跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/21 15:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:宋承恩
研究生(外文):SONG, CHENG-EN
論文名稱:大規模崩塌地植生復育速率及影響因素分析 - 以臺灣南部濁口溪流域為例
論文名稱(外文):Analyzing the Vegetation Restoration Rates and Influencing Factors of Large-scale Landslides : A Case Study of the Zhuokou River Basin in Southern Taiwan
指導教授:王素芬王素芬引用關係陳毅青陳毅青引用關係
口試委員:詹進發劉正千林登秋王素芬陳毅青
口試日期:2023-12-19
學位類別:博士
校院名稱:國立彰化師範大學
系所名稱:地理學系地理暨環境資源博士班
學門:社會及行為科學學門
學類:地理學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:252
中文關鍵詞:大規模崩塌植生復育時間序列恢復速率演替機制
外文關鍵詞:Large-scale landslidesVegetation restorationTime-seriesRecovery rateSuccessional mechanism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:69
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
崩塌是臺灣主要的坡地災害及森林干擾類型,在氣候變遷趨勢下將加劇對社會及自然資源損失的風險。崩塌地的恢復過程牽涉多重交互作用,呈現高度時空異質性,當前仍缺乏自然復育研究提供生態系統調適策略的基礎。因此本研究以時間序列遙測資料分析濁口溪大規模崩塌地的恢復速率,探討初始演替與長期復育的影響因素,並檢核復育發展的空間模式,來釐清復育時空動態及作用機制。研究使用2006年至2023年多光譜衛星影像、三期光達產製的冠層高度模型,結合隨機森林及CASA模型反演植被的冠層結構與淨初級生產力。從對數時間序列回歸方法擬合了植被光譜、結構與生產功能的恢復軌跡,藉此推估不同復育層級的植被特徵及恢復速率。在探討復育影響因素方面,復育潛勢模型的變量重要性及部分依賴分析找出初始環境條件對植生穩定恢復的關係,同時多變量統計的排序技術用於找出形塑復育植被特徵差異的關鍵因子。最後,透過植生特徵的空間自相關分析與梯度方向的統計檢定,確認不同恢復階段的復育空間變化。
結果發現83.83 % 的崩塌面積發生顯著的植被再生,但超過半數缺乏木本植物組成的矮植被所覆蓋,些微恢復的軌跡顯示將難有演替序列發展,僅13.05 % 的良好恢復位置能在數年內成林,並且在數十年後接近至成熟林分水準。復育潛勢模型的變量分析指出初始演替條件以植被遺留物與災害干擾強度的共同作用最為重要,坡向條件反映先鋒物種對光照的生理偏好。初期定殖受到乾季的水分限制少,但雨季時更濕潤的位置易引發侵蝕降低恢復機率。雖然種源距離也是啟動恢復的重要因子
,最大效用距離短於67公尺,對於內部中心位置影響有限。長期復育因素分析指出,再生最快的良好恢復多為遺留物效應推動的次級演替,受長期氣候變異與再干擾事件的影響少;潛在種子庫的傳播定殖與中等恢復的發展更相關,復育植被易受再干擾而顯著減損,導致陽性的先鋒灌木或草本更具競爭優勢,群落組成相顯複雜;恢復不佳的位置因棲地條件惡劣發生環境過濾,耐受度高的先鋒矮植被透過競爭抑制演替發展。大規模崩塌地的復育有明顯的空間依賴性,初期定殖是從特定優勢位置開始發展,並逐漸轉向成核擴張的空間過程。相對於從邊緣向核心,由下邊坡朝向上邊坡的梯度方向檢驗到微小的植生遞減變化,歸因於種子及補充物質的移動限制,以及崩塌地形特徵形塑的局部環境優勢。整體而言,多數大規模崩塌表面會自然再生,但長期發展下仍難以恢復到成熟森林,對於關鍵邊坡位置建議採用復育潛勢評估方法,結合工程方法改良地表條件放大先鋒定殖者的促進作用,加速復育植被的演替發展。
Landslide is a major type of hillslope disaster and forest disturbance in Taiwan. Under the trend of climate change, the risk of societal and natural resource losses due to landslides is expected to intensify. The restoration process of landslides involves multiple interactions and presents high spatiotemporal heterogeneity. Currently, there is still a lack of natural restoration research to provide strategies about ecosystem-based adaptation. This study used time-series remote sensing to analyze the recovery rate and spatial pattern of large-scale landslides in the Zhuokou River watershed. In addition, this study also explores the influencing factors of both initial succession and long-term restoration to understand the restoration mechanism. The remote sensing dataset included multispectral satellite images from 2006 to 2023 and three-phase LiDAR data for generating canopy height models. Through model simulation methods, the vegetation canopy structure and net primary productivity were inverted. The recovery trajectories of vegetation spectrum, structure, and production function, fitted by a logarithmic time series regression, were used to estimate vegetation characteristics and recovery rates at different restoration levels. To explore the restoration factors, variable importance measures and partial dependence analysis were used in the restoration susceptibility model to elucidate the relationship between initial environmental conditions and stable recovery. Moreover, the application of a multivariate ordination technique was used to identify the key factors resulting in restoration differences. Finally, spatial autocorrelation analysis and statistical tests on gradient differences were employed to confirm spatial variations across different stages of restoration.
The results showed that 83.83 % of the landslide surfaces exhibit significant vegetation regeneration, but over half were covered by short vegetation lacking woody plant composition. The trajectories of slight recovery suggested a challenging development of succession sequences. Only 13.05 % of the superior recovery locations could establish forests within a few years, approaching mature forest levels decades later. The analysis of variable importance in the restoration susceptibility model indicates that the combined effect of vegetation legacy and disturbance intensity was a major factor for initial succession. The topographic solar radiation index reflected the physiological preferences of pioneer species towards light exposure. Initial colonization was rarely constrained by water availability during the dry season, but locations exhibiting signs of moisture during the wet season were more prone to erosion, thereby reducing the probability of recovery. Although the distance from seed pools was also an important variable in initiating restoration, the maximum effective distance was less than 67 meters, with limited impact on internal central positions. Long-term influencing factor analysis indicated that the superior recovery areas with the fastest regeneration were mostly secondary succession driven by legacy effects, experiencing less influence from climate variations and re-disturbance events. The colonization induced by the potential seed pools were more closely associated with the development of moderate recovery. These vegetation areas were susceptible to significant damage caused by re-disturbance, leading to a competitive advantage for heliophilous pioneer shrubs and herbaceous, contributing to a more complex community composition. Poorly regenerative locations occurred environmental filtering due to harsh habitat conditions, where highly tolerant pioneer short vegetation inhibited the development of succession through competition. The restoration of large-scale landslides exhibited clear spatial dependence. Initial colonization began to develop from specific advantageous locations and gradually transitioned into a process of nuclear expansion afterwards. Compared with the direction from the edge to the core, a slight vegetation decline was observed from the lower slope to the upper slope along the gradient change, attributed to the restricted movement of seeds and supplementary materials, as well as the local environmental advantages shaped by the topography of landslide features. In summary, most large-scale landslide surfaces could naturally regenerate, but over the long term, comprehensive recovery to mature forests remains challenging. This study suggested using restoration susceptibility assessment methods for critical slope positions, combined with engineering approaches to improve surface conditions and enhance the facilitating role of pioneer colonizers, expediting the successional development.
摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VII
圖目錄 IX
第一章 前言 1
第一節 研究動機與目的 1
第二節 研究架構與流程 3
第二章 文獻回顧 5
第一節 生態系的干擾復育動態 5
第二節 多時序遙測應用干擾恢復監測與分析 14
第三節 崩塌發生機制及復育因素 28
第三章 材料與方法 39
第一節 研究區域概述 39
第二節 研究材料 42
第三節 研究方法 49
第四章 研究結果 92
第一節 復育趨勢檢定及植生光譜變化 92
第二節 復育潛勢模型與初始演替條件 98
第三節 復育植生特徵變化 116
第四節 中長期復育演替因素分析 166
第五節 復育植生空間模式變化 181
第五章 綜整討論 202
第六章 結論與建議 209
參考文獻 212
附錄 248

表目錄
表2-1 時間序列變遷檢測演算法分類及特性表 17
表2-2 Varnes崩塌分類更新表 32
表3-1 研究使用氣象觀測資料的測站列表 48
表3-2 Landsat衛星TCT轉換係數表 54
表3-3 植被類型的NDVI與SR的最大值及最小值及最大光能利用率(εmax) 64
表3-4 SPI對應水分狀況分類表 80
表3-5 二元分類誤差矩陣與精度評估指標表 84
表4-1 濁口溪大規模崩塌地復育面積及復育比例表 93
表4-2 復育區NDVI恢復曲線推估值統計表 96
表4-3 隨機森林模型訓練及驗證成果表 99
表4-4 濁口溪莫拉克大規模崩塌地復育潛勢分級表 100
表4-5 冠層結構指標RF推估模型驗證表現 116
表4-6 復育區冠層結構恢復曲線擬合度及成熟林分參考門檻值表 120
表4-7 復育區冠層結構恢復曲線推估值統計表 120
表4-8 CCDC分類的平均精度統計表 127
表4-9 CCDC分類的平均漏授率統計表 127
表4-10 CCDC分類平均誤授率統計表 128
表4-11 濁口溪大規模崩塌樣區土地覆蓋類型面積變化表 130
表4-12 植被類型各月份平均NPP變化 132
表4-13 復育區NPP恢復曲線推估值統計表 136
表4-14 復育區K-means集群的植生特徵統計表 139
表4-15 大規模崩塌樣區復育層級的分級面積比例表 140
表4-16 復育層級植生特徵恢復曲線擬合度表 142
表4-17 些微恢復層級植生特徵恢復曲線推估值統計表 144
表4-18 中等恢復層級植生特徵恢復曲線推估值統計表 149
表4-19 良好恢復層級植生特徵恢復曲線推估值統計表 154
表4-20 相關研究估計森林干擾後復育時間表 163
表4-21 冗餘分析模型摘要表 168
表4-22 冗餘分析模型與典範軸蒙地卡羅置換檢驗摘要表 168
表4-23 RDA約束軸與環境變量係數組成係數表 169
表4-24 RDA模型預測變量的階層分解變異量表 172
表4-25 Anselin Local Moran's I 空間聚集類別嵌塊體數量統計表 189

圖目錄
圖1-1 研究架構及流程圖 4
圖2-1 生態系統干擾復原變化的球杯類比概念圖 6
圖2-2 生態復原的量化評估示例圖 7
圖2-3 演替發展的可能軌跡類型 11
圖2-4 傳統及早熟演替發展階段與發生時間 12
圖2-5 傳統森林演替模型的發展階段圖 13
圖2-6 森林演替模型的發展路徑 13
圖2-7 空載光達遙測概念圖 19
圖2-8 森林演替期間生物量及生產量的假設趨勢 25
圖2-9 不同森林種類的林分NPP變化 26
圖2-10 臺灣北部及南部崩塌發生的降雨強度-延時變化 29
圖2-11 Varnes崩塌分類圖 31
圖2-12 崩塌地植生恢復的時空格局 38
圖3-1 研究區域圖 40
圖3-2 研究區域氣候圖 41
圖3-3 研究使用感測器影像的NDVI差異統計盒鬚圖 45
圖3-4 纓帽轉換三維特徵空間樣本散點圖 53
圖3-5 CCDC連續變化檢測方法示意圖 58
圖3-6 CCDC演算法擬合各類土地利用的五種時序特徵變量 59
圖3-7 復育區恢復軌跡及速率估計流程圖 69
圖3-8 LandTrendr演算法的分段趨勢檢測 82
圖3-9 冗餘分析步驟流程圖 88
圖3-10 變異分解三個自變量的維恩(Venn)圖 89
圖4-1 莫拉克災後長期NDVI的Mann-Kendall趨勢檢定Z分數圖 94
圖4-2 濁口溪大規模崩塌復育區域與周邊成熟林分參考位置圖 95
圖4-3 復育像元NDVI時間序列變化與恢復曲線分布範圍 96
圖4-4 恢復曲線推估復育區NDVI的VRR統計盒鬚圖 97
圖4-5 復育潛勢模型變量相關性分析圖 98
圖4-6 復育潛勢模式評估之ROC曲線 99
圖4-7 濁口溪莫拉克大規模崩塌地復育機率預測 101
圖4-8 濁口溪莫拉克大規模崩塌地復育潛勢分級圖 102
圖4-9 復育潛勢模型預測變量重要性 104
圖4-10 災害干擾強度因子部份依賴圖 106
圖4-11 植被遺留物因子部份依賴圖 107
圖4-12 種源距離因子部份依賴圖 109
圖4-13 第一年雨季SPI因子部份依賴圖 110
圖4-14 第一年乾季SPI因子部份依賴圖 111
圖4-15 地形太陽輻射指數(TSRI)因子部份依賴圖 112
圖4-16 海拔高度因子部份依賴圖 113
圖4-17 地形濕度指數(TWI)因子部份依賴圖 115
圖4-18 坡度因子部份依賴圖 115
圖4-19 平均冠層高度(TCH)推估模型驗證散點圖 117
圖4-20 樹冠覆蓋率(CCR)推估模型驗證散點圖 117
圖4-21 冠層容積率(CVR)推估模型驗證散點圖 118
圖4-22 復育像元TCH時間序列變化與恢復曲線分布範圍 121
圖4-23 復育像元CCR時間序列變化與恢復曲線分布範圍 122
圖4-24 復育像元CVR時間序列變化與恢復曲線分布範圍 123
圖4-25 恢復曲線推估復育區TCH的VRR統計盒鬚圖 124
圖4-26 恢復曲線推估復育區CCR的VRR統計盒鬚圖 124
圖4-27 恢復曲線推估復育區CVR的VRR統計盒鬚圖 125
圖4-28 森林資源調查參考及CCDC土地覆蓋分類成果 129
圖4-29 濁口溪大規模崩塌樣區土地覆蓋面積比例變化 130
圖4-30 濁口溪集水區單月平均NPP估計結果 132
圖4-31 闊葉林類別各月NPP統計盒鬚圖 134
圖4-32 針葉林類別各月NPP統計盒鬚圖 134
圖4-33 混合林類別各月NPP統計盒鬚圖 135
圖4-34 草生/灌叢類別各月NPP統計盒鬚圖 135
圖4-35 復育像元NPP時間序列變化與恢復曲線分布範圍 137
圖4-36 恢復曲線推估復育區NPP的VRR統計盒鬚圖 137
圖4-37 大規模崩塌樣區復育層級分級圖 141
圖4-38 些微恢復層級樣本的植生特徵時序變化與恢復曲線分布範圍 145
圖4-39 中等恢復層級樣本的植生特徵時序變化與恢復曲線分布範圍 150
圖4-40 良好恢復層級樣本的植生特徵時序變化與恢復曲線分布範圍 155
圖4-41 LS_01樣區局部範圍航照正射影像與復育植生特徵估計結果圖 159
圖4-42 LS_24樣區局部範圍航照正射影像與復育植生特徵估計結果圖 160
圖4-43 環境變量Spearman相關分析結果 167
圖4-44 復育層級類型的RDA1分數盒鬚圖及變異數分析結果 171
圖4-45 復育層級類型的RDA2分數盒鬚圖及變異數分析結果 171
圖4-46 RDA模型預測變量的變異解釋比例排序圖 173
圖4-47 RDA排序圖 175
圖4-48 大規模崩塌地災後植生特徵的空間自相關變化 182
圖4-49 2012年大規模崩塌地植生特徵的空間聚集分布 186
圖4-50 2016年大規模崩塌地植生特徵的空間聚集分布 187
圖4-51 2021年大規模崩塌地植生特徵的空間聚集分布 188
圖4-52 Anselin Local Moran's I 空間聚集類別面積百分比 189
圖4-53 邊緣距離群組NDVI統計盒鬚圖及ANOVA結果 191
圖4-54 邊緣距離群組TCH統計盒鬚圖及ANOVA結果 192
圖4-55 邊緣距離群組CCR統計盒鬚圖及ANOVA結果 193
圖4-56 邊緣距離群組CVR統計盒鬚圖及ANOVA結果 194
圖4-57 高程梯度群組NDVI統計盒鬚圖及ANOVA結果 196
圖4-58 高程梯度群組TCH統計盒鬚圖及ANOVA結果 197
圖4-59 高程梯度群組CCR統計盒鬚圖及ANOVA結果 198
圖4-60 高程梯度群組CVR統計盒鬚圖及ANOVA結果 199

宋承恩、王韻皓、林國聖、王培蓉、詹進發、陳毅青、王素芬 (2022) “以多時期衛星影像及樹冠高程模型分析崩塌植生復育與影響因素”,農業工程學報,第68卷4期,頁44-62。
陳毅青 (2012) 降雨誘發崩塌侵蝕之規模頻率及其控制因子,國立臺灣大學土木工程學研究所博士論文。
黃誌川、徐美玲、楊奕岑 (2002) “多流向與單流向法集流面積估算結果之空間分佈特性”,中華水土保持學報,第33卷1期,頁57-68。
黃靜宜 (2022) 氣候變遷下外來入侵植物空間擴散與防治規劃之研究,國立彰化師範大學地理學系博士論文。
楊奕岑、徐美玲、賴進貴 (2005) “DEM 解析度暨流向演算法對於集流面積計算之影響”,地理學報,第33期,頁71-90。
詹勳全、張嘉琪、陳樹群、魏郁軒、王昭堡、李桃生 (2015) “台灣山區淺層崩塌地特性調查與分析”,中華水土保持學報,第46卷1期,頁19-28。
蔡尚惪、陳朝圳、林昭遠、陳韋志 (2015) “高屏溪流域崩塌地之植生復育分析”,林業研究季刊,第37卷4期,頁229-247。
鄭欽龍、張竣翔 (2009) “崩塌地水土保持工程參數成本估計模型之研究─以台大實驗林為例”,國立臺灣大學生物資源暨農學院實驗林研究報告,第23卷1期 ,頁37-45。
鍾安晴、郭耀綸、周富三、林文智、陳永修 (2022) “臺灣南部多納崩塌地演替初期不同耐陰性樹種組成及優勢度的變化”,臺灣林業科學,第37卷1期 ,頁41-60。
顏正平、林昭遠、林信輝 (1993) “裸露地區植生復育困難問題之研究”,水土保持學報,第25卷2期 ,頁79-88。
Ahmed, O. S., Franklin, S. E., & Wulder, M. A. (2014) "Interpretation of forest disturbance using a time series of Landsat imagery and canopy structure from airborne lidar," Canadian Journal of Remote Sensing, 39(6), 521-542.
Ahmed, O. S., Franklin, S. E., Wulder, M. A., & White, J. C. (2015) "Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm," ISPRS Journal of Photogrammetry and Remote Sensing, 101, 89-101.
Alaibakhsh, M., Emelyanova, I., Barron, O., Mohyeddin, A., & Khiadani, M. (2015) "Multivariate detection and attribution of land-cover changes in the Central Pilbara, Western Australia," International Journal of Remote Sensing, 36(10), 2599-2621.
Almeida, D. R. A., Broadbent, E. N., Zambrano, A. M. A., Wilkinson, B. E., Ferreira, M. E., Chazdon, R., ... & Brancalion, P. H. S. (2019) "Monitoring the structure of forest restoration plantations with a drone-lidar system," International Journal of Applied Earth Observation and Geoinformation, 79, 192-198.
Anderson‐Teixeira, K. J., Miller, A. D., Mohan, J. E., Hudiburg, T. W., Duval, B. D., & DeLucia, E. H. (2013) "Altered dynamics of forest recovery under a changing climate," Global Change Biology, 19(7), 2001-2021.
Anselin, L. (1995). "Local indicators of spatial association—LISA," Geographical Analysis, 27(2), 93-115.
Bače, R., Svoboda, M., Janda, P., Morrissey, R. C., Wild, J., Clear, J. L., ... & Donato, D. C. (2015) "Legacy of pre-disturbance spatial pattern determines early structural diversity following severe disturbance in montane spruce forests," PLoS One, 10(9), e0139214.
Bagchi, S., Singh, N. J., Briske, D. D., Bestelmeyer, B. T., McClaran, M. P., & Murthy, K. (2017) "Quantifying long‐term plant community dynamics with movement models: implications for ecological resilience," Ecological Applications, 27(5), 1514-1528.
Baltzer, A. (1875) "Über bergstürze in den Alpen [About mountain falls in the Alps]," Schweizer Alpen Club Bern Jahrbuch, 10, 409-456.
Banskota, A., Kayastha, N., Falkowski, M. J., Wulder, M. A., Froese, R. E., & White, J. C. (2014) "Forest monitoring using Landsat time series data: A review," Canadian Journal of Remote Sensing, 40(5), 362-384.
Bartels, S. F., Chen, H. Y., Wulder, M. A., & White, J. C. (2016) "Trends in post-disturbance recovery rates of Canada’s forests following wildfire and harvest," Forest Ecology and Management, 361, 194-207.
Bartha, S. Á. N. D. O. R., Campetella, G., Canullo, R., Bódis, J. U. D. I. T., & Mucina, L. A. D. I. S. L. A. V. (2004) "On the importance of fine-scale spatial complexity in vegetation restoration studies," International Journal of Ecology and Environmental Sciences, 30(1), 101-116.
Bazzaz, F. A. (1990) "The response of natural ecosystems to the rising global CO2 levels," Annual Review of Ecology and Systematics, 21(1), 167-196.
Belgiu, M., & Drăguţ, L. (2016) "Random forest in remote sensing: A review of applications and future directions," ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31.
Benayas, J. M. R., Newton, A. C., Diaz, A., & Bullock, J. M. (2009) "Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis," Science, 325(5944), 1121-1124.
Bender, E. A., Case, T. J., & Gilpin, M. E. (1984) "Perturbation experiments in community ecology: theory and practice," Ecology, 65(1), 1-13.
Birks, H. J. B., Frey, D. G., & Deevey, E. S. (1998) "Numerical tools in palaeolimnology-progress, potentialities, and problems," Journal of Paleolimnology, 20, 307-332.
Bolton, D. K., Tompalski, P., Coops, N. C., White, J. C., Wulder, M. A., Hermosilla, T., ... & Quist, L. (2020) "Optimizing Landsat time series length for regional mapping of lidar-derived forest structure," Remote Sensing of Environment, 239, 111645.
Bolton, D. K., White, J. C., Wulder, M. A., Coops, N. C., Hermosilla, T., & Yuan, X. (2018) "Updating stand-level forest inventories using airborne laser scanning and Landsat time series data," International Journal of Applied Earth Observation and Geoinformation, 66, 174-183.
Bowd, E. J., Blair, D. P., & Lindenmayer, D. B. (2021) "Prior disturbance legacy effects on plant recovery post‐high‐severity wildfire," Ecosphere, 12(5), e03480.
Breiman, L. (2001) "Random forests," Machine learning, 45(1), 5-32.
Brown, P. M., & Wu, R. (2005) "Climate and disturbance forcing of episodic tree recruitment in a southwestern ponderosa pine landscape," Ecology, 86(11), 3030-3038.
Brůna, J., Wild, J., Svoboda, M., Heurich, M., & Müllerová, J. (2013) "Impacts and underlying factors of landscape-scale, historical disturbance of mountain forest identified using archival documents," Forest Ecology and Management, 305, 294-306.
Buma, B., & Pawlik, Ł. (2021) "Post‐landslide soil and vegetation recovery in a dry, montane system is slow and patchy," Ecosphere, 12(1), e03346.
Buma, B., & Wessman, C. A. (2011) "Disturbance interactions can impact resilience mechanisms of forests," Ecosphere, 2(5), 1-13.
Cannone, N., Lewkowicz, A. G., & Guglielmin, M. (2010) "Vegetation colonization of permafrost‐related landslides, Ellesmere Island, Canadian High Arctic," Journal of Geophysical Research: Biogeosciences, 115(G4).
Cantón, Y., Del Barrio, G., Solé-Benet, A., & Lázaro, R. (2004) "Topographic controls on the spatial distribution of ground cover in the Tabernas badlands of SE Spain," Catena, 55(3), 341-365.
Cao, L., Coops, N. C., Innes, J. L., Sheppard, S. R., Fu, L., Ruan, H., & She, G. (2016) "Estimation of forest biomass dynamics in subtropical forests using multi-temporal airborne LiDAR data," Remote Sensing of Environment, 178, 158-171.
Chalupová, O., Šilhán, K., Kapustová, V., & Chalupa, V. (2020) "Spatiotemporal distribution of growth releases and suppressions along a landslide body," Dendrochronologia, 60, 125676.
Chamberlain, C. P., Meador, A. J. S., & Thode, A. E. (2021) "Airborne lidar provides reliable estimates of canopy base height and canopy bulk density in southwestern ponderosa pine forests," Forest Ecology and Management, 481, 118695.
Chang, J. M., Chen, H., Jou, B. J. D., Tsou, N. C., & Lin, G. W. (2017) "Characteristics of rainfall intensity, duration, and kinetic energy for landslide triggering in Taiwan," Engineering Geology, 231, 81-87.
Chapin III, F. S., Matson, P. A., & Vitousek, P. (2002) Principles of Terrestrial Ecosystem Ecology, Springer Science & Business Media.
Chaudhary, S., Adhikari, B. R., Chaudhary, P., Dorji, T., & Poudel, R. (2021) "Ecosystem-Based Adaptation (EbA) in the Hindu Kush Himalaya: Status, Progress and Challenges," Ecosystem-Based Disaster and Climate Resilience: Integration of Blue-Green Infrastructure in Sustainable Development, 29-51.
Chazdon, R. L. (2003) "Tropical forest recovery: legacies of human impact and natural disturbances," Perspectives in Plant Ecology, Evolution and Systematics, 6(1-2), 51-71.
Chen, C. W., Oguchi, T., Hayakawa, Y. S., Saito, H., & Chen, H. (2017) "Relationship between landslide size and rainfall conditions in Taiwan," Landslides, 14(3), 1235-1240.
Chen, H. Y., & Popadiouk, R. V. (2002) "Dynamics of North American boreal mixedwoods," Environmental Reviews, 10(3), 137-166.
Chen, M., Tang, C., Li, M., Xiong, J., Luo, Y., Shi, Q., ... & Feng, Q. (2022) "Changes of surface recovery at coseismic landslides and their driving factors in the Wenchuan earthquake-affected area," Catena, 210, 105871.
Chen, M., Tang, C., Wang, X., Xiong, J., Shi, Q., Zhang, X., ... & Feng, Q. (2021) "Temporal and spatial differentiation in the surface recovery of post-seismic landslides in Wenchuan earthquake-affected areas," Ecological Informatics, 64, 101356.
Cheng, C. C. (2014) "Estimating Forest Net Primary Productivity Using Two Seasonal SPOT Images," Taiwan Journal of Forest Science, 29(4), 251-266.
Chevan, A., & Sutherland, M. (1991) "Hierarchical partitioning," The American Statistician, 45(2), 90-96.
Chompuchan, C., & Lin, C. Y. (2017) "Assessment of forest recovery at Wu-Ling fire scars in Taiwan using multi-temporal Landsat imagery," Ecological Indicators, 79, 196-206.
Chou, F. S., Lin, W. C., Chen, Y. H., & Liao, C. K. (2015) "Monitoring the vegetation dynamics of early succession following a landslide on Shanping forest road," Taiwan Journal of Forest Science, 30(4), 217-28.
Christensen Jr, N. L. (2014) "An historical perspective on forest succession and its relevance to ecosystem restoration and conservation practice in North America," Forest Ecology and Management, 330, 312-322.
Chu, T., & Guo, X. (2013) "Remote sensing techniques in monitoring post-fire effects and patterns of forest recovery in boreal forest regions: A review," Remote Sensing, 6(1), 470-520.
Chu, T., Guo, X., & Takeda, K. (2016) "Remote sensing approach to detect post-fire vegetation regrowth in Siberian boreal larch forest," Ecological Indicators, 62, 32-46.
Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., & Ni, J. (2001) "Measuring net primary production in forests: concepts and field methods," Ecological Applications, 11(2), 356-370.
Clements, F. E. (1916) Plant succession: an analysis of the development of vegetation (No. 242), Carnegie Institution of Washington.
Cohen, W. B., Spies, T. A., & Fiorella, M. (1995) "Estimating the age and structure of forests in a multi-ownership landscape of western Oregon, USA," International Journal of Remote Sensing, 16(4), 721-746.
Cohen, W. B., Yang, Z., & Kennedy, R. (2010) "Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—Tools for calibration and validation," Remote Sensing of Environment, 114(12), 2911-2924.
Coops, N. C., Shang, C., Wulder, M. A., White, J. C., & Hermosilla, T. (2020) "Change in forest condition: Characterizing non-stand replacing disturbances using time series satellite imagery," Forest Ecology and Management, 474, 118370.
Côté, I. M., & Darling, E. S. (2010) "Rethinking ecosystem resilience in the face of climate change," PLoS Biology, 8(7), e1000438.
Crist, E. P. (1985) "A TM tasseled cap equivalent transformation for reflectance factor data," Remote sensing of Environment, 17(3), 301-306.
Crist, E. P., & Cicone, R. C. (1984) "A physically-based transformation of Thematic Mapper data---The TM Tasseled Cap," IEEE Transactions on Geoscience and Remote sensing, (3), 256-263.
Cuevas-González, M. A. R. Í. A., Gerard, F., Balzter, H., & Riano, D. (2009) "Analysing forest recovery after wildfire disturbance in boreal Siberia using remotely sensed vegetation indices," Global Change Biology, 15(3), 561-577.
Cutler, N. (2011) "Vegetation–environment interactions in a sub-arctic primary succession," Polar Biology, 34(5), 693-706.
Cutler, N. A., Belyea, L. R., & Dugmore, A. J. (2008a) "Spatial patterns of microsite colonisation on two young lava flows on Mount Hekla, Iceland," Journal of Vegetation Science, 19(2), 277-286.
Cutler, N. A., Belyea, L. R., & Dugmore, A. J. (2008b) "The spatiotemporal dynamics of a primary succession," Journal of Ecology, 96(2), 231-246.
Dalling, J. W., Swaine, M. D., & Garwood, N. C. (1998) "Dispersal patterns and seed bank dynamics of pioneer trees in moist tropical forest," Ecology, 79(2), 564-578.
Dalponte, M., Jucker, T., Liu, S., Frizzera, L., & Gianelle, D. (2019) "Characterizing forest carbon dynamics using multi-temporal lidar data," Remote Sensing of Environment, 224, 412-420.
de Almeida, D. R. A., Almeyda Zambrano, A. M., Broadbent, E. N., Wendt, A. L., Foster, P., Wilkinson, B. E., ... & Chazdon, R. (2020) "Detecting successional changes in tropical forest structure using GatorEye drone‐borne lidar," Biotropica, 52(6), 1155-1167.
de Beurs, K. M., & Henebry, G. M. (2005) "A statistical framework for the analysis of long image time series," International Journal of Remote Sensing, 26(8), 1551-1573.
de Beurs, K. M., McThompson, N. S., Owsley, B. C., & Henebry, G. M. (2019) "Hurricane damage detection on four major Caribbean islands," Remote Sensing of Environment, 229, 1-13.
Dingle Robertson, L., King, D. J., & Davies, C. (2015) "Assessing land cover change and anthropogenic disturbance in wetlands using vegetation fractions derived from Landsat 5 TM imagery (1984–2010)," Wetlands, 35(6), 1077-1091.
Dislich, C., & Huth, A. (2012) "Modelling the impact of shallow landslides on forest structure in tropical montane forests," Ecological Modelling, 239, 40-53.
Dixon, R. K., Solomon, A. M., Brown, S., Houghton, R. A., Trexier, M. C., & Wisniewski, J. (1994) "Carbon pools and flux of global forest ecosystems," Science, 263(5144), 185-190.
Donato, D. C., Campbell, J. L., & Franklin, J. F. (2012) "Multiple successional pathways and precocity in forest development: can some forests be born complex?," Journal of Vegetation Science, 23(3), 576-584.
Drake, J. B., Dubayah, R. O., Clark, D. B., Knox, R. G., Blair, J. B., Hofton, M. A., ... & Prince, S. (2002) "Estimation of tropical forest structural characteristics using large-footprint lidar," Remote Sensing of Environment, 79(2-3), 305-319.
Duane, M. V., Cohen, W. B., Campbell, J. L., Hudiburg, T., Turner, D. P., & Weyermann, D. L. (2010) "Implications of alternative field-sampling designs on Landsat-based mapping of stand age and carbon stocks in Oregon forests," Forest Science, 56(4), 405-416.
Elias, R., & Dias, E. (2009) "Effects of landslides on the mountain vegetation of Flores Island, Azores" Journal of Vegetation Science, 20(4), 706-717.
Favaretto, V. F., Martinez, C. A., Soriani, H. H., & Furriel, R. P. (2011) "Differential responses of antioxidant enzymes in pioneer and late-successional tropical tree species grown under sun and shade conditions," Environmental and Experimental Botany, 70(1), 20-28.
Fensham, R. J., Butler, D. W., Fairfax, R. J., Quintin, A. R., & Dwyer, J. M. (2016) "Passive restoration of subtropical grassland after abandonment of cultivation," Journal of Applied Ecology, 53(1), 274-283.
Fickas, K. C., Cohen, W. B., & Yang, Z. (2016) "Landsat-based monitoring of annual wetland change in the Willamette Valley of Oregon, USA from 1972 to 2012," Wetlands Ecology and Management, 24(1), 73-92.
Field, C. B., Randerson, J. T., & Malmström, C. M. (1995) "Global net primary production: combining ecology and remote sensing," Remote sensing of Environment, 51(1), 74-88.
Filippelli, S. K., Lefsky, M. A., & Rocca, M. E. (2019) "Comparison and integration of lidar and photogrammetric point clouds for mapping pre-fire forest structure," Remote Sensing of Environment, 224, 154-166.
Filoso, S., Bezerra, M. O., Weiss, K. C., & Palmer, M. A. (2017) "Impacts of forest restoration on water yield: A systematic review," PloS One, 12(8), e0183210.
Francescato, V., Scotton, M., Zarin, D. J., Innes, J. C., & Bryant, D. M. (2001) "Fifty years of natural revegetation on a landslide in Franconia Notch, New Hampshire, USA," Canadian Journal of Botany, 79(12), 1477-1485.
Franklin, J. F., Lindenmayer, D., MacMahon, J. A., McKee, A., Magnuson, J., Perry, D. A., ... & Foster, D. (2000) "Threads of continuity," Conservation Biology in Practice, 1(1), 8-16.
Franklin, J. F., Spies, T. A., Van Pelt, R., Carey, A. B., Thornburgh, D. A., Berg, D. R., ... & Chen, J. (2002) "Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example," Forest Ecology and Management, 155(1-3), 399-423.
Frazier, R. J., Coops, N. C., & Wulder, M. A. (2015) "Boreal Shield forest disturbance and recovery trends using Landsat time series," Remote Sensing of Environment, 170, 317-327.
Freund, C. A., Clark, K. E., Curran, J. F., Asner, G. P., & Silman, M. R. (2021) "Landslide age, elevation and residual vegetation determine tropical montane forest canopy recovery and biomass accumulation after landslide disturbances in the Peruvian Andes," Journal of Ecology, 109(10), 3555-3571.
Friedman, J. H. (2001) "Greedy function approximation: a gradient boosting machine," Annals of Statistics, 1189-1232.
Fu, P., & Rich, P. M. (2002) "A geometric solar radiation model with applications in agriculture and forestry," Computers and Electronics in Agriculture, 37(1-3), 25-35.
Fu, Z., Li, D., Hararuk, O., Schwalm, C., Luo, Y., Yan, L., & Niu, S. (2017) "Recovery time and state change of terrestrial carbon cycle after disturbance," Environmental Research Letters, 12(10), 104004.
Gageler, R., Bonner, M., Kirchhof, G., Amos, M., Robinson, N., Schmidt, S., & Shoo, L. P. (2014) "Early response of soil properties and function to riparian rainforest restoration," PLoS One, 9(8), e104198.
Gale, J. (2004) "Plants and altitude—revisited," Annals of Botany, 94(2), 199.
Garibotti, I. A., Pissolito, C. I., & Villalba, R. (2011) "Spatiotemporal pattern of primary succession in relation to meso-topographic gradients on recently deglaciated terrains in the Patagonian Andes," Arctic, Antarctic, and Alpine Research, 43(4), 555-567.
Germino, M. J., Barnard, D. M., Davidson, B. E., Arkle, R. S., Pilliod, D. S., Fisk, M. R., & Applestein, C. (2018) "Thresholds and hotspots for shrub restoration following a heterogeneous megafire," Landscape Ecology, 33, 1177-1194.
Ghimire, M. (2011) "Landslide occurrence and its relation with terrain factors in the Siwalik Hills, Nepal: case study of susceptibility assessment in three basins," Natural hazards, 56(1), 299-320.
Gleason, H. A. (1926) "The individualistic concept of the plant association," Bulletin of the Torrey Botanical Club, 7-26.
Gómez, C., White, J. C., & Wulder, M. A. (2011) "Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation," Remote Sensing of Environment, 115(7), 1665-1679.
Gómez, C., Wulder, M. A., White, J. C., Montes, F., & Delgado, J. A. (2012) "Characterizing 25 years of change in the area, distribution, and carbon stock of Mediterranean pines in Central Spain," International Journal of Remote Sensing, 33(17), 5546-5573.
Gómez-Aparicio, L., Zamora, R., Gómez, J. M., Hódar, J. A., Castro, J., & Baraza, E. (2004) "Applying plant facilitation to forest restoration: a meta‐analysis of the use of shrubs as nurse plants," Ecological Applications, 14(4), 1128-1138.
Goodale, U. M., Ashton, M. S., Berlyn, G. P., Gregoire, T. G., Singhakumara, B. M. P., & Tennakoon, K. U. (2012) "Disturbance and tropical pioneer species: Patterns of association across life history stages," Forest Ecology and Management, 277, 54-66.
Goodwin, N. R., & Collett, L. J. (2014) "Development of an automated method for mapping fire history captured in Landsat TM and ETM+ time series across Queensland, Australia," Remote Sensing of Environment, 148, 206-221.
Gough, C. M., Atkins, J. W., Fahey, R. T., Curtis, P. S., Bohrer, G., Hardiman, B. S., ... & Bond-Lamberty, B. (2022) "Disturbance has variable effects on the structural complexity of a temperate forest landscape," Ecological Indicators, 140, 109004.
Goulden, M. L., McMillan, A. M. S., Winston, G. C., Rocha, A. V., Manies, K. L., Harden, J. W., & Bond‐Lamberty, B. P. (2011) "Patterns of NPP, GPP, respiration, and NEP during boreal forest succession" Global Change Biology, 17(2), 855-871.
Grabherr, G., Gottfried, M., & Pauli, H. (1994) "Climate effects on mountain plants," Nature, 369, 448.
Griffiths, P., Kuemmerle, T., Kennedy, R. E., Abrudan, I. V., Knorn, J., & Hostert, P. (2012) "Using annual time-series of Landsat images to assess the effects of forest restitution in post-socialist Romania," Remote Sensing of Environment, 118, 199-214.
Gritzner, M. L., Marcus, W. A., Aspinall, R., & Custer, S. G. (2001) "Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho," Geomorphology, 37(1-2), 149-165.
Gu, J. U., Xin, L. I., Huang, C. L., Zhang, X. F., & Jin, X. (2013) "Simulating net primary productivity of Chinese terrestrial vegetation during 2002-2010," Journal of Lanzhou University, 49, 203-213.
Guariguata, M. R. (1990) "Landslide disturbance and forest regeneration in the upper Luquillo Mountains of Puerto Rico," The Journal of Ecology, 814-832.
Gunderson, L. H. (2000) "Ecological resilience—in theory and application," Annual Review of Ecology and Systematics, 31(1), 425-439.
Günter, S., Weber, M., Erreis, R., & Aguirre, N. (2007) "Influence of distance to forest edges on natural regeneration of abandoned pastures: a case study in the tropical mountain rain forest of Southern Ecuador," European Journal of Forest Research, 126, 67-75.
Hais, M., Jonášová, M., Langhammer, J., & Kučera, T. (2009) "Comparison of two types of forest disturbance using multitemporal Landsat TM/ETM+ imagery and field vegetation data," Remote sensing of Environment, 113(4), 835-845.
Hamed, K. H., & Rao, A. R. (1998) "A modified Mann-Kendall trend test for autocorrelated data," Journal of Hydrology, 204(1-4), 182-196.
Hamunyela, E., Verbesselt, J., & Herold, M. (2016) "Using spatial context to improve early detection of deforestation from Landsat time series," Remote Sensing of Environment, 172, 126-138.
Hansen, M. C., Krylov, A., Tyukavina, A., Potapov, P. V., Turubanova, S., Zutta, B., ... & Moore, R. (2016) "Humid tropical forest disturbance alerts using Landsat data," Environmental Research Letters, 11(3), 034008.
Harvey, B. J., & Holzman, B. A. (2014) "Divergent successional pathways of stand development following fire in a C alifornia closed‐cone pine forest," Journal of vegetation science, 25(1), 88-99.
Hayes, D. J., & Sader, S. A. (2001) "Comparison of change-detection techniques for monitoring tropical forest clearing and vegetation regrowth in a time series," Photogrammetric Engineering and Remote Sensing, 67(9), 1067-1075.
Healey, S. P., Cohen, W. B., Zhiqiang, Y., & Krankina, O. N. (2005) "Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection," Remote Sensing of Environment, 97(3), 301-310.
Hekkala, A. M., Tarvainen, O., & Tolvanen, A. (2014) "Dynamics of understory vegetation after restoration of natural characteristics in the boreal forests in Finland," Forest Ecology and Management, 330, 55-66.
Henny, L., Thorncroft, C. D., Hsu, H. H., & Bosart, L. F. (2021) "Extreme rainfall in Taiwan: Seasonal statistics and trends," Journal of Climate, 34(12), 4711-4731.
Hérault, B., & Piponiot, C. (2018) "Key drivers of ecosystem recovery after disturbance in a neotropical forest," Forest Ecosystems, 5(1), 1-15.
Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C., & Hobart, G. W. (2015) "Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics," Remote Sensing of Environment, 170, 121-132.
Hicke, J. A., Asner, G. P., Kasischke, E. S., French, N. H., Randerson, J. T., James Collatz, G., ... & Field, C. B. (2003) "Postfire response of North American boreal forest net primary productivity analyzed with satellite observations," Global Change Biology, 9(8), 1145-1157.
Hislop, S., Jones, S., Soto-Berelov, M., Skidmore, A., Haywood, A., & Nguyen, T. H. (2018) "Using landsat spectral indices in time-series to assess wildfire disturbance and recovery," Remote Sensing, 10(3), 460.
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., ... & Hatziolos, M. (2007) "Coral reefs under rapid climate change and ocean acidification," Science, 318(5857), 1737-1742.
Holling C. A. (1996) Engineering resilience versus ecological resilience, In: Engineering Within Ecological Constraints (ed. P. C. Schulze), National Academy of Sciences Press, Washington DC, USA, pp. 31–43.
Holling, C. S. (1973) "Resilience and stability of ecological systems," Annual Review of Ecology and Systematics, 4(1), 1-23.
Horn, H. S. (1974) "The ecology of secondary succession" Annual Review of Ecology and Systematics, 5(1), 25-37.
Hu, C. Y., Chen, J. C., Wei, C. H., Chen, C. T. (2011) "Using MODIS image data to estimate the terrestrial net primary productivity (NPP) of ecological zone in Taiwan," Journal of Beijing Forestry University, 33(4), 33-39.
Huang, C., Goward, S. N., Masek, J. G., Thomas, N., Zhu, Z., & Vogelmann, J. E. (2010) "An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks," Remote Sensing of Environment, 114(1), 183-198.
Huang, C., Wylie, B., Yang, L., Homer, C., & Zylstra, G. (2002) "Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance," International Journal of Remote Sensing, 23(8), 1741-1748.
Hungr, O., Leroueil, S., & Picarelli, L. (2014) "The Varnes classification of landslide types, an update," Landslides, 11(2), 167-194.
Huston, M., & Smith, T. (1987) "Plant succession: life history and competition," The American Naturalist, 130(2), 168-198.
Hyatt, L. A., & Casper, B. B. (2000) "Seed bank formation during early secondary succession in a temperate deciduous forest," Journal of Ecology, 88(3), 516-527.
Ilisson, T., & Chen, H. Y. (2009) "The direct regeneration hypothesis in northern forests," Journal of Vegetation Science, 20(4), 735-744.
Indirabai, I., Nair, M. H., Nair, J. R., & Nidamanuri, R. R. (2020) "Direct estimation of leaf area index of tropical forests using LiDAR point cloud," Remote Sensing Applications: Society and Environment, 18, 100295.
Jacques, D. C., Kergoat, L., Hiernaux, P., Mougin, E., & Defourny, P. (2014) "Monitoring dry vegetation masses in semi-arid areas with MODIS SWIR bands," Remote Sensing of Environment, 153, 40-49.
Jin, Y., Randerson, J. T., Goetz, S. J., Beck, P. S., Loranty, M. M., & Goulden, M. L. (2012) "The influence of burn severity on postfire vegetation recovery and albedo change during early succession in North American boreal forests," Journal of Geophysical Research: Biogeosciences, 117(G1).
João, T., João, G., Bruno, M., & João, H. (2018) "Indicator-based assessment of post-fire recovery dynamics using satellite NDVI time-series," Ecological Indicators, 89, 199-212.
Johnstone, J. F., Chapin, F. S., Hollingsworth, T. N., Mack, M. C., Romanovsky, V., & Turetsky, M. (2010) "Fire, climate change, and forest resilience in interior Alaska," Canadian Journal of Forest Research, 40(7), 1302-1312.
Jordano, P., García, C., Godoy, J. A., & Garcia-Castaño, J. (2007) "Differential contribution of frugivores to complex seed dispersal patterns," Proceedings of the National Academy of Sciences, 104(9), 3278-3282.
Jumpponen, A., Väre, H., Mattson, K. G., Ohtonen, R., & Trappe, J. M. (1999) "Characterization of ‘safe sites’ for pioneers in primary succession on recently deglaciated terrain," Journal of Ecology, 87(1), 98-105.
Kane, V. R., Bakker, J. D., McGaughey, R. J., Lutz, J. A., Gersonde, R. F., & Franklin, J. F. (2010) "Examining conifer canopy structural complexity across forest ages and elevations with LiDAR data," Canadian Journal of Forest Research, 40(4), 774-787.
Karna, Y. K., Penman, T. D., Aponte, C., & Bennett, L. T. (2019) "Assessing legacy effects of wildfires on the crown structure of fire-tolerant eucalypt trees using airborne LiDAR data," Remote Sensing, 11(20), 2433.
Kavzoglu, T., Sahin, E. K., & Colkesen, I. (2014) "Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression," Landslides, 11, 425-439.
Keefer, D. K., Wilson, R. C., Mark, R. K., Brabb, E. E., Brown III, W. M., Ellen, S. D., ... & Zatkin, R. S. (1987) "Real-time landslide warning during heavy rainfall," Science, 238(4829), 921-925.
Kennedy, R. E., Cohen, W. B., & Schroeder, T. A. (2007) "Trajectory-based change detection for automated characterization of forest disturbance dynamics," Remote Sensing of Environment, 110(3), 370-386.
Kennedy, R. E., Yang, Z., & Cohen, W. B. (2010) "Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms," Remote Sensing of Environment, 114(12), 2897-2910.
Kennedy, R. E., Yang, Z., Braaten, J., Copass, C., Antonova, N., Jordan, C., & Nelson, P. (2015) "Attribution of disturbance change agent from Landsat time-series in support of habitat monitoring in the Puget Sound region, USA," Remote Sensing of Environment, 166, 271-285.
Lai, J., Zou, Y., Zhang, J., & Peres‐Neto, P. R. (2022) "Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca. hp R package," Methods in Ecology and Evolution, 13(4), 782-788.
Lake, P. S. (2013) "Resistance, resilience and restoration," Ecological Management & Restoration, 14(1), 20-24.
Lamothe, K. A., Somers, K. M., & Jackson, D. A. (2019) "Linking the ball‐and‐cup analogy and ordination trajectories to describe ecosystem stability, resistance, and resilience," Ecosphere, 10(3), e02629.
Latifovic, R., & Pouliot, D. (2014) "Monitoring cumulative long-term vegetation changes over the Athabasca oil sands region," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(8), 3380-3392.
Lebrija-Trejos, E., Meave, J. A., Poorter, L., Pérez-García, E. A., & Bongers, F. (2010) "Pathways, mechanisms and predictability of vegetation change during tropical dry forest succession," Perspectives in Plant Ecology, Evolution and Systematics, 12(4), 267-275.
Legendre, P., & Legendre, L. (2012) "Canonical analysis," In Developments in Environmental Modelling 24, pp. 625-710. Elsevier.
Leitold, V., Morton, D. C., Martinuzzi, S., Paynter, I., Uriarte, M., Keller, M., ... & González, G. (2021) "Tracking the rates and mechanisms of canopy damage and recovery following Hurricane Maria using multitemporal lidar data" Ecosystems, 1-19.
Li, B., Zeng, T., Ran, J., Yue, B., Zhang, M., Shang, T., & Zhu, D. (2017) "Characteristics of the early secondary succession after landslides in a broad-leaved deciduous forest in the south Minshan Mountains," Forest Ecology and Management, 405, 238-245.
Li, B., Zeng, T., Ran, J., Yue, B., Zhang, M., Shang, T., & Zhu, D. (2017) "Characteristics of the early secondary succession after landslides in a broad-leaved deciduous forest in the south Minshan Mountains," Forest Ecology and Management, 405, 238-245.
Li, N., Tang, C., & Yang, T. (2022) "Ten years of landslide development after the Wenchuan earthquake: a case study from Miansi town, China," Natural Hazards, 111(3), 2787-2808.
Li, Y., Ruan, H., Zou, X., & Myster, R. W. (2005) "Response of major soil decomposers to landslide disturbance in a Puerto Rican rainforest," Soil Science, 170(3), 202-211.
Lieth, H. (1975) "Modeling the primary productivity of the world," Primary Productivity of the Biosphere, 237-263.
Lin, W. T., Chou, W. C., Lin, C. Y., Huang, P. H., & Tsai, J. S. (2005) "Vegetation recovery monitoring and assessment at landslides caused by earthquake in Central Taiwan," Forest Ecology and Management, 210(1-3), 55-66.
Lin, W. T., Huang, P. H., & Chou, T. Y. (2023) "Mechanisms of vegetation restoration at landslides caused by a catastrophic earthquake in Central Taiwan," Ecological Engineering, 190, 106929.
Lindenmayer, D. B., Westgate, M. J., Scheele, B. C., Foster, C. N., & Blair, D. P. (2019) " Key perspectives on early successional forests subject to stand-replacing disturbances," Forest Ecology and Management, 454, 117656.
Liu, C. C., Chen, Y. H., Wu, M. H. M., Wei, C., & Ko, M. H. (2019) "Assessment of forest restoration with multitemporal remote sensing imagery," Scientific reports, 9(1), 7279.
Liu, D., & Cai, S. (2012) "A spatial-temporal modeling approach to reconstructing land-cover change trajectories from multi-temporal satellite imagery," Annals of the Association of American Geographers, 102(6), 1329-1347.
Liu, Z. (2016) "Effects of climate and fire on short-term vegetation recovery in the boreal larch forests of Northeastern China," Scientific Reports, 6(1), 1-14.
Lopes, C. G. R., Ferraz, E. M. N., de Castro, C. C., de Lima, E. N., dos Santos, J. M. F. F., dos Santos, D. M., & de Lima Araújo, E. (2012) "Forest succession and distance from preserved patches in the Brazilian semiarid region," Forest Ecology and Management, 271, 115-123.
Lorimer, C. G., & White, A. S. (2003) "Scale and frequency of natural disturbances in the northeastern US: implications for early successional forest habitats and regional age distributions," Forest Ecology and Management, 185(1-2), 41-64.
Los, S. O., Justice, C. O., & Tucker, C. J. (1994) "A global 1 by 1 NDVI data set for climate studies derived from the GIMMS continental NDVI data," International Journal of Remote Sensing, 15(17), 3493-3518.
Lu, D. (2006) "The potential and challenge of remote sensing‐based biomass estimation," International Journal of Remote Sensing, 27(7), 1297-1328.
Ma, Q., Su, Y., Luo, L., Li, L., Kelly, M., & Guo, Q. (2018) "Evaluating the uncertainty of Landsat-derived vegetation indices in quantifying forest fuel treatments using bi-temporal LiDAR data," Ecological Indicators, 95, 298-310.
Màrcia, E., Iraima, V., Francisco, L., & Maria, E. J. (2006) "Recruitment and growth decline in Pinus halepensis populations after recurrent wildfires in Catalonia (NE Iberian Peninsula)," Forest Ecology and Management, 231(1-3), 47-54.
Margono, B. A., Turubanova, S., Zhuravleva, I., Potapov, P., Tyukavina, A., Baccini, A., ... & Hansen, M. C. (2012) "Mapping and monitoring deforestation and forest degradation in Sumatra (Indonesia) using Landsat time series data sets from 1990 to 2010," Environmental Research Letters, 7(3), 034010.
Martz, L. W., & Garbrecht, J. (1992) "Numerical definition of drainage network and subcatchment areas from digital elevation models," Computers & Geosciences, 18(6), 747-761.
Matasci, G., Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C., Hobart, G. W., ... & Bater, C. W. (2018) "Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots," Remote Sensing of Environment, 216, 697-714.
McCulloh, K. A., Meinzer, F. C., Sperry, J. S., Lachenbruch, B., Voelker, S. L., Woodruff, D. R., & Domec, J. C. (2011) "Comparative hydraulic architecture of tropical tree species representing a range of successional stages and wood density," Oecologia, 167, 27-37.
McDowell, N. G., Coops, N. C., Beck, P. S., Chambers, J. Q., Gangodagamage, C., Hicke, J. A., ... & Allen, C. D. (2015) "Global satellite monitoring of climate-induced vegetation disturbances," Trends in Plant Science, 20(2), 114-123.
McGuire, A. D., Joyce, L. A., Kicklighter, D. W., Melillo, J. M., Esser, G., & Vorosmarty, C. J. (1993) "Productivity response of climax temperate forests to elevated temperature and carbon dioxide: a North American comparison between two global models," Climatic Change, 24(4), 287-310.
McKee, T. B., Doesken, N. J., & Kleist, J. (1993) "The relationship of drought frequency and duration to time scales" in Proceedings of the 8th Conference on Applied Climatology, 17(22), pp. 179-183.
Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore, B., Vorosmarty, C. J., & Schloss, A. L. (1993) "Global climate change and terrestrial net primary production," Nature, 363(6426), 234-240.
Meng, R., Dennison, P. E., Huang, C., Moritz, M. A., & D'Antonio, C. (2015) "Effects of fire severity and post-fire climate on short-term vegetation recovery of mixed-conifer and red fir forests in the Sierra Nevada Mountains of California," Remote Sensing of Environment, 171, 311-325.
Mi, J., Liu, R., Zhang, S., Hou, H., Yang, Y., Chen, F., & Zhang, L. (2019) "Vegetation patterns on a landslide after five years of natural restoration in the Loess Plateau mining area in China," Ecological Engineering, 136, 46-54.
Miao, Q. L., Tian, X. R., & Zhao, F. J. (2015) "NDVI recovery process for post-fire vegetation in Daxing’anling," Scientia Silvae Sinicae, 51(2), 90-98.
Milodowski, D. T., Coomes, D. A., Swinfield, T., Jucker, T., Riutta, T., Malhi, Y., ... & Williams, M. (2021) "The impact of logging on vertical canopy structure across a gradient of tropical forest degradation intensity in Borneo," Journal of Applied Ecology, 58(8), 1764-1775.
Mitasova, H., Hofierka, J., Zlocha, M., & Iverson, L. R. (1996) "Modelling topographic potential for erosion and deposition using GIS," International Journal of Geographical Information Systems, 10(5), 629-641.
Mitchell, J. C., Kashian, D. M., Chen, X., Cousins, S., Flaspohler, D., Gruner, D. S., ... & Buma, B. (2023) "Forest ecosystem properties emerge from interactions of structure and disturbance," Frontiers in Ecology and the Environment, 21(1), 14-23.
Monteith, J. L. (1972) "Solar radiation and productivity in tropical ecosystems," Journal of Applied Ecology, 9(3), 747-766.
Montrasio, L., & Valentino, R. (2008) "A model for triggering mechanisms of shallow landslides," Natural Hazards and Earth System Sciences, 8(5), 1149-1159.
Morresi, D., Vitali, A., Urbinati, C., & Garbarino, M. (2019) "Forest spectral recovery and regeneration dynamics in stand-replacing wildfires of central Apennines derived from Landsat time series," Remote Sensing, 11(3), 308.
Mutanga, O., Adam, E., & Cho, M. A. (2012) "High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm," International Journal of Applied Earth Observation and Geoinformation, 18, 399-406.
Muthuvel, D., & Mahesha, A. (2021) "Spatiotemporal analysis of compound agrometeorological drought and hot events in india using a standardized index," Journal of Hydrologic Engineering, 26(7), 04021022.
Myster, R. W., & Fernandez, D. S. (1995) "Spatial gradients and patch structure on two Puerto Rican landslides," Biotropica, 149-159.
Nakata, Y., Hayamizu, M., & Ishiyama, N. (2023) "Assessing primary vegetation recovery from earthquake-induced landslide scars: A real-time kinematic unmanned aerial vehicle approach," Ecological Engineering, 193, 107019.
Nathan, R., & Muller-Landau, H. C. (2000) "Spatial patterns of seed dispersal, their determinants and consequences for recruitment," Trends in Ecology & Evolution, 15(7), 278-285.
Neigh, C. S., Bolton, D. K., Williams, J. J., & Diabate, M. (2014) "Evaluating an automated approach for monitoring forest disturbances in the Pacific Northwest from logging, fire and insect outbreaks with Landsat time series data," Forests, 5(12), 3169-3198.
Neto, C., Cardigos, P., Oliveira, S. C., & Zêzere, J. L. (2017) "Floristic and vegetation successional processes within landslides in a Mediterranean environment," Science of the Total Environment, 574, 969-981.
Nguyen, H., Jones T., S., Soto-Berelov, M., Haywood, A., & Hislop, S. (2019) "Landsat time-series for estimating forest aboveground biomass and its dynamics across space and time: A review," Remote Sensing, 12(1), 98.
Nikinmaa, L., Lindner, M., Cantarello, E., Jump, A. S., Seidl, R., Winkel, G., & Muys, B. (2020) "Reviewing the use of resilience concepts in forest sciences," Current Forestry Reports, 6(2), 61-80.
Niu, Y., Zhou, J., Yang, S., Chu, B., Ma, S., Zhu, H., & Hua, L. (2019) "The effects of topographical factors on the distribution of plant communities in a mountain meadow on the Tibetan Plateau as a foundation for target-oriented management," Ecological Indicators, 106, 105532.
Norden, N., Chave, J., Caubere, A., Chatelet, P., Ferroni, N., Forget, P. M., & Thébaud, C. (2007) "Is temporal variation of seedling communities determined by environment or by seed arrival? A test in a neotropical forest," Journal of Ecology, 95(3), 507-516.
Novák, J., & Prach, K. (2003) "Vegetation succession in basalt quarries: pattern on a landscape scale," Applied Vegetation Science, 6(2), 111-116.
Odum, E. P. (1969) "The Strategy of Ecosystem Development: An understanding of ecological succession provides a basis for resolving man's conflict with nature," Science, 164(3877), 262-270.
Okuda, T., Yamada, T., Hosaka, T., Miyasaku, N., Hashim, M., Lau, A. M. S., & Saw, L. G. (2019) "Canopy height recovery after selective logging in a lowland tropical rain forest," Forest Ecology and Management, 442, 117-123.
Oliver, C. D., & Larson, B. A. (1996) Forest stand dynamics, Formerly published by John Wiley & Sons; Copyright now held by CD Oliver & BC Larson.
Pal, M., & Mather, P. M. (2003) "An assessment of the effectiveness of decision tree methods for land cover classification," Remote sensing of Environment, 86(4), 554-565.
Palmer, M. A., Zedler, J. B., & Falk, D. A. (Eds.). (2016) Foundations of restoration ecology, Washington, DC: Island Press, pp. 3-26.
Parker, R. N., Hales, T. C., Mudd, S. M., Grieve, S. W., & Constantine, J. A. (2016) "Colluvium supply in humid regions limits the frequency of storm-triggered landslides," Scientific Reports, 6(1), 1-7.
Parton, W. J., Scurlock, J. M. O., Ojima, D. S., Gilmanov, T. G., Scholes, R. J., Schimel, D. S., ... & Kinyamario, J. I. (1993) "Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide," Global Biogeochemical Cycles, 7(4), 785-809.
Paruelo, J. M., Epstein, H. E., Lauenroth, W. K., & Burke, I. C. (1997) "ANPP estimates from NDVI for the central grassland region of the United States," Ecology, 78(3), 953-958.
Peeler, J. L., & Smithwick, E. A. (2020) "Seed source pattern and terrain have scale-dependent effects on post-fire tree recovery," Landscape Ecology, 35(9), 1945-1959.
Peltzer, D. A., Wardle, D. A., Allison, V. J., Baisden, W. T., Bardgett, R. D., Chadwick, O. A., ... & Walker, L. R. (2010) "Understanding ecosystem retrogression," Ecological Monographs, 80(4), 509-529.
Peng, C., & Apps, M. J. (1999) "Modelling the response of net primary productivity (NPP) of boreal forest ecosystems to changes in climate and fire disturbance regimes," Ecological Modelling, 122(3), 175-193.
Penning de Vries, F. W., & Van Laar, H. H. (1982) Simulation of plant growth and crop production, Simulation Monographs, Pudoc, Wageningen, 308.
Petrie, M. D., Wildeman, A. M., Bradford, J. B., Hubbard, R. M., & Lauenroth, W. K. (2016) "A review of precipitation and temperature control on seedling emergence and establishment for ponderosa and lodgepole pine forest regeneration," Forest Ecology and Management, 361, 328-338.
Pflugmacher, D., Cohen, W. B., & Kennedy, R. E. (2012) "Using Landsat-derived disturbance history (1972–2010) to predict current forest structure," Remote Sensing of Environment, 122, 146-165.
Pickell, P. D., Hermosilla, T., Coops, N. C., Masek, J. G., Franks, S., & Huang, C. (2014) "Monitoring anthropogenic disturbance trends in an industrialized boreal forest with Landsat time series," Remote Sensing Letters, 5(9), 783-792.
Pickell, P. D., Hermosilla, T., Frazier, R. J., Coops, N. C., & Wulder, M. A. (2016) "Forest recovery trends derived from Landsat time series for North American boreal forests," International Journal of Remote Sensing, 37(1), 138-149.
Pimm, S. L. (1984) "The complexity and stability of ecosystems," Nature, 307(5949), 321-326.
Plue, J., Verheyen, K., Van Calster, H., Marage, D., Thompson, K., Kalamees, R., ... & Hermy, M. (2010) "Seed banks of temperate deciduous forests during secondary succession," Journal of Vegetation Science, 21(5), 965-978.
Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A., & Klooster, S. A. (1993) "Terrestrial ecosystem production: a process model based on global satellite and surface data," Global Biogeochemical Cycles, 7(4), 811-841.
Powell, S. L., Cohen, W. B., Healey, S. P., Kennedy, R. E., Moisen, G. G., Pierce, K. B., & Ohmann, J. L. (2010) "Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches," Remote Sensing of Environment, 114(5), 1053-1068.
Powell, S. L., Cohen, W. B., Yang, Z., Pierce, J. D., & Alberti, M. (2008) "Quantification of impervious surface in the Snohomish water resources inventory area of western Washington from 1972–2006," Remote Sensing of Environment, 112(4), 1895-1908.
Prach, K., & Walker, L. R. (2019) "Differences between primary and secondary plant succession among biomes of the world," Journal of Ecology, 107(2), 510-516.
Prince, S. D., & Goward, S. N. (1995) "Global primary production: a remote sensing approach," Journal of Biogeography, 815-835.
Prokešová, R., Medveďová, A., Tábořík, P., & Snopková, Z. (2013) "Towards hydrological triggering mechanisms of large deep-seated landslides," Landslides, 10(3), 239-254.
Pulsford, S. A., Lindenmayer, D. B., & Driscoll, D. A. (2016) "A succession of theories: purging redundancy from disturbance theory," Biological Reviews, 91(1), 148-167.
Rapp, J. M., & Silman, M. R. (2012) "Diurnal, seasonal, and altitudinal trends in microclimate across a tropical montane cloud forest," Climate Research, 55(1), 17-32.
Restrepo, C., & Vitousek, P. (2001) "Landslides, Alien Species, and the Diversity of a Hawaiian Montane Mesic Ecosystem 1," Biotropica, 33(3), 409-420.
Rich, P., Dubayah, R., Hetrick, W., & Saving, S. (1994) "Using viewshed models to calculate intercepted solar radiation: applications in ecology. American Society for Photogrammetry and Remote Sensing Technical Papers," in American Society of Photogrammetry and Remote Sensing, pp. 524-529.
Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. J. O. G. R. (2015) "Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines," Ore Geology Reviews, 71, 804-818.
Rollinson, C. R., Kaye, M. W., & Leites, L. P. (2012) "Community assembly responses to warming and increased precipitation in an early successional forest," Ecosphere, 3(12), 1-17.
Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974) "Monitoring vegetation systems in the Great Plains with ERTS," NASA Spec. Publ, 351(1), 309.
Ruimy, A., Saugier, B., & Dedieu, G. (1994) "Methodology for the estimation of terrestrial net primary production from remotely sensed data," Journal of Geophysical Research: Atmospheres, 99(D3), 5263-5283.
Sasaki, T., Furukawa, T., Iwasaki, Y., Seto, M., & Mori, A. S. (2015) "Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances," Ecological Indicators, 57, 395-408.
Scheller, R. M., & Swanson, M. E. (2015) "Simulating forest recovery following disturbances: Vegetation dynamics and biogeochemistry," in Simulation modeling of forest landscape disturbances, Springer, Cham, pp. 263-285.
Sen, P. K. (1968) "Estimates of the regression coefficient based on Kendall's tau," Journal of the American Statistical Association, 63(324), 1379-1389.
Senf, C., & Seidl, R. (2022) "Post‐disturbance canopy recovery and the resilience of Europe’s forests," Global Ecology and Biogeography, 31(1), 25-36.
Senf, C., Müller, J., & Seidl, R. (2019) "Post-disturbance recovery of forest cover and tree height differ with management in Central Europe," Landscape Ecology, 34(12), 2837-2850.
Senf, C., Pflugmacher, D., Hostert, P., & Seidl, R. (2017) "Using Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe," ISPRS Journal of Photogrammetry and Remote Sensing, 130, 453-463.
Shade, A., Peter, H., Allison, S. D., Baho, D., Berga, M., Bürgmann, H., ... & Handelsman, J. (2012) "Fundamentals of microbial community resistance and resilience," Frontiers in Microbiology, 3, 417.
Shen, P., Zhang, L. M., Fan, R. L., Zhu, H., & Zhang, S. (2020) "Declining geohazard activity with vegetation recovery during first ten years after the 2008 Wenchuan earthquake," Geomorphology, 352, 106989.
Shi, T. T., Xu, H. Q., & Wang, S. (2019) "Derivation of tasselled cap transformation coefficients for ZY-3 MUX sensor data," Journal of Remote Sensing, 23(3), 514-525.
Shiels, A. B., & Walker, L. R. (2003) "Bird perches increase forest seeds on Puerto Rican landslides," Restoration Ecology, 11(4), 457-465.
Shiels, A. B., & Walker, L. R. (2013) "Landslides cause spatial and temporal gradients at multiple scales in the Luquillo Mountains of Puerto Rico," Ecological Bulletins, (54), 211-222.
Silva Pedro, M., Rammer, W., & Seidl, R. (2015) "Tree species diversity mitigates disturbance impacts on the forest carbon cycle," Oecologia, 177(3), 619-630.
Smith, A. L., Blanchard, W., Blair, D. P., McBurney, L., Banks, S. C., Driscoll, D. A., & Lindenmayer, D. B. (2016) "The dynamic regeneration niche of a forest following a rare disturbance event," Diversity and Distributions, 22(4), 457-467.
Song, C., & Woodcock, C. E. (2003) "Monitoring forest succession with multitemporal Landsat images: Factors of uncertainty," IEEE Transactions on Geoscience and Remote Sensing, 41(11), 2557-2567.
Sonnenschein, R., Kuemmerle, T., Udelhoven, T., Stellmes, M., & Hostert, P. (2011) "Differences in Landsat-based trend analyses in drylands due to the choice of vegetation estimate," Remote Sensing of Environment, 115(6), 1408-1420.
Spadoni, G. L., Cavalli, A., Congedo, L., & Munafò, M. (2020) "Analysis of Normalized Difference Vegetation Index (NDVI) multi-temporal series for the production of forest cartography," Remote Sensing Applications: Society and Environment, 20, 100419.
Sprugel, D. G. (1985) "Natural disturbance and ecosystem energetic," in: The Ecology of Natural Disturbance and Patch Dynamics (eds Pickett S, White P), Academic Press, New York, pp. 335–352.
Standish, R. J., Hobbs, R. J., Mayfield, M. M., Bestelmeyer, B. T., Suding, K. N., Battaglia, L. L., ... & Thomas, P. A. (2014) "Resilience in ecology: Abstraction, distraction, or where the action is?," Biological Conservation, 177, 43-51.
Storey, E. A., Stow, D. A., & O'Leary, J. F. (2016) "Assessing postfire recovery of chamise chaparral using multi-temporal spectral vegetation index trajectories derived from Landsat imagery," Remote Sensing of Environment, 183, 53-64.
Suding, K. N., & Hobbs, R. J. (2009) "Threshold models in restoration and conservation: a developing framework," Trends in Ecology & Evolution, 24(5), 271-279
Suganuma, M. S., & Durigan, G. (2015) "Indicators of restoration success in riparian tropical forests using multiple reference ecosystems," Restoration Ecology, 23(3), 238-251.
Sutherland, I. J., Bennett, E. M., & Gergel, S. E. (2016) "Recovery trends for multiple ecosystem services reveal non-linear responses and long-term tradeoffs from temperate forest harvesting," Forest Ecology and Management, 374, 61-70.
Swanson, M. E., Franklin, J. F., Beschta, R. L., Crisafulli, C. M., DellaSala, D. A., Hutto, R. L., ... & Swanson, F. J. (2011) "The forgotten stage of forest succession: early‐successional ecosystems on forest sites," Frontiers in Ecology and the Environment, 9(2), 117-125.
Swets, J. A. (1988) "Measuring the accuracy of diagnostic systems," Science, 240(4857), 1285-1293.
Tang, C. Q., Zhao, M. H., Li, X. S., Ohsawa, M., & Ou, X. K. (2010) "Secondary succession of plant communities in a subtropical mountainous region of SW China," Ecological Research, 25, 149-161.
Tappeiner, J. C., Huffman, D. W., Marshall, D., Spies, T. A., & Bailey, J. D. (1997) "Density, ages, and growth rates in old-growth and young-growth forests in coastal Oregon," Canadian Journal of Forest Research, 27(5), 638-648.
Tarboton, D. G. (1997) "A new method for the determination of flow directions and upslope areas in grid digital elevation models," Water Resources Research, 33(2), 309-319.
Taylor, F. E., Malamud, B. D., Witt, A., & Guzzetti, F. (2018) "Landslide shape, ellipticity and length‐to‐width ratios," Earth Surface Processes and Landforms, 43(15), 3164-3189.
Tu, J. Y., & Chou, C. (2013) "Changes in precipitation frequency and intensity in the vicinity of Taiwan: typhoon versus non-typhoon events," Environmental Research Letters, 8(1), 014023.
Turner, D. P., Cohen, W. B., Kennedy, R. E., Fassnacht, K. S., & Briggs, J. M. (1999) "Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites," Remote Sensing of Environment, 70(1), 52-68.
Turner, M. G. (2010) "Disturbance and landscape dynamics in a changing world," Ecology, 91(10), 2833-2849.
Uchijima, Z., & Seino, H. (1985) "Agroclimatic evaluation of net primary productivity of natural vegetations (1) Chikugo model for evaluating net primary productivity," Journal of Agricultural Meteorology, 40(4), 343-352.
Ulyshen, M. D., Horn, S., Barnes, B., & Gandhi, K. J. (2010) "Impacts of prescribed fire on saproxylic beetles in loblolly pine logs," Insect Conservation and Diversity, 3(4), 247-251.
Urban, M. C., & De Meester, L. (2009) "Community monopolization: local adaptation enhances priority effects in an evolving metacommunity," Proceedings of the Royal Society B: Biological Sciences, 276(1676), 4129-4138.
Van Asch, T. W., Buma, J., & Van Beek, L. P. H. (1999) "A view on some hydrological triggering systems in landslides," Geomorphology, 30(1-2), 25-32.
Varnes DJ (1978) "Slope movement types and processes," in: Schuster RL, Krizek RJ (eds) Landslides, analysis and control, special report 176: Transportation research board, National Academy of Sciences, Washington, DC, pp. 11–33.
Vázquez-Yanes, C. A. N. D., & Smith, H. (1982) "Phytochrome control of seed germination in the tropical rain forest pioneer trees Cecropia obtusifolia and Piper auritum and its ecological significance," New Phytologist, 92(4), 477-485.
Velázquez, E., & Gómez-Sal, A. (2008) "Landslide early succession in a neotropical dry forest," Plant Ecology, 199, 295-308.
Vercelloni, J., Kayal, M., Chancerelle, Y., & Planes, S. (2019) "Exposure, vulnerability, and resiliency of French Polynesian coral reefs to environmental disturbances," Scientific Reports, 9(1), 1027.
Viana-Soto, A., Aguado, I., Salas, J., & García, M. (2020) "Identifying post-fire recovery trajectories and driving factors using landsat time series in fire-prone mediterranean pine forests," Remote Sensing, 12(9), 1499.
Vogelmann, J. E., Gallant, A. L., Shi, H., & Zhu, Z. (2016) "Perspectives on monitoring gradual change across the continuity of Landsat sensors using time-series data," Remote Sensing of Environment, 185, 258-270.
Volkova, L., Roxburgh, S. H., Weston, C. J., Benyon, R. G., Sullivan, A. L., & Polglase, P. J. (2018) "Importance of disturbance history on net primary productivity in the world's most productive forests and implications for the global carbon cycle," Global Change Biology, 24(9), 4293-4303.
Vorovencii, I. (2014) "A change vector analysis technique for monitoring land cover changes in Copsa Mica, Romania, in the period 1985–2011," Environmental Monitoring and Assessment, 186(9), 5951-5968.
Walker, L. R., & Shiels, A. B. (2008) "Post-disturbance erosion impacts carbon fluxes and plant succession on recent tropical landslides," Plant and Soil, 313, 205-216.
Walker, L. R., & Shiels, A. B. (2013) Landslide ecology, Cambridge University Press.
Walker, L. R., & Wardle, D. A. (2014) "Plant succession as an integrator of contrasting ecological time scales," Trends in Ecology & Evolution, 29(9), 504-510.
Walker, L. R., Shiels, A. B., Bellingham, P. J., Sparrow, A. D., Fetcher, N., Landau, F. H., & Lodge, D. J. (2013a) "Changes in abiotic influences on seed plants and ferns during 18 years of primary succession on Puerto Rican landslides," Journal of Ecology, 101(3), 650-661.
Walker, L. R., Sikes, D. S., Degange, A. R., Jewett, S. C., Michaelson, G., Talbot, S. L., ... & Williams, J. C. (2013b) "Biological legacies: direct early ecosystem recovery and food web reorganization after a volcanic eruption in Alaska," Écoscience, 20(3), 240-251.
Walker, L. R., Velázquez, E., & Shiels, A. B. (2009) "Applying lessons from ecological succession to the restoration of landslides," Plant and Soil, 324, 157-168.
Walker, L. R., Wardle, D. A., Bardgett, R. D., & Clarkson, B. D. (2010) "The use of chronosequences in studies of ecological succession and soil development," Journal of Ecology, 98(4), 725-736.
Walker, L. R., Zarin, D. J., Fetcher, N., Myster, R. W., & Johnson, A. H. (1996a) "Ecosystem development and plant succession on landslides in the Caribbean," Biotropica, 566-576.
Walker, L. R., Zimmerman, J. K., Lodge, D. J., & Guzman-Grajales, S. (1996b) "An altitudinal comparison of growth and species composition in hurricane-damaged forests in Puerto Rico," Journal of Ecology, 877-889.
Wang, C., Hu, X., Hu, K., Liu, S., & Zhong, W. (2022) "Impact Assessment of the Ms7. 0 Earthquake on Jiuzhaigou Valley from the Perspective of Vegetation Net Primary Productivity," Sensors, 22(22), 8875.
Wang, S., Zhou, L., Chen, J., Ju, W., Feng, X., & Wu, W. (2011) "Relationships between net primary productivity and stand age for several forest types and their influence on China’s carbon balance," Journal of Environmental Management, 92(6), 1651-1662.
Wang, Y., Xu, X., Huang, L., Yang, G., Fan, L., Wei, P., & Chen, G. (2019) "An improved CASA model for estimating winter wheat yield from remote sensing images," Remote Sensing, 11(9), 1088.
Wardle, D. A., Walker, L. R., & Bardgett, R. D. (2004) "Ecosystem properties and forest decline in contrasting long-term chronosequences," Science, 305(5683), 509-513.
Watt, A. S. (1947) "Pattern and process in the plant community," Journal of Ecology, 35(1/2), 1-22.
White P. S. and Pickett S. T. A. (1985) "Natural disturbance and patch dynamics: an introduction," in: The Ecology of Natural Disturbance and Patch Dynamics (eds S. T. A. Pickett and P. S. White), Academic Press, New York, pp. 3–13.
White, J. C., Coops, N. C., Wulder, M. A., Vastaranta, M., Hilker, T., & Tompalski, P. (2016) "Remote sensing technologies for enhancing forest inventories: A review," Canadian Journal of Remote Sensing, 42(5), 619-641.
White, J. C., Saarinen, N., Kankare, V., Wulder, M. A., Hermosilla, T., Coops, N. C., ... & Vastaranta, M. (2018) "Confirmation of post-harvest spectral recovery from Landsat time series using measures of forest cover and height derived from airborne laser scanning data," Remote Sensing of Environment, 216, 262-275.
White, J. C., Wulder, M. A., Gómez, C., & Stenhouse, G. (2011) "A history of habitat dynamics: characterizing 35 years of stand replacing disturbance," Canadian Journal of Remote Sensing, 37(2), 234-251.
White, J. C., Wulder, M. A., Hermosilla, T., Coops, N. C., & Hobart, G. W. (2017) "A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series," Remote Sensing of Environment, 194, 303-321.
Willmott, C. J., Rowe, C. M., & Mintz, Y. (1985) "Climatology of the terrestrial seasonal water cycle," Journal of Climatology, 5(6), 589-606.
Wunderle Jr, J. M. (1997) "The role of animal seed dispersal in accelerating native forest regeneration on degraded tropical lands," Forest Ecology and Management, 99(1-2), 223-235.
Xu, D., Wang, H., Xu, W., Luan, Z., & Xu, X. (2021) "LiDAR applications to estimate forest biomass at individual tree scale: Opportunities, challenges and future perspectives," Forests, 12(5), 550.
Yang, L., Chen, L., & Wei, W. (2015) "Effects of vegetation restoration on the spatial distribution of soil moisture at the hillslope scale in semi-arid regions," Catena, 124, 138-146.
Yang, W., Qi, W., & Zhou, J. (2018) "Effects of precipitation and topography on vegetation recovery at landslide sites after the 2008 Wenchuan earthquake," Land Degradation & Development, 29(10), 3355-3365.
Yang, Y., Fan, X., Wang, X., Lv, L., Zou, C., & Feng, Z. (2023) "Net primary productivity changes associated with landslides induced by the 2008 Wenchuan Earthquake," Land Degradation & Development, 34(4), 1035-1050.
Yarranton, G. A., & Morrison, R. G. (1974) "Spatial dynamics of a primary succession: nucleation," The Journal of Ecology, 417-428.
Yunus, A. P., Fan, X., Tang, X., Jie, D., Xu, Q., & Huang, R. (2020) "Decadal vegetation succession from MODIS reveals the spatio-temporal evolution of post-seismic landsliding after the 2008 Wenchuan earthquake," Remote Sensing of Environment, 236, 111476.
Zahawi, R. A., Dandois, J. P., Holl, K. D., Nadwodny, D., Reid, J. L., & Ellis, E. C. (2015) "Using lightweight unmanned aerial vehicles to monitor tropical forest recovery," Biological Conservation, 186, 287-295.
Zenner, E. K. (2000) "Do residual trees increase structural complexity in Pacific Northwest coniferous forests?," Ecological Applications, 10(3), 800-810.
Zhai, Y., Roy, D. P., Martins, V. S., Zhang, H. K., Yan, L., & Li, Z. (2022) "Conterminous United States Landsat-8 top of atmosphere and surface reflectance tasseled cap transformation coefficients," Remote Sensing of Environment, 274, 112992.
Zhang, Z., Zang, R., Wang, G., & Huang, X. (2016) "Classification of landscape types based on land cover, successional stages and plant functional groups in a species-rich forest in Hainan Island, China," Tropical Conservation Science, 9(1), 135-152.
Zhu, W. Q., Pan, Y. Z., & Zhang, J. S. (2007) "Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing," Chinese Journal of Plant Ecology, 31(3), 413.
Zhu, Z. (2017) "Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications," ISPRS Journal of Photogrammetry and Remote Sensing, 130, 370-384.
Zhu, Z., & Woodcock, C. E. (2014) "Continuous change detection and classification of land cover using all available Landsat data," Remote Sensing of Environment, 144, 152-171.
Zhu, Z., Fu, Y., Woodcock, C. E., Olofsson, P., Vogelmann, J. E., Holden, C., ... & Yu, Y. (2016) "Including land cover change in analysis of greenness trends using all available Landsat 5, 7, and 8 images: A case study from Guangzhou, China (2000–2014)," Remote Sensing of Environment, 185, 243-257.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top