跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 08:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:宋和彥
研究生(外文):SUNG, HO-YEN
論文名稱:螢光化學感測器之合成及其陰陽離子篩選之研究
論文名稱(外文):Syntheses of Florescent Chemical Sensors and the Studies on Cation and Anion Selectivity
指導教授:吳安台
指導教授(外文):WU, AN-TAI
口試委員:王惠民林泱蔚
口試委員(外文):WANG, HUI-MINLIN, YANG-WEI
口試日期:2024-06-07
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:80
中文關鍵詞:螢光感測器比色法感測器羅丹明B吲哚香豆素
外文關鍵詞:Fluorescent sensorColorimetric sensorsRhodamine BIndoleCoumarin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:5
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們成功合成了5種分別以羅丹明B(Rhodamine B)、吲哚(Indole)和香豆素(Coumarin)為基底的螢光化學感測器(CP1-CP5)。通過進行金屬離子和陰離子篩選實驗,我們發現這些感測器具有優異的選擇性和靈敏度。其中,以羅丹明B為螢光基底的CP1及CP4可以通過顏色及螢光光譜的變化有效的檢測Al3+離子,CP1 對於Al3+離子的偵測極限為 402.7 ppb,結合常數為 2.296×10^5 M^(-1)。以吲哚為螢光基底的CP2和CP3僅在官能基上有所差異,其中CP2接上的是呋喃,而CP3則接上的是噻吩。CP2可以通過螢光光譜的變化有效的檢測Cu2+離子;而CP3可以通過螢光光譜的變化有效的檢測Hg2+離子,CP2 對於Cu2+離子的偵測極限為 14.74 ppm ,結合常數為 2.02×10^2 M^(-1);CP3 對於 Hg2+離子的偵測極限為 64.63 ppm ,結合常數為 2.04×10^2 M^(-1)。以香豆素為螢光基底的CP5可以通過螢光光譜的變化有效的檢測F^-離子。CP1、CP2和CP3在檢測對應的金屬離子時表現出極高的反應速度,顯著提高了檢測效率。此外,CP2、CP3皆能應用於不同真實水樣中的重金屬分析,展現其在環境監測中的廣泛適用性。
We successfully synthesized five fluorescent chemical sensors (CP1-CP5) based on Rhodamine B, Indole, and Coumarin. Through metal ion and anion screening experiments, we found that these sensors exhibit excellent selectivity and sensitivity. Specifically, CP1 and CP4, which are based on Rhodamine B, can effectively detect Al3+ ions through changes in color and fluorescence spectra.The detection limit of CP1 for Al³⁺ ions is 402.7 ppb, with a binding constant of 2.296×10^5 M^(-1). CP2 and CP3, which are based on Indole, differ only in their functional groups, with CP2 containing a furan group and CP3 containing a thiophene group.CP2 can effectively detect Cu2+ ions through changes in fluorescence spectra; CP3 can effectively detect Hg2+ ions through changes in fluorescence spectra. The detection limit of CP2 for Cu²⁺ ions is 14.74 ppm, with a binding constant of 2.02×10^2 M^(-1). The detection limit of CP3 for Hg²⁺ ions is 64.63 ppm, with a binding constant of 2.04×10^2 M^(-1). and CP5, based on Coumarin, can effectively detect F^- ions through changes in fluorescence spectra. CP1, CP2, and CP3 demonstrate very quick response toward their respective metal ions, significantly improving detection efficiency. Additionally, CP2 and CP3 can be used for heavy metal analysis in various real water samples, showcasing their broad applicability in environmental monitoring.
目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 IX
式目錄 XVI
表目錄 XVII
第一章 緒論 1
1.1 前言 1
1.2 化學感測器 2
1.2.1 超分子化學 2
1.2.2 化學感測器 (Chemosensor) 2
1.2.3 化學感測器之訊號傳遞機制 3
1.2.4 分子內/分子間電荷轉移 (ICT, Intra/Intermolecular Charge Transfer ) 3
1.2.5 光誘導電子轉移 (PET, Photo-induced Electron Transfer) 4
1.2.6 螢光共振能量轉移 (FRET, Fluorescence Resonance Energy Transfer ) 5
第二章 研究動機 6
2.1 羅丹明B (Rhodamine B) 6
2.2 吲哚 (Indole) 7
2.3 香豆素 (Coumarin) 7
第三章 實驗部分 8
3.1 一般實驗敘述 8
3.2 實驗儀器 8
3.3 實驗步驟 9
第四章 結果與討論 17
4.1 CP1 結果與討論 17
4.1.1 CP1 對金屬陽離子之篩選實驗 17
4.1.2 CP1 之滴定實驗 18
4.1.3 CP1 之 Job Plot實驗 22
4.1.4 CP1 對 Al3+離子之 1H-NMR滴定實驗 23
4.1.5 CP1 之競爭實驗 25
4.1.6 CP1 之水樣應用實驗 27
4.1.7 CP1 之回收實驗 28
4.1.8 CP1 對 Al3+離子之 pH值實驗 29
4.1.9 CP1 對 Al3+離子之時間效應實驗 30
4.1.10 CP1 結論 31
4.2 CP4 結果與討論 31
4.2.1 CP4 對金屬陽離子之篩選實驗 31
4.3 CP2 結果與討論 35
4.3.1 CP2 對金屬陽離子之篩選實驗 35
4.3.2 CP2 之滴定實驗 36
4.3.3 CP2 之 Job Plot實驗 39
4.3.4 CP2 對 Cu2+離子之 1H-NMR滴定實驗 40
4.3.5 CP2 之競爭實驗 42
4.3.6 CP2 之水樣應用實驗 43
4.3.7 CP2 之回收實驗 44
4.3.8 CP2 對 Cu2+離子之pH值實驗 46
4.3.9 CP2 對 Cu2+之時間效應實驗 46
4.3.10 CP2 結論 47
4.4 CP3結果與討論 48
4.4.1 CP3 對金屬陽離子之篩選實驗 48
4.4.2 CP3 之滴定實驗 49
4.4.3 CP3 之 Job Plot實驗 53
4.4.4 CP3 對 Hg2+離子之 1H-NMR滴定實驗 53
4.4.5 CP3 之競爭實驗 55
4.4.6 CP3 之水樣應用實驗 57
4.4.7 CP3 之回收實驗 58
4.4.8 CP3 之 pH值實驗 60
4.4.9 CP3 之時間效應實驗 60
4.4.10 CP3 結論 61
4.5 CP5 結果與討論 62
4.5.1 CP5 對金屬陽離子之篩選實驗 62
4.5.2 CP5 對陰離子之篩選實驗 63
第五章 結論 65
5.1 篩選實驗之結果 66
5.2 滴定及Job Plot之實驗結果: 66
5.3 競爭實驗之結果 67
5.4 回收及水樣應用之結果: 67
第六章 參考文獻 68
第七章 附錄 72

圖目錄
Figure 1化學感測器與陽離子結合示意圖 2
Figure 2 PET機制示意圖 5
Figure 3 FRET機制示意圖 5
Figure 4 FRET能量傳遞示意圖 5
Figure 5 Rangasamy Manjunath等人之感測器反應機制 6
Figure 6 CP1 (30 µM) 與6當量各種金屬離子混合溶液之紫外光-可見光光譜圖 17
Figure 7 CP1 (30 µM) 與6當量各種金屬離子混合溶液之螢光光譜圖 18
Figure 8 CP1 (30 µM) 與6當量各種金屬離子之肉眼辨識圖 18
Figure 9 CP1 (30 μM) 對 Al3+離子之螢光滴定光譜圖 20
Figure 10 CP1 (30 μM) 對 Al3+離子之螢光滴定曲線圖 20
Figure 11 CP1 (30 μM) 對不同當量數 Al3+離子之螢光強度圖 21
Figure 12 CP1 (30 μM) 對 Al3+離子之Hill Plot 22
Figure 13 CP1與 Al3+離子之Job Plot 23
Figure 14 CP1 與 Al3+離子 (0 ~ 2 當量)之 1H-NMR 滴定光譜圖 24
Figure 15 CP1與 Al3+離子和干擾離子之競爭實驗 26
Figure 16 CP1與 Al3+離子和干擾離子之競爭實驗(螢光強度比例圖) 26
Figure 17 CP1與 Al3+離子在不同水樣品中之應用實驗 27
Figure 18 CP1與 Al3+離子在不同水樣品中之應用實驗(螢光光譜圖) 27
Figure 19 CP1與 Al3+離子之回收實驗(肉眼辨識圖) 28
Figure 20 CP1與 Al3+離子之回收實驗 28
Figure 21 CP1與 Al3+離子之回收實驗(線性圖) 29
Figure 22 CP1之pH值實驗(肉眼辨識圖) 29
Figure 23 CP1加入 Al3+離子之pH值實驗(肉眼辨識圖) 30
Figure 24 CP1對 Al3+離子之pH值實驗 30
Figure 25 CP1與 Al3+離子之時間效應 31
Figure 26 CP4 (25 µm) 與 1當量各種金屬離子混合溶液之紫外光-可見光譜圖 32
Figure 27 CP4 (25 µm) 與 1當量各種金屬離子混合溶液之螢光光譜圖 32
Figure 28 CP4 (25 µm) 與 1當量各種金屬離子混合溶液之肉眼辨識圖 33
Figure 29 CP4 (25 µm) 與 5當量各種金屬離子混合溶液之紫外光-可見光譜圖 33
Figure 30 CP4 (25 µm) 與 5當量各種金屬離子混合溶液之螢光光譜圖 34
Figure 31 CP4 (25 µm) 與 5當量各種金屬離子混合溶液之肉眼辨識圖 34
Figure 32 CP4 (25 µm) 與 5當量 Al3+離子混合溶液UV燈下之肉眼辨識圖 34
Figure 33 CP2 (40 µm) 與 10當量各種金屬離子混合溶液之紫外光-可見光譜圖 35
Figure 34 CP2 (40 µm) 與 10當量各種金屬離子混合溶液之螢光光譜圖 36
Figure 35 CP2 (40 μM) 對 Cu2+離子之螢光滴定光譜圖 37
Figure 36 CP2 (40 μM) 對 Cu2+離子之螢光滴定曲線圖 38
Figure 37 CP2 (40 μM) 對不同當量數 Cu2+離子之螢光強度圖 38
Figure 38 CP2 (40 μM) 對 Cu2+離子之Stern-Volmer Plot 39
Figure 39 CP2 與 Cu2+離子之Job Plot 40
Figure 40 CP2 與 Cu2+離子 (0 ~ 2 當量)之 1H-NMR 滴定光譜圖 41
Figure 41 CP2與 Cu2+離子和干擾離子之競爭實驗 42
Figure 42 CP2與 Cu2+離子和干擾離子之競爭實驗(螢光強度比例圖) 43
Figure 43 CP2與 Cu2+離子在不同水樣品中之應用實驗 44
Figure 44 CP2與 Cu2+離子之回收實驗 45
Figure 45 CP2與 Cu2+離子之回收實驗(線性圖) 45
Figure 46 CP2對 Cu2+離子之pH值實驗 46
Figure 47 CP2與 Cu2+離子之時間效應 47
Figure 48 CP3 (40 µm) 與 10當量各種金屬離子混合溶液之紫外光-可見光譜圖 48
Figure 49 CP3 (40 µm) 與 10當量各種金屬離子混合溶液之螢光光譜圖49
Figure 50 CP3 (40 μM) 對 Hg2+離子之螢光光譜圖 50
Figure 51 CP3 (40 μM) 對 Hg2+離子之螢光滴定曲線圖 51
Figure 52 CP3(40 μM) 對不同當量數 Hg2+離子之螢光強度圖 52
Figure 53 CP3(40 μM) 對 Hg2+離子之Stern-Volmer Plot 52
Figure 54 CP3與 Hg2+離子之Job Plot 53
Figure 55 CP3 與 Hg2+離子(0 ~ 2 當量)之 1H-NMR 滴定光譜圖 54
Figure 56 CP3與 Hg2+離子和干擾離子之競爭實驗 56
Figure 57 CP3與 Hg2+離子和干擾離子之競爭實驗(螢光強度比例圖) 57
Figure 58 CP3與 Hg2+離子在不同水樣品中之應用實驗 58
Figure 59 CP3與 Hg2+離子之回收實驗 59
Figure 60 CP3與 Hg2+離子之回收實驗(線性圖) 59
Figure 61 CP3對 Hg2+離子之pH值實驗 60
Figure 62 CP3與 Hg2+離子之時間效應 61
Figure 63 CP5 (30 µm) 與 6當量各種金屬離子混合溶液之紫外光-可見光譜圖 62
Figure 64 CP5 (30 µm) 與 6當量各種金屬離子混合溶液之螢光光譜圖 63
Figure 65 CP5 (30 µm) 與 6當量各種陰離子混合溶液之紫外光-可見光譜圖 64
Figure 66 CP5 (30 µm) 與 6當量各種陰離子混合溶液之螢光光譜圖 64
Figure 67 1H NMR spectrum of compound 1 in CDCl3 72
Figure 68 13C NMR spectrum of compound 1 in CDCl3 72
Figure 69 1H NMR spectrum of compound CP1 in CDCl3 73
Figure 70 13C NMR spectrum of compound CP1 in CDCl3 73
Figure 71 EI-HRMS spectrum of compound CP1 74
Figure 72 1H NMR spectrum of compound CP2 in DMSO-d6 75
Figure 73 13C NMR spectrum of compound CP2 in DMSO-d6 75
Figure 74 1H NMR spectrum of compound CP3 in DMSO-d6 76
Figure 75 13C NMR spectrum of compound CP3 in DMSO-d6 76
Figure 76 1H NMR spectrum of compound 2 in CDCl3 77
Figure 77 13C NMR spectrum of compound 2 in CDCl3 77
Figure 78 1H NMR spectrum of compound CP4 in CDCl3 78
Figure 79 13C NMR spectrum of compound CP4 in CDCl3 78
Figure 80 1H NMR spectrum of compound 3 in DMSO-d6 79
Figure 81 13C NMR spectrum of compound 3 in DMSO-d6 79
Figure 82 1H NMR spectrum of compound CP4 in DMSO-d6 80
Figure 83 13C NMR spectrum of compound CP4 in DMSO-d6 80


式目錄
Scheme 1 CP1之合成步驟 9
Scheme 2 CP2之合成步驟 11
Scheme 3 CP3之合成步驟 12
Scheme 4 CP4之合成步驟 13
Scheme 5 CP5之合成步驟 15
Scheme 6 CP1與 Al3+離子錯合之機制推測 25
Scheme 7 CP2與 Cu2+離子錯合之機制推測 41
Scheme 8 CP3與 Hg2+離子錯合之機制推測 55


表目錄
Table 1 CP1-CP5之離子篩選實驗分析表 66
Table 2 CP1-CP3之滴定及 Job Plot實驗分析表 67
Table 3 CP1-CP3之回收及水樣應用實驗分析表 67


(1) Selvi, A.; Rajasekar, A.; Theerthagiri, J.; Ananthaselvam, A.; Sathishkumar, K.; Madhavan, J.; Rahman, P. K. Integrated remediation processes toward heavy metal removal/recovery from various environments-a review. Front. environ. sci. 2019, 7, 66.
(2) Huang, L.; Rad, S.; Xu, L.; Gui, L.; Song, X.; Li, Y.; Wu, Z.; Chen, Z. Heavy metals distribution, sources, and ecological risk assessment in Huixian Wetland, South China. Water 2020, 12 (2), 431.
(3) Khademi, H.; Gabarrón, M.; Abbaspour, A.; Martínez-Martínez, S.; Faz, A.; Acosta, J. A. Environmental impact assessment of industrial activities on heavy metals distribution in street dust and soil. Chemosphere 2019, 217, 695-705.
(4) Nazeer, S.; Hashmi, M. Z.; Malik, R. N. Heavy metals distribution, risk assessment and water quality characterization by water quality index of the River Soan, Pakistan. Ecol. Indic. 2014, 43, 262-270.
(5) Hasan, M.; Khan, M.; Khan, M.; Aktar, S.; Rahman, M.; Hossain, F.; Hasan, A. Heavy metals distribution and contamination in surface water of the Bay of Bengal coast. Cogent Environ. 2016, 2 (1), 1140001.
(6) Jin, M.; Yuan, H.; Liu, B.; Peng, J.; Xu, L.; Yang, D. Review of the distribution and detection methods of heavy metals in the environment. ANAL METHODS-UK 2020, 12 (48), 5747-5766.
(7) Yeung, V.; Miller, D. D.; Rutzke, M. A. Atomic Absorption Spectroscopy, Atomic Emission Spectroscopy, and Inductively Coupled Plasma-Mass Spectrometry. In Food Anal. Methods, Food Science Text Series, 2017; pp 129-150.
(8) Manning, T. J.; Grow, W. R. Inductively coupled plasma-atomic emission spectrometry. Chem. Educator 1997, 2 (1), 1-19.
(9) Glascock, M. D. An overview of neutron activation analysis. Columbia, MO: University of Missouri Research Reactor (MURR) 2006.
(10) Isaac, R. A.; Kerber, J. D. Atomic absorption and flame photometry: Techniques and uses in soil, plant, and water analysis. Instrumental methods for analysis of soils and plant tissue 1971, 17-37.
(11) Kaur, B.; Kaur, N.; Kumar, S. Colorimetric metal ion sensors – A comprehensive review of the years 2011–2016. Coord. Chem. Rev. 2018, 358, 13-69.
(12) Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89 (26), 7017-7036.
(13) Pedersen, C. J. The discovery of crown ethers (Noble Lecture). Angew. Chem. Int. Ed. Engl. 1988, 27 (8), 1021-1027.
(14) Cram, D. J. The design of molecular hosts, guests, and their complexes (Nobel lecture). Angew. Chem. Int. Ed. Engl. 1988, 27 (8), 1009-1020.
(15) Lehn, J. M. Perspectives in supramolecular chemistry—from molecular recognition towards molecular information processing and self‐organization. Angew. Chem. Int. Ed. Engl. 1990, 29 (11), 1304-1319.
(16) Eisenthal, K. B. Intermolecular and intramolecular excited state charge transfer. Laser Chem. 1983, 3 (1-6), 145-162.
(17) Bixner, O.; Lukes, V.; Mancal, T.; Hauer, J.; Milota, F.; Fischer, M.; Pugliesi, I.; Bradler, M.; Schmid, W.; Riedle, E.; et al. Ultrafast photo-induced charge transfer unveiled by two-dimensional electronic spectroscopy. J. Chem. Phys. 2012, 136 (20), 204503.
(18) Magri, D. C. Logical sensing with fluorescent molecular logic gates based on photoinduced electron transfer. Coord. Chem. Rev. 2021, 426.
(19) Neema, P. M.; Tomy, A. M.; Cyriac, J. Chemical sensor platforms based on fluorescence resonance energy transfer (FRET) and 2D materials. Trends Anal. Chem. 2020, 124.
(20) Jia, P. P.; Xu, L.; Hu, Y. X.; Li, W. J.; Wang, X. Q.; Ling, Q. H.; Shi, X.; Yin, G. Q.; Li, X.; Sun, H.; et al. Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity. J. Am. Chem. Soc. 2021, 143 (1), 399-408.
(21) Beija, M.; Afonso, C. A.; Martinho, J. M. Synthesis and applications of Rhodamine derivatives as fluorescent probes. Chem. Soc. Rev. 2009, 38 (8), 2410-2433. From NLM PubMed-not-MEDLINE.
(22) Manjunath, R.; Kannan, P. Highly selective rhodamine-based fluorescence turn-on chemosensor for Al3+ ion. Opt. Mater. 2018, 79, 38-44.
(23) Jiao, G.-S.; Thoresen, L. H.; Burgess, K. Fluorescent, through-bond energy transfer cassettes for labeling multiple biological molecules in one experiment. J. Am. Chem. Soc. 2003, 125 (48), 14668-14669.
(24) Li, C.-Y.; Zhou, Y.; Li, Y.-F.; Zou, C.-X.; Kong, X.-F. Efficient FRET-based colorimetric and ratiometric fluorescent chemosensor for Al3+ in living cells. Sens. actuators. B Chem. 2013, 186, 360-366.
(25) Huang, Q.; Zhang, Q.; Wang, E.; Zhou, Y.; Qiao, H.; Pang, L.; Yu, F. A new “off–on” fluorescent probe for Al3+ in aqueous solution based on rhodamine B and its application to bioimaging. Spectrochim. Acta A 2016, 152, 70-76.
(26) Leng, X.; Xu, W.; Qiao, C.; Jia, X.; Long, Y.; Yang, B. New rhodamine B-based chromo-fluorogenic probes for highly selective detection of aluminium (III) ions and their application in living cell imaging. RSC Adv. 2019, 9 (11), 6027-6034.
(27) Biswal, B.; Bhoi, B. B.; Behera, K. C.; Khamari, U.; Bag, B. A rhodamine B based chemosensor for selective detection of Al3+ ion: Photophysical investigations and analysis in real samples. Inorganica Chim. Acta 2024, 122225.
(28) Jiang, B.; Gu, X.-H. Syntheses and cytotoxicity evaluation of bis (indolyl) thiazole, bis (indolyl) pyrazinone and bis (indolyl) pyrazine: Analogues of cytotoxic marine bis (indole) alkaloid. Bioorg. Med. Chem. 2000, 8 (2), 363-371.
(29) Ma, Z.; Zhang, W.; Han, X.; Chen, Y.; Li, G. Design, Synthesis, and Cytotoxic Activities of Indole and Indazole‐Based Stilbenes. Chem. Biodiversity 2023, 20 (5), e202300368.
(30) Sahoo, P. R.; Prakash, K.; Kumar, S. Synthesis of an oxadiazole through an indole mediated single step procedure for selective optical recognition of Cu2+ ions. Sens. actuators. B Chem. 2017, 242, 299-304.
(31) Chang, Y.; Li, B.; Mei, H.; Yang, L.; Xu, K.; Pang, X. Indole-based colori/fluorimetric probe for selective detection of Cu2+ and application in living cell imaging. Spectrochim. Acta A 2020, 226, 117631.
(32) Sayapin, Y. A.; Gusakov, E. A.; Tupaeva, I. O.; Karlutova, O. Y.; Dubonosova, I. V.; Tkachev, V. V.; Starikov, A. G.; Dubonosov, A. D.; Aldoshin, S. M. 1H-indole-based chemosensors for the sequential recognition of Hg2+ and CN− ions. Tetrahedron 2021, 84, 132030.
(33) Joshi, S.; Kumari, S.; Sarmah, A.; Pant, D. D.; Sakhuja, R. Detection of Hg2+ ions in aqueous medium using an indole-based fluorescent probe: experimental and theoretical investigations. J. Mol. Liq. 2017, 248, 668-677.
(34) Zeng, R.; Li, Q.; Li, Z.; Li, X.; Xie, C.; Su, X.; Tang, D. Benzo [e] indolium derivatives in aqueous solutions: Reaction with bisulfite and successive interaction with Cu2+ and Hg2+. Spectrochim. Acta A 2018, 202, 324-332.
(35) Sie, Y.-W.; Li, C.-L.; Wan, C.-F.; Yan, H.; Wu, A.-T. A novel fluorescence sensor for dual sensing of Hg2+ and Cu2+ ions. JPPA 2018, 353, 19-25.
(36) Ravichandran, M. Interactions between mercury and dissolved organic matter––a review. Chemosphere 2004, 55 (3), 319-331.
(37) Helal, A.; Or Rashid, M. H.; Choi, C.-H.; Kim, H.-S. Chromogenic and fluorogenic sensing of Cu2+ based on coumarin. Tetrahedron 2011, 67 (15), 2794-2802.
(38) Sun, X.-y.; Liu, T.; Sun, J.; Wang, X.-j. Synthesis and application of coumarin fluorescence probes. RSC Adv. 2020, 10 (18), 10826-10847.
(39) Jiao, Y.; Zhou, L.; He, H.; Yin, J.; Duan, C. A new fluorescent chemosensor for recognition of Hg(2+) ions based on a coumarin derivative. Talanta 2017, 162, 403-407.
(40) Long, G. L.; Winefordner, J. D. Limit of detection. A closer look at the IUPAC definition. Anal. Chem. 1983, 55 (7), 712A-724A.
(41) Dahlquist, F. The meaning of scatchard and hill plots. Methods Enzymol. 1978, 48, 270-299.
(42) Gehlen, M. H. The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map. J PHOTOCH PHOTOBIO C 2020, 42, 100338.

電子全文 電子全文(網際網路公開日期:20290808)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top