跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/13 19:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳志昱
研究生(外文):CHEN, CHIH-YU
論文名稱:車載式固態氧化物燃料電池預熱時間與熱應力之模擬分析
論文名稱(外文):Simulation Analysis of Preheating Time and Thermal Stress for a Solid Oxide Fuel Cells in the Vehicle
指導教授:林似霖
指導教授(外文):LIN,SHIH-LIN
口試委員:林似霖吳建達袁平
口試委員(外文):LIN,SHIH-LINWU,JIAN-DA、PING,YUAN
口試日期:2024-07-10
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:車輛科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:65
中文關鍵詞:固態氧化物燃料電池電池電動車非均勻進氣流率預熱時間熱應力分析
外文關鍵詞:Solid Oxide Fuel CellBattery Electric VehicleNon-uniform Air Intake RatePreheating TimeThermal Stress Analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:9
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
近年來,隨著各個國家推動淨零碳排的發展,陸續推動新能源車,包括電動車及燃料電池車。本研究主要在探討固態氧化物燃料電池(solid oxide fuel cell,簡稱SOFC)與電池電動車(BEV)混合式動力系統的預熱時間。固態氧化物燃料電池較其他的燃料電池發電效率高,但工作溫度為600-1000℃,因此在燃料電池達到工作溫度前要對燃料電池本體進行預熱。為了縮短預熱時間利用燃燒器與熱交換器,將新鮮空氣進行熱交換處理成預熱氣體,導入十層的車載式固態氧化物燃料電池,本研究使用FlexPDE針對4種不同的預熱氣體溫升(DeltaT50、DeltaT100、DeltaT150、DeltaT200)以及非均勻進氣流率(DeltaT50-dair0.5、DeltaT100-dair0.5、DeltaT150-dair0.5、DeltaT200-dair0.5)的預熱時間及熱應力進行數值模擬分析。分析了8種操作條件後,發現DeltaT50-dair0.5的預熱時間最長,但熱應力雖最小,仍超過反應層的降伏應力。進一步研究DeltaT30和DeltaT10,DeltaT30預熱2000秒,超過安全降伏應力的時間僅3分鐘;DeltaT10預熱10000秒,熱應力始終低於192MPa。因此,對車載式固態氧化物燃料電池的預熱方式建議使用非均勻進氣流率,並將預熱溫升控制在10℃到30℃之間。
In recent years, countries have promoted new energy vehicles to achieve net-zero emissions. This study investigates preheating times for hybrid solid oxide fuel cell (SOFC) and battery electric vehicle (BEV) systems. SOFCs offer high efficiency but require 600-1000°C operating temperatures. To reduce preheating time, a ten-layer vehicular SOFC was adopted. This research uses FlexPDE for numerical simulation and analysis. It examines preheating time and thermal stresses for four different preheated gas temperature increments (DeltaT50, DeltaT100, DeltaT150, DeltaT200) and non-uniform air intake rates (DeltaT50-dair0.5, DeltaT100-dair0.5, DeltaT150-dair0.5, DeltaT200-dair0.5). After analyzing 8 operating conditions, DeltaT50-dair0.5 showed the longest preheating time with the lowest thermal stress, yet still exceeded the reaction layer's yield stress. Further investigation of DeltaT30 and DeltaT10 revealed that DeltaT30 required 2000 seconds of preheating, with only 3 minutes above the safe yield stress. DeltaT10 needed 10000 seconds of preheating, maintaining thermal stress below 192MPa throughout. Consequently, for vehicular solid oxide fuel cells, it is recommended to employ non-uniform air intake rates and control the preheating temperature rise between 10°C and 30°C.
摘要 I
ABSTRACT II
誌謝 III
表目錄 VI
圖目錄 VII
符號索引 IX
第一章 緒論 1
1.1研究背景與動機 1
1.2文獻回顧 2
1.3論文架構 6
第二章 固態氧化物燃料電池分析模型 7
2.1固態氧化物燃料電池物理模型 7
2.2固態氧化物燃料電池數學模型 10
2.2.1能量守恆方程式 11
2.2.2入口流率分布 14
2.2.3熱應力方程式 17
第三章 數值模擬與正確性比對 19
3.1研究方法 19
3.2分析軟體 21
3.3軟硬體設備22
3.4程式建立 23
3.5宣告變數 24
3.6設定參數 24
3.7設定變數起始值25
3.8輸入方程式26
3.9設定幾何及邊界條件27
3.10設定資料輸出28
3.11執行30
3.12程式正確性比對32
第四章 研究結果與分析33
4.1預熱氣體溫度與流量 33
4.2不同反應層的平均溫度 35
4.3反應層不同位置之溫度探討 37
4.4預熱氣體進氣流率均勻性對燃料電池達到工作溫度的影響 41
4.5預熱氣體進氣流率均勻性對反應層最大熱應力的影響43
4.6反應層熱應力分布在不同時間的變化 46
4.7不同預熱氣體溫升條件之最大熱應力分布結果49
4.8預熱氣體進氣流率均勻性對反應層熱應力分布之影響 51
4.9低於反應層降伏應力最大的預熱條件探討57
第五章 結論及未來展望60
5.1結論60
5.2未來展望62
參考資料63

表目錄
表2-1SOFC 各操作條件參數值12
表2-2SOFC 的材料特性18
表3-1電腦規格22
表4-1不同預熱溫升條件所需的預熱時間及最大熱應力表56

圖目錄
圖2-1固態氧化物燃料電池示意圖8
圖2-2空氣預熱圖9
圖2-3SOFC 裝置流量分配器示意圖15
圖2-4均勻進氣流速(a)與非均勻流速(b)的入口流率分佈樣態16
圖3-1數值模擬分析流程圖20
圖3-2FlexPDE 數值分析軟體21
圖3-3FlexPDE 程式建立23
圖3-4FlexPDE 宣告變數24
圖3-5FlexPDE 設定參數25
圖3-6FlexPDE 設定變數起始值26
圖3-7FlexPDE 方程式26
圖3-8FlexPDE 邊界條件設定28
圖3-9FlexPDE 資料檔案輸出29
圖3-10FlexPDE 網格圖形30
圖3-11FlexPDE 可視化圖形31
圖4-1不同的溫升條件隨著時間空氣流率的變化35
圖4-2不同反應質層隨著時間不同平均溫度的變化36
圖4-3反應層不同位置設置座標圖37
圖4-4第三層反應層隨時間變化不同位置的溫度及平均溫度變化39
圖4-5DeltaT200 在100 秒時燃料溫度(a)與氣體溫度(b)平面圖40
圖4-6四種不同的空氣預熱溫升以均勻氣進流率對第三層反應層隨著時間的不同平均溫度變化41
圖4-7四種不同的空氣預熱溫升以非均勻氣進流率對第三層反應質層隨著時間不同的平均溫度42
圖4-8四種不同的空氣預熱溫升以均勻氣進流率對第三層反應層隨著時間的熱應力變化44
圖4-9四種不同的空氣預熱溫升以非均勻氣進流率對第三層反應層隨著時間的熱應力變化45
圖4-10DeltaT50 隨時間變化之熱應力反應48
圖4-11不同預熱溫升對最大熱應力的影響50
圖4-12DeltaT50(a)與 DeltaT50-dair0.5(b)-1000(s)比較51
圖4-13DeltaT100(a)與 DeltaT100-dair0.5(b)-500(s) 比較52
圖4-14DeltaT150(a)與DeltaT150-dair0.5(b)-300(s)比較53
圖4-15DeltaT200(a)與DeltaT200-dair0.5(b)-200(s)比較55
圖4-16DeltaT10 第三層反應層隨著時間的平均溫度變化59
圖4-17DeltaT10 第三層反應層隨著時間的平均熱應力變化59
[1] I. International Energy Agency, "Net Zero by 2050," 2021.
[2] 國家發展委員會, "台灣2050 淨零碳排及策略總說明," 2022.
[3] Y. Bessekon, P. Zielke, A. C. Wulff, and A. Hagen, "Simulation of a
SOFC/Battery powered vehicle," International Journal of Hydrogen
Energy, vol. 44, no. 3, pp. 1905-1918, 2019/01/15/ 2019, doi:
https://doi.org/10.1016/j.ijhydene.2018.11.126.
[4] C.-J. Brodrick et al., "Evaluation of fuel cell auxiliary power units for
heavy-duty diesel trucks," Transportation Research Part D: Transport
and Environment, vol. 7, no. 4, pp. 303-315, 2002/06/01/ 2002, doi:
https://doi.org/10.1016/S1361-9209(01)00026-8.
[5] K. Rajashekara, J. Fattic, and H. Husted, "Comparative study of new
on-board power generation technologies for automotive applications,"
in Power Electronics in Transportation, 2002, 2002: IEEE, pp. 3-10.
[6] N. Lutsey, C.-J. Brodrick, D. Sperling, and H. A. Dwyer, "Markets for
fuel-cell auxiliary power units in vehicles: Preliminary assessment,"
Transportation Research Record, vol. 1842, no. 1, pp. 118-126, 2003.
[7] Z. B. A. Mat, Y. B. Kar, S. H. B. A. Hassan, and N. A. B. Talik, "Proton
exchange membrane (PEM) and solid oxide (SOFC) fuel cell based
vehicles-a review," in 2017 2nd IEEE international conference on
intelligent transportation engineering (ICITE), 2017: IEEE, pp. 123-
126.
[8] A. Yamashita, M. Kondo, S. Goto, and N. Ogami, "Development of
high-pressure hydrogen storage system for the Toyota “Mirai”," SAE
Technical Paper, 0148-7191, 2015.
[9] T. Yoshida and K. Kojima, "Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society," The Electrochemical Society Interface, vol. 24, no. 2, p. 45, 2015.
[10] "Nissan unveils world's first Solid-Oxide Fuel Cell vehicle.," 2016.
[11] L. Petruzzi, S. Cocchi, and F. Fineschi, "A global thermoelectrochemical
model for SOFC systems design and engineering,"Journal of Power Sources, vol. 118, no. 1, pp. 96-107, 2003/05/25/2003, doi: https://doi.org/10.1016/S0378-7753(03)00067-3.
[12] A. Selimovic, M. Kemm, T. Torisson, and M. Assadi, "Steady state and
transient thermal stress analysis in planar solid oxide fuel cells,"
Journal of Power Sources, vol. 145, no. 2, pp. 463-469, 2005/08/18/
2005, doi: https://doi.org/10.1016/j.jpowsour.2004.11.073.
[13] D. L. Damm and A. G. Fedorov, "Reduced-order transient thermal
modeling for SOFC heating and cooling," Journal of Power Sources,
vol. 159, no. 2, pp. 956-967, 2006/09/22/ 2006, doi:
https://doi.org/10.1016/j.jpowsour.2005.11.072.
[14] M. J. Stutz, R. N. Grass, S. Loher, W. J. Stark, and D. Poulikakos, "Fast
and exergy efficient start-up of micro-solid oxide fuel cell systems by
using the reformer or the post-combustor for start-up heating," Journal
of Power Sources, vol. 182, no. 2, pp. 558-564, 2008/08/01/ 2008, doi:
https://doi.org/10.1016/j.jpowsour.2008.04.020.
[15] M.-H. Chen and T. L. Jiang, "The analyses of the heat-up process of a
planar, anode-supported solid oxide fuel cell using the dual-channel
heating strategy," International Journal of Hydrogen Energy, vol. 36,
no. 11, pp. 6882-6893, 2011/06/01/ 2011, doi:
https://doi.org/10.1016/j.ijhydene.2011.02.129.
[16] A. Al-Masri, M. Peksen, L. Blum, and D. Stolten, "A 3D CFD model
for predicting the temperature distribution in a full scale APU SOFC
short stack under transient operating conditions," Applied Energy, vol.
135, pp. 539-547, 2014/12/15/ 2014, doi:
https://doi.org/10.1016/j.apenergy.2014.08.052.
[17] P. Yuan and S.-F. Liu, "Effect of non-uniform inlet flow rate on the
heat-up process of a solid oxide fuel cell unit with cross-flow
configuration," International Journal of Hydrogen Energy, vol. 41, no.
28, pp. 12377-12386, 2016/07/27/ 2016, doi:
https://doi.org/10.1016/j.ijhydene.2016.05.260.
[18] J.-H. Koh, H.-K. Seo, Y.-S. Yoo, and H. C. Lim, "Consideration of
numerical simulation parameters and heat transfer models for a molten
carbonate fuel cell stack," Chemical Engineering Journal, vol. 87, no.
3, pp. 367-379, 2002.
[19] K. P. Recknagle, E. M. Ryan, B. J. Koeppel, L. A. Mahoney, and M. A.
Khaleel, "Modeling of electrochemistry and steam–methane reforming performance for simulating pressurized solid oxide fuel cell stacks,"
Journal of Power Sources, vol. 195, no. 19, pp. 6637-6644, 2010.
[20] J. Wang, D. Yan, J. Pu, B. Chi, and L. Jian, "Fabrication and
performance evaluation of planar solid oxide fuel cell with large active
reaction area," International journal of hydrogen energy, vol. 36, no. 12,
pp. 7234-7239, 2011.
[21] P. Yuan and S.-F. Liu, "Effect of air flow rate distribution and flowing
direction on the thermal stress of a solid oxide fuel cell stack with
cross-flow configuration," International Journal of Hydrogen Energy,
vol. 47, no. 10, pp. 6799-6810, 2022.
[22] S. Zeng et al., "Thermal stress analysis of a planar anode-supported
solid oxide fuel cell: Effects of anode porosity," International Journal
of Hydrogen Energy, vol. 42, no. 31, pp. 20239-20248, 2017.
[23] C. Wang et al., "Numerical simulation and analysis of thermal stress
distributions for a planar solid oxide fuel cell stack with external
manifold structure," International journal of hydrogen Energy, vol. 43,
no. 45, pp. 20900-20910, 2018.
[24] FlexPDE. (2023). [Online]. Available:
https://www.pdesolutions.com/v7support.html
[25] P. Yuan and S.-F. Liu, "Numerical analysis of temperature and current
density distribution of a planar solid oxide fuel cell unit with
nonuniform inlet flow," Numerical Heat Transfer, Part A: Applications,
vol. 51, no. 10, pp. 941-957, 2007.
[26] P. Yuan, "Effect of inlet flow maldistribution in the stacking direction
on the performance of a solid oxide fuel cell stack," Journal of Power
Sources, vol. 185, no. 1, pp. 381-391, 2008.
[27] P. Fan, G. Li, Y. Zeng, and X. Zhang, "Numerical study on thermal
stresses of a planar solid oxide fuel cell," International Journal of
Thermal Sciences, vol. 77, pp. 1-10, 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top