I590878。經濟部智慧財產局。
蘇政豪(2021)。管道內視鏡之頭段與纜線之組合。專利證書號為I733603。經濟部智慧財產局。
蘇政豪(2021)。管道內視鏡之頭端與可撓頸部之組合結構。專利證書號為I747342。經濟部智慧財產局。

貳、英文部分
Adam, P. Z., (2016). Institute of Sociology, University of Warsaw, Transportation Research Procedia, 14, 1270-1276.
Ahmed, S. A., Desouki, G., & Zaki, A. H. (2015). Technology evolution of solar cells and its reflections on the Egyptian electrical power networks. In 2015 Saudi Arabia Smart Grid (SASG), 1-5. IEEE.
Albers, A., Wagner, D., Kern, L. & Höfler, T. (2014).Adaption of the TRIZ Method to the Development of Electric Energy Storage Systems. Procedia CIRP, 21, 509-514.
Al-Betar, M. A., Alomari, O. A., & Abu-Romman, S. M. (2020). A TRIZ-inspired bat algorithm for gene selection in cancer classification. Genomics, 112(1), 114-126.
Almannai, B., Greenough, R., Kay, J. (2008). A decision support tool based on QFD and FMEA for the selection of manufacturing automation technologies. Robot.
Althumairi, A., Alzahrani, A., Alanzi, T., Al Wahabi, S., Alrowaie, S., Aljaffary, A., & Aljabri, D. (2022). Factors affecting compliance with national accreditation essential safety standards in the Kingdom of Saudi Arabia. Scientific Reports, 12(1), 7562.
Asyraf, M. R. M., Ishak, M. R., Sapuan, S. M., & Yidris, N. (2019). Conceptual design of creep testing rig for full-scale cross arm using TRIZ-Morphological Chart-Analytic Network Process technique. Journal of Materials Research and Technology, 8(6), 5647-5658.
Asyraf, M. R. M., Ishak, M. R., Sapuan, S. M., & Yidris, N. (2020). Conceptual design of multi-operation outdoor flexural creep test rig using hybrid concurrent engineering approach. Journal of Materials Research and Technology.
Aydin, N., Seker, S., Deveci, M., Ding, W., & Delen, D. (2023). A linear programming-based QFD methodology under fuzzy environment to develop sustainable policies in apparel retailing industry. Journal of Cleaner Production, 387, 135887.
Beckmann, H. (2015). Method for transferring the 40 inventive principles to information technology and software. Procedia engineering, 131, 993-1001.
Bernardes, M., Trzesniak, C., Trbovich, P., & Mello, C. H. P. (2018). Applying human factors engineering methods for hazard identification and mitigation in the radiotherapy process. Safety science, 109, 270-280.
Blackwell, W. J. (2019). Technology evolution to enable high-performance cubesat radiometry missions. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, 5078-5081. IEEE.
Borgianni, Y. & Matt, D. T. (2016). Applications of TRIZ and Axiomatic Design: a Comparison to Deduce Best Practices in Industry. Procedia CIRP, 39, 91-96.
Bulut, E., Duru, O., & Huang, S. T. (2016). A multidimensional QFD design for the service quality assessment of Kansai International Airport, Japan. Total Quality Management & Business Excellence, 29(1-2), 202-224.
Čačo, M., Kohár, R., Hrček, S., Tribula, R. & Ščerba, P. (2017).Use the method of TRIZ in optimizing automated machine for ultrasonic welding. Procedia Engineering, 192, 80 - 85.
Carayon, P., & Hoonakker, P. (2019). Human factors and usability for health information technology: old and new challenges. Yearbook of medical informatics, 28(01), 071-077.
Celik, M., Cebi, S., Kahraman, C., Er, I.D. (2009). An integrated fuzzy QFD model proposal on routing of shipping investment decisions in crude oil tanker market. Expert Syst. Appl. 36 (3), 6227–6235.
Chandrasegaran, D., Ghazilla, R. A. R., & Rich, K. (2020). Human factors engineering integration in the offshore O&G industry: a review of current state of practice. Safety science, 125, 104627.
Chen, H., Cai, M., Huang, K., & Jin, S. (2021). Classification and Evolution Analysis of Key Transportation Technologies Based on Bibliometrics. Scientific Programming, 2021, 1-13.
Cong, H. & Tong, L. H. (2008). Grouping of TRIZ Inventive Principles to facilitate automatic patent classification. Expert Systems with Applications, 34(1), 788-795.
Dai, L., Zheng, T., Xu, K., Han, Y., Xu, L., Huang, E., ... & Gao, G. F. (2020). A universal design of betacoronavirus vaccines against COVID-19, MERS, and SARS. Cell, 182(3), 722-733.
Eckhoff, R. K. (2002). Minimum ignition energy (MIE)—a basic ignition sensitivity parameter in design of intrinsically safe electrical apparatus for explosive dust clouds. Journal of Loss Prevention in the process industries, 15(4), 305-310.
Erkinovna, U. S. (2022). Triz technologies as a means of developing the grammatical structure of speech in older preschoolers. ACADEMICIA: An International Multidisciplinary Research Journal, 12(4), 176-182.
Essaber, F. E., Benmoussa, R., De Guio, R., & Dubois, S. (2021). A hybrid supply chain risk management approach for lean green performance based on AHP, RCA and TRIZ: A case study. Sustainability, 13(15), 8492.
Fearnley, N., Flügel, S. & Ramjerdi, F.(2011). Passengers' valuations of universal design measures in public transport. Research in Transportation Business & Management, 2, 83-91.
Filippi, S. & Barattin, D. (2014). Definition and exploitation of trends of evolution about interaction. Technological Forecasting and Social Change, 86, 216-236.
Filketu, S. A., & Negash, Y. T. (2023). Developing a quality function deployment model for the Ethiopian leather industry: Requirements and solutions under linguistic variables. Journal of Industrial and Production Engineering, 40(2), 126-142.
Ge, B., Yang, C., & Tang, L. (2022). Extension knowledge representation of evolutionary law of technological systems in TRIZ. Procedia Computer Science, 214, 461-468.
Gleirscher, M., Calinescu, R., Douthwaite, J., Lesage, B., Paterson, C., Aitken, J., Alexander, R. &Law, J.(2022). Verified synthesis of optimal safety controllers for human-robot collaboration. Science of Computer Programming, 218, 1-38.
Griful-Freixenet, J., Struyven, K., & Vantieghem, W. (2021). Exploring pre-service teachers’ beliefs and practices about two inclusive frameworks: Universal Design for Learning and differentiated instruction. Teaching and Teacher Education, 107, 103503.
Gronauer, B., & Naehler, H. (2016). TRIZ as an amplifier for corporate creativity and corporate innovation ability. Procedia CIRP, 39, 185-190.
Gualtieri, L., Rauch, E. & Vidoni, R. (2021). Emerging research fields in safety and ergonomics in industrial collaborative robotics: A systematic literature review. Robotics and Computer Integrated Manufacturing, 67, 1-30.
Gündoğdu, F. K., & Kahraman, C. (2020). A novel spherical fuzzy QFD method and its application to the linear delta robot technology development. Engineering Applications of Artificial Intelligence, 87, 103348.
Huang, J., Mao, L. X., Liu, H. C., & Song, M. S. (2022). Quality function deployment improvement: A bibliometric analysis and literature review. Quality & Quantity, 56(3), 1347-1366.
Huang, S. C., Hsia, T. C., & Jeng, F. Y. (2020). TRIZ Application on Fishing Pole with An Active Scent Release Lure. International Journal of Systematic Innovation, 6(1).
Hugo, J. V., Kovesdi, C. R., & Joe, J. C. (2018). The strategic value of human factors engineering in control room modernization. 108, September, 381 - 390.
Hwarng, H. B. and Teo, C. (2001). Translating customers’ voices into operations requirements—a QFD application in higher education, International Journal of Quality and Reliability Management, 18(2), 195-226.
Ilevbare, I. M., Probert, D. & Phaal, R. (2013). A review of TRIZ, and its benefits and challenges in practice. Technovation, 33, 30–37.
Ivan, A. Renev, Leonid S., Chechurin. (2016). Application of TRIZ in building industry: study of current situation, Procedia CIRP, 39, 209 - 215.
Ivshina, I. B., Kuyukina, M. S., Krivoruchko, A. V., Elkin, A. A., Makarov, S. O., Cunningham, C. J., ... & Philp, J. C. (2015). Oil spill problems and sustainable response strategies through new technologies. Environmental Science: Processes & Impacts, 17(7), 1201-1219.
Jain, A., Rajoriya, A., Patidar, A., Joshi, A., & Taose, A. (2019). ’’Design And Fabrication of Automatic Drainage Cleaning Machine’’. International Journal of Research in Aeronautical and Mechanical Engineering, 7(5), 42-47.
Jou, Y., Lina, C. J., Yenn, T. C., Yang, C. W., Yang, L. C., & Tsai, R. C.( 2009). The implementation of a human factors engineering checklist for human–system interfaces upgrade in nuclear power plants. 47, Issue 7, 1016 - 1025.
Kayapınar, S., & Erginel, N. (2017). Designing the airport service with fuzzy QFD based on SERVQUAL integrated with a fuzzy multi-objective decision model. Total Quality Management & Business Excellence, 30(13-14), 1429-1448.
Kelly, D., & Efthymiou, M. (2019). An analysis of human factors in fifty controlled flight into terrain aviation accidents from 2007 to 2017. Journal of safety research, 69, 155-165.
Kennette, L. N., & Wilson, N. A. (2019). Universal design for learning (UDL): Student and faculty perceptions. Journal of Effective Teaching in Higher Education, 2(1), 1-26.
Kremer, G. O., Chiu, M. C., Lin, C. Y., Gupta, S., Claudio, D., & Thevenot, H. (2012). Application of axiomatic design, TRIZ, and mixed integer programming to develop innovative designs: a locomotive ballast arrangement case study. The International Journal of Advanced Manufacturing Technology, 61(5-8), 827-842.
Kuruganti, U., Rickards, J. (2004). The role of human factors engineering in establishing occupational fitness standards. International Journal of Industrial Ergonomics 34, 451 - 457.
Labuda, I. (2015). Possibilities of applying TRIZ methodology elements (the 40 Inventive Principles) in the process of architectural design. Procedia engineering, 131, 476-499.
Lehto, M. & Landry, S. J. (2012). Introduction to Human Factors and Ergonomics for Engineers, CRC Pr I Llc.
Leng, Y., Yu, D., Han, K., Yu, S. S., & Hu, Y. (2022). OFDM-based intrinsically safe power and signal synchronous transmission for CC-PT-controlled buck converters. IEEE Transactions on Power Electronics, 37(9), 10319-10331.
Leva, M. C., Naghdali, F., & Alunni, C. C. (2015). Human factors engineering in system design: a roadmap for improvement. Procedia CIRP, 38, 94-99.
Li-Hui, M., & Run-Hua, T. (2008). Transferring method from TRIZ solutions to domain solutions. Computer Integrated Manufacturing System, 14(10), 0.
Lim, C., Yun, D., Park, I., & Yoon, B. (2018). A systematic approach for new technology development by using a biomimicry‐based TRIZ contradiction matrix. Creativity and Innovation Management, 27(4), 414-430.
Lin, L., & Barber, K. A. (2022). Tapping into the Potential of Student Engagement with Universal Design for Learning in Pedagogical Courses. Excelsior: Leadership in Teaching and Learning, 14(2), 114-129.
Liu, W., Cao, G. & Tan, R. (2016). Research on optimization of TRIZ application driven by design needs and targets, Procedia CIRP, 39, 33-38.
Maeda, Y. & Ushio, T.(2017). Detection of Mode Confusion in Human-Machine System Model with Temporal Information on Operations. IFAC-PapersOnLine, 50(1), 9374-9379.
Mann, D. (2001). An introduction to TRIZ: The theory of inventive problem solving. Creativity and Innovation Management, 10, 123–125.
Moore, A., Lynch, H., & Boyle, B. (2022). Can universal design support outdoor play, social participation, and inclusion in public playgrounds? A scoping review. Disability and Rehabilitation, 44(13), 3304-3325.
Munje, S., Kulkarni, S., Vatsal, V., Amrao, A., & Pankade, S. (2023). A study on product development using the TRIZ and additive manufacturing. Materials Today: Proceedings, 72, 1367-1371.
Münzberg, C., Hammer, J., Brem, A., & Lindemann, U. (2016). Crisis situations in engineering product development: A TRIZ based approach. Procedia CIRP, 39, 144-149.
Mustaquim, M. M. (2015). A study of Universal Design in everyday life of elderly adults. Procedia Computer Science, 67, 57-66.
Nur, A. H., & Siswanto, B. (2020). Implementing Management Vocational School of Building Relate Inclusive Concept with Approach of Diversities Program and Universal Design Learning. In 3rd International Conference on Learning Innovation and Quality Education (ICLIQE 2019) (pp. 204-209). Atlantis Press.
Ordoñez, A. M., & Pérez, J. B. G. (2022). Metodologías activas y diseño universal para el aprendizaje. Journal of Neuroeducation, 3(1), 109-118.
Otto, K., Hölttä-Otto, K., Simpson, T. W., Krause, D., Ripperda, S., & Ki Moon, S. (2016). Global views on modular design research: linking alternative methods to support modular product family concept development. Journal of Mechanical Design, 138(7), 071101.
Park, H., Ree, J. J. & Kim, K. (2013). Identification of promising patents for technology transfers using TRIZ evolution trends. Expert Systems with Applications, 40(2), 736-743.
Pin, S. C., Haron, F., Sarmady, S., Talib, A. Z. & Khader, A. T. (2011). Applying TRIZ principles in crowd management. Safety Science, 49, 286–291.
Pokhrel, C., Cruz, C., Ramirez, Y., & Kraslawski, A. (2015). Adaptation of TRIZ contradiction matrix for solving problems in process engineering. Chemical engineering research and design, 103, 3-10.
Probst, C. A, Wolf, L., Bollini, M. & Xiao, Y.(2016), Human factors engineering approaches to patient identification armband design 52, January, 1-7.
Rashid, H., Manzoor, M. M., & Mukhtar, S. (2018). Urbanization and its effects on water resources: An exploratory analysis. Asian Journal of Water, Environment and Pollution, 15(1), 67-74.
Rathnayaka, S., Khan, F. & Amyotte, P. (2014). Risk-based process plant design considering inherent safety. Safety Science, 70, 438-464.
Rathnayaka, S., Khan, F. & Amyotte, P. (2014). Risk-based process plant design considering inherent safety. Safety Science, 70, 438-464.
Rusli, R. & Shariff, A. M. (2010). Qualitative Assessment for Inherently Safer Design (QAISD) at preliminary design stage. Journal of Loss Prevention in the Process Industries, 23, 157–165.
Russo, D., & Spreafico, C. (2015). TRIZ 40 Inventive principles classification through FBS ontology. Procedia engineering, 131, 737-746.
Russo, D., Rizzi, C. & Montelisciani, G. (2014). Inventive guidelines for a TRIZ-based eco-design matrix. Journal of Cleaner Production, 76, 95-105.
Sangelkar, S., Cowen, N. & McAdams, D.(2012). User activity-product function association based design rules for universal products. Design Studies, 33(1), 85-110.
Schaefer, B., Borges, G. H., & Malohn, D. P. (2003). Global installation of intrinsically safe and nonincendive systems. In IEEE Industry Applications Society 50th Annual Petroleum and Chemical Industry Conference, 2003. Record of Conference Papers. (p. 349). IEEE.
Sgarbossa, F., Grosse, E. H., Neumann, W. P., Battini, D. & Glock, C. H.(2020). Human factors in production and logistics systems of the future. Annual Reviews in Control, 49, 295-305.
Sharaf, H. K., Ishak, M. R., Sapuan, S. M., & Yidris, N. (2020). Conceptual design of the cross-arm for the application in the transmission towers by using TRIZ–morphological chart–ANP methods. Journal of Materials Research and Technology, 9(4), 9182-9188.
Sheu, D. L. D., Chiu, M. C., & Cayard, D. (2020). The 7 Pillars of TRIZ Philosophies. Computers & Industrial Engineering, 106572.
Sheua, D. D. & Houb, C. T. (2013). TRIZ-based trimming for process-machine improvements: Slit-valve innovative redesign. Computers & Industrial Engineering, 66(3), 555–566.
Silva, R. F. L., Costa, A. D. L. & Thomann, G.(2019). Design tool based on Sensory Perception, Usability and Universal Design. Procedia CIRP, 84, 618-623.
Sojka, V., & Lepšík, P. (2020). Use of triz, and triz with other tools for process improvement: A literature review. Emerging Science Journal, 4(5), 319-335.
Sultan, M. F., Asim, M., & Saleem, M. F. (2021). Perceived impact of COVID-19 on impulsive buying of essential safety products: a moderating role of over-burdened stream of communication. KASBIT Business Journal, 14(4).
Tan, R., Cao, G., & León, N. (2009). Growth and Development of Computer Aided Innovation: Third IFIP WG 5.4 Working Conference, CAI 2009, Harbin, China, August 20-21, 2009, Proceedings (Vol. 304). Springer.
Thunberg, G., Johnson, E., Bornman, J., Öhlén, J., & Nilsson, S. (2022). Being heard–Supporting person‐centred communication in paediatric care using augmentative and alternative communication as universal design: A position paper. Nursing inquiry, 29(2), e12426.
Tortorella, G. L., Fogliatto, F. S., Sunder M, V., Cawley Vergara, A. M., & Vassolo, R. (2022). Assessment and prioritisation of Healthcare 4.0 implementation in hospitals using Quality Function Deployment. International Journal of Production Research, 60(10), 3147-3169.
Türk, Y. A. (2014). Planning - Design Training and Universal Design. Procedia - Social and Behavioral Sciences, 141, 1019-1024.
Usal, S. S. Y., & Evcil, A. N. (2019). Universal Design in Interior Architecture Education: The Case of Store Design. ICONARP International Journal of Architecture and Planning.
Wang, F., Chen, Y., Wang, H., Chen, C., & Shi, B. (2012). The intrinsic safety engineering design method for the petrochemical plant. Procedia engineering, 43, 156-161.
Warner, K. E. (2022). Getting to Zero—Part Two: Essential Safety Culture Components to Build High Reliability and Zero Harm in Healthcare. Journal of Radiology Nursing, 41(2), 76-77.
Wu, Y., Zhou, F., & Kong, J. (2020). Innovative design approach for product design based on TRIZ, AD, fuzzy and Grey relational analysis. Computers & Industrial Engineering, 140, 106276.
Xu, X., Ma, Z., & Sun, T. (2021). A whole closed space intrinsically safe GPR system for detection of geological hazard sources in coal mines. IEEE Geoscience and Remote Sensing Letters, 19, 1-5.
Yang, C. J. & Chen, J. L. (2011). Accelerating preliminary eco-innovation design for products that integrates case-based reasoning and TRIZ method. Journal of Cleaner Production, 19, 998-1006.
Yohanes, Y., & Azhar, H. A. (2023). Design of Biomass Stove Using the Quality Function Deployment (QFD) Method. Journal of Ocean, Mechanical and Aerospace-science and engineering-, 67(1), 29-33.
Yu, H. & Fan, D. (2012). Man-made Boards Technology Trends based on TRIZ Evolution Theory. Physics Procedia, 33, 221-227.
Yuan, J., Zhang, Z. M., Yüksel, S., & Dinçer, H. (2020). Evaluating recognitive balanced scorecard-based quality improvement strategies of energy investments with the integrated hesitant 2-tuple interval-valued pythagorean fuzzy decision-making approach to QFD. IEEE Access, 8, 171112-171128.
Zając, A. P. (2016). City accessible for everyone–improving accessibility of public transport using the universal design concept. Transportation Research Procedia, 14, 1270-1276.
Zanni, M. C., Cavallucci, D., & Rousselot, F. (2011). Use of formal ontologies as a foundation for inventive design studies, Computers in Industry, 62, 323-36.
Zhang, L., Pang, T., Zhang, Z., Sun, P., Xia, H., Wu, B., ... & Shu, C. (2021). A novel compact intrinsic safety full range Methane microprobe sensor using “trans-world” processing method based on near-infrared spectroscopy. Sensors and Actuators B: Chemical, 334, 129680.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊