|
(1) Selvi, A.; Rajasekar, A.; Theerthagiri, J.; Ananthaselvam, A.; Sathishkumar, K.; Madhavan, J.; Rahman, P. K. Integrated remediation processes toward heavy metal removal/recovery from various environments-a review. Front. environ. sci. 2019, 7, 66. (2) Huang, L.; Rad, S.; Xu, L.; Gui, L.; Song, X.; Li, Y.; Wu, Z.; Chen, Z. Heavy metals distribution, sources, and ecological risk assessment in Huixian Wetland, South China. Water 2020, 12 (2), 431. (3) Khademi, H.; Gabarrón, M.; Abbaspour, A.; Martínez-Martínez, S.; Faz, A.; Acosta, J. A. Environmental impact assessment of industrial activities on heavy metals distribution in street dust and soil. Chemosphere 2019, 217, 695-705. (4) Nazeer, S.; Hashmi, M. Z.; Malik, R. N. Heavy metals distribution, risk assessment and water quality characterization by water quality index of the River Soan, Pakistan. Ecol. Indic. 2014, 43, 262-270. (5) Hasan, M.; Khan, M.; Khan, M.; Aktar, S.; Rahman, M.; Hossain, F.; Hasan, A. Heavy metals distribution and contamination in surface water of the Bay of Bengal coast. Cogent Environ. 2016, 2 (1), 1140001. (6) Jin, M.; Yuan, H.; Liu, B.; Peng, J.; Xu, L.; Yang, D. Review of the distribution and detection methods of heavy metals in the environment. ANAL METHODS-UK 2020, 12 (48), 5747-5766. (7) Yeung, V.; Miller, D. D.; Rutzke, M. A. Atomic Absorption Spectroscopy, Atomic Emission Spectroscopy, and Inductively Coupled Plasma-Mass Spectrometry. In Food Anal. Methods, Food Science Text Series, 2017; pp 129-150. (8) Manning, T. J.; Grow, W. R. Inductively coupled plasma-atomic emission spectrometry. Chem. Educator 1997, 2 (1), 1-19. (9) Glascock, M. D. An overview of neutron activation analysis. Columbia, MO: University of Missouri Research Reactor (MURR) 2006. (10) Isaac, R. A.; Kerber, J. D. Atomic absorption and flame photometry: Techniques and uses in soil, plant, and water analysis. Instrumental methods for analysis of soils and plant tissue 1971, 17-37. (11) Kaur, B.; Kaur, N.; Kumar, S. Colorimetric metal ion sensors – A comprehensive review of the years 2011–2016. Coord. Chem. Rev. 2018, 358, 13-69. (12) Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89 (26), 7017-7036. (13) Pedersen, C. J. The discovery of crown ethers (Noble Lecture). Angew. Chem. Int. Ed. Engl. 1988, 27 (8), 1021-1027. (14) Cram, D. J. The design of molecular hosts, guests, and their complexes (Nobel lecture). Angew. Chem. Int. Ed. Engl. 1988, 27 (8), 1009-1020. (15) Lehn, J. M. Perspectives in supramolecular chemistry—from molecular recognition towards molecular information processing and self‐organization. Angew. Chem. Int. Ed. Engl. 1990, 29 (11), 1304-1319. (16) Eisenthal, K. B. Intermolecular and intramolecular excited state charge transfer. Laser Chem. 1983, 3 (1-6), 145-162. (17) Bixner, O.; Lukes, V.; Mancal, T.; Hauer, J.; Milota, F.; Fischer, M.; Pugliesi, I.; Bradler, M.; Schmid, W.; Riedle, E.; et al. Ultrafast photo-induced charge transfer unveiled by two-dimensional electronic spectroscopy. J. Chem. Phys. 2012, 136 (20), 204503. (18) Magri, D. C. Logical sensing with fluorescent molecular logic gates based on photoinduced electron transfer. Coord. Chem. Rev. 2021, 426. (19) Neema, P. M.; Tomy, A. M.; Cyriac, J. Chemical sensor platforms based on fluorescence resonance energy transfer (FRET) and 2D materials. Trends Anal. Chem. 2020, 124. (20) Jia, P. P.; Xu, L.; Hu, Y. X.; Li, W. J.; Wang, X. Q.; Ling, Q. H.; Shi, X.; Yin, G. Q.; Li, X.; Sun, H.; et al. Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity. J. Am. Chem. Soc. 2021, 143 (1), 399-408. (21) Beija, M.; Afonso, C. A.; Martinho, J. M. Synthesis and applications of Rhodamine derivatives as fluorescent probes. Chem. Soc. Rev. 2009, 38 (8), 2410-2433. From NLM PubMed-not-MEDLINE. (22) Manjunath, R.; Kannan, P. Highly selective rhodamine-based fluorescence turn-on chemosensor for Al3+ ion. Opt. Mater. 2018, 79, 38-44. (23) Jiao, G.-S.; Thoresen, L. H.; Burgess, K. Fluorescent, through-bond energy transfer cassettes for labeling multiple biological molecules in one experiment. J. Am. Chem. Soc. 2003, 125 (48), 14668-14669. (24) Li, C.-Y.; Zhou, Y.; Li, Y.-F.; Zou, C.-X.; Kong, X.-F. Efficient FRET-based colorimetric and ratiometric fluorescent chemosensor for Al3+ in living cells. Sens. actuators. B Chem. 2013, 186, 360-366. (25) Huang, Q.; Zhang, Q.; Wang, E.; Zhou, Y.; Qiao, H.; Pang, L.; Yu, F. A new “off–on” fluorescent probe for Al3+ in aqueous solution based on rhodamine B and its application to bioimaging. Spectrochim. Acta A 2016, 152, 70-76. (26) Leng, X.; Xu, W.; Qiao, C.; Jia, X.; Long, Y.; Yang, B. New rhodamine B-based chromo-fluorogenic probes for highly selective detection of aluminium (III) ions and their application in living cell imaging. RSC Adv. 2019, 9 (11), 6027-6034. (27) Biswal, B.; Bhoi, B. B.; Behera, K. C.; Khamari, U.; Bag, B. A rhodamine B based chemosensor for selective detection of Al3+ ion: Photophysical investigations and analysis in real samples. Inorganica Chim. Acta 2024, 122225. (28) Jiang, B.; Gu, X.-H. Syntheses and cytotoxicity evaluation of bis (indolyl) thiazole, bis (indolyl) pyrazinone and bis (indolyl) pyrazine: Analogues of cytotoxic marine bis (indole) alkaloid. Bioorg. Med. Chem. 2000, 8 (2), 363-371. (29) Ma, Z.; Zhang, W.; Han, X.; Chen, Y.; Li, G. Design, Synthesis, and Cytotoxic Activities of Indole and Indazole‐Based Stilbenes. Chem. Biodiversity 2023, 20 (5), e202300368. (30) Sahoo, P. R.; Prakash, K.; Kumar, S. Synthesis of an oxadiazole through an indole mediated single step procedure for selective optical recognition of Cu2+ ions. Sens. actuators. B Chem. 2017, 242, 299-304. (31) Chang, Y.; Li, B.; Mei, H.; Yang, L.; Xu, K.; Pang, X. Indole-based colori/fluorimetric probe for selective detection of Cu2+ and application in living cell imaging. Spectrochim. Acta A 2020, 226, 117631. (32) Sayapin, Y. A.; Gusakov, E. A.; Tupaeva, I. O.; Karlutova, O. Y.; Dubonosova, I. V.; Tkachev, V. V.; Starikov, A. G.; Dubonosov, A. D.; Aldoshin, S. M. 1H-indole-based chemosensors for the sequential recognition of Hg2+ and CN− ions. Tetrahedron 2021, 84, 132030. (33) Joshi, S.; Kumari, S.; Sarmah, A.; Pant, D. D.; Sakhuja, R. Detection of Hg2+ ions in aqueous medium using an indole-based fluorescent probe: experimental and theoretical investigations. J. Mol. Liq. 2017, 248, 668-677. (34) Zeng, R.; Li, Q.; Li, Z.; Li, X.; Xie, C.; Su, X.; Tang, D. Benzo [e] indolium derivatives in aqueous solutions: Reaction with bisulfite and successive interaction with Cu2+ and Hg2+. Spectrochim. Acta A 2018, 202, 324-332. (35) Sie, Y.-W.; Li, C.-L.; Wan, C.-F.; Yan, H.; Wu, A.-T. A novel fluorescence sensor for dual sensing of Hg2+ and Cu2+ ions. JPPA 2018, 353, 19-25. (36) Ravichandran, M. Interactions between mercury and dissolved organic matter––a review. Chemosphere 2004, 55 (3), 319-331. (37) Helal, A.; Or Rashid, M. H.; Choi, C.-H.; Kim, H.-S. Chromogenic and fluorogenic sensing of Cu2+ based on coumarin. Tetrahedron 2011, 67 (15), 2794-2802. (38) Sun, X.-y.; Liu, T.; Sun, J.; Wang, X.-j. Synthesis and application of coumarin fluorescence probes. RSC Adv. 2020, 10 (18), 10826-10847. (39) Jiao, Y.; Zhou, L.; He, H.; Yin, J.; Duan, C. A new fluorescent chemosensor for recognition of Hg(2+) ions based on a coumarin derivative. Talanta 2017, 162, 403-407. (40) Long, G. L.; Winefordner, J. D. Limit of detection. A closer look at the IUPAC definition. Anal. Chem. 1983, 55 (7), 712A-724A. (41) Dahlquist, F. The meaning of scatchard and hill plots. Methods Enzymol. 1978, 48, 270-299. (42) Gehlen, M. H. The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map. J PHOTOCH PHOTOBIO C 2020, 42, 100338.
|