跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/21 18:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳宇信
研究生(外文):CHEN,YU-XIN
論文名稱:雙波長外差干涉術於機械元件鍍膜厚度量測之研究
論文名稱(外文):Dual-wavelength heterodyne interferometry for measuring the coating thickness of mechanical components
指導教授:林俊佑林俊佑引用關係
指導教授(外文):LIN,JUN-YOU
口試委員:陳坤煌謝孟璋林俊佑
口試委員(外文):CHEN,KUN-HUANGXIE,MENG-ZHANGLIN,JUN-YOU
口試日期:2024-01-23
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:43
中文關鍵詞:外差干涉可調雷射波長電光晶體雙波長外差干涉術鍍層厚度
外文關鍵詞:Heterodyne interferencetunable laser wavelengthelectro-optic crystaldual-wavelength heterodyne interferometrycoating thickness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:29
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,我們利用雙波長外差干涉術結合麥克森干涉儀,來
測量機械元件的鍍層厚度。其原理是將兩個不同波長對待測物量測出
的相位值相減,透過這個相減後的相位差值可以推得待測的鍍層厚度。
由於所使用的兩波長差距不大,因此可以獲得一個較長的有效波長而
可以使得膜厚的可測範圍超過一個波長。
實驗上首先利用此一技術於測量塊規微小的位移量測,來驗證系
統的可行性,接著再來實際測量不鏽鋼鏈條鍍層厚度。所得之量測數
據並與三次元量測儀測量結果比較,測量結果與參考值合乎預期。驗
證了雙波長外差干涉術應用於測量電鍍層厚度的可行性。本方法具有
光學架構簡單、定位方便、測量範圍大、準確度高,可減少量測上的
誤差。另外,由於此技術成功應用於機械元件電鍍層厚度的準確測量,
其良好的性能在實際應用中得到展現,為機械工業提供了一種高效、
高精度的電鍍層厚度測詴解決方案。這項研究成果有望在製造和品質
控制領域取得廣泛應用。實驗量測結果與理論基本相符,顯示出此系
統在不受環境影響情況下,其解析度可達到 0.07 um。
In this study, we utilized dual-wavelength phase-shifting
interferometry in conjunction with a Michelson interferometer to measure
the coating thickness of mechanical components. The principle involves
subtracting the phase values obtained for the test object at two different
wavelengths. The subtracted phase difference provides information about
the thickness of the coating under test. Due to the small difference between
the two wavelengths used, a longer effective wavelength is achieved,
extending the measurable range of coating thickness beyond a single
wavelength.
In the experiments, we initially employed this technique to measure
small displacements of gauge blocks to validate the feasibility of the
system. Subsequently, we proceeded to measure the coating thickness of
stainless steel chains using the same method. The measured data were
compared with results obtained from a three-dimensional measuring device,
and the measurement outcomes were consistent with the reference values.
The feasibility of utilizing dual-wavelength phase-shifting interferometry
for measuring electroplating thickness was thus confirmed.
This method offers advantages such as a simple optical setup,
convenient positioning, a large measurement range, and high accuracy,
effectively reducing measurement errors. Additionally, as this technique
successfully applied to the accurate measurement of electroplating
thickness on mechanical components, its excellent performance has been
demonstrated in practical applications, providing an efficient and highly
accurate solution for electroplating thickness testing in the mechanical
industry. This research outcome holds promise for widespread applications
in manufacturing and quality control. The experimental results closely align
with theoretical expectations, indicating that under environmentally stable
conditions, the system's resolution can reach up to 0.07 um.
摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 2
1-3 論文架構 2
第二章 文獻回顧 4
2-1 前言 4
2-2 三次元座標量測儀 4
2-3 三次元機台架設雷射干涉儀測量厚度變化 5
2-4 像散式光學輪廓儀的定量高度量測方法 6
2-5 DVD讀取頭量測透明薄片方法 8
2-6 3D光學輪廓儀量測硬式隱形眼鏡三維輪廓 10
2-7 薄膜干涉測量厚度方法 11
2-8 小結 14
第三章 外差干涉術之基本原理與架構 15
3-1 前言 15
3-2 外差干涉術之基本原理 15
3-3 外差光源的產生方式 17
3-3-1 聲光調制器(Acousto-Optic Modulator, AOM) 18
3-3-2 電光調制器(Electro-optic modulator, EOM) 18
3-3-3 Zeeman laser 21
3-3-4 光彈調制器 22
3-4 外差干涉儀架構 22
3-4-1 不共光程干涉儀 23
3-5 小結 25
第四章 雙波長外差干涉術測量機械元件鍍層厚度之量測原理與實驗結果 26
4-1 前言 26
4-2 實驗架構與原理 26
4-3 實驗與結果 29
4-3-1 光學元件與儀器 29
4-3-2 標準塊規位移量測 31
4-3-3 不鏽鋼鏈條鍍膜量測 33
4-4 小結 36
第五章 結論與未來展望 38
5-1 結論 38
5-2 未來展望 38
參考文獻 40
表目錄
表2-1 雙DVD量測系統實驗結果 9
表4-1 標準塊規實驗結果 32
表4-2 待測物測量數值 35
表4-3 標準差與解析度關係表 36
圖目錄
圖 2-1 Small CMM示意圖 5
圖 2-2 Small CMM之探頭設計與示意圖 6
圖 2-3 Z軸掃描模式(a)掃描軌跡圖示意圖(b)高度計算方法示意圖 7
圖 2-4 鍍鉻之玻璃基板表面高度圖 7
圖 2-5 雙讀取頭後度量測系統示意圖 9
圖 2-6 光學幾何示意圖 10
圖 2-7 3D光學輪廓儀量測步驟示意圖 10
圖 2-8 麥克森干涉儀示意圖 12
圖 2-9 干涉儀實驗架構圖 13
圖 2-10薄膜樣本干涉條紋圖 13
圖 3-1 不同頻率光波重疊干涉 16
圖 3-2 電光調變器之光學架構 19
圖 3-3 鋸齒波之電壓信號 20
圖 3-4 外差式麥克森干涉儀 24
圖 4-1 雙波長外差干涉術架構圖 27
圖 4-2 雙波長外差干涉術架構圖 32
圖 4-3 待測物鏈條鍍30 um 33
圖 4-4 待測物鏈條鍍25 um 33
圖 4-5 待測物鏈條鍍20 um 34
圖 4-6 實際裝置架構圖 34

參考文獻
[1]林雲德,“應用田口方法改善接觸式三次元測量儀量測品質,” 國立交通大學管理學院(工業工程與管理學程) 碩士論文,(2008).
[2]R.K. Leach, “Fundamental Principles of Engineering Nanometrology,” Elsevier, Inc.115-175 (2010).
[3]D.G. Chetwynd, X. Liu, S. T. Smith, “A controlled-force stylus displacement probe,” Precis Eng. 19(2-3), 105-111 (1996).
[4]范光照、張郭益,“精密量具及機件檢驗,” 高立圖書,台北市,429, (1996).
[5]G.N. Peggs, A.J. Lewis, S. Old field, “Design for a compact high accuracy CMM,” CIRP Ann-Manuf Technol. 48 (1), 417-420 (1999).
[6]L. Richard, H. Jane, J. Keith, L. Andrew, O. Simon, Y. Andrew, “Advances in traceable nanometrology at the National Physical Laboratory,” Nanotechnology. 12(1), 1-6 (2001).
[7]H.S. Liao, G.T. Huang, H.D. Tu, T.H. Lin, E.T. Hwu, “A novel method for quantitative height measurement based on an astigmatic optical profilometer,” Meas. Sci. Technol. 29(10), 107002 (2018).
[8]C.H. Liu, S.C. Yeh, H.L. Huang, “Thickness measurement system for transparent plates using dual digital versatile disc (DVD) pickups,” Appl. Opt. 49(4), 637-643 (2010).
[9]K.Ehrmann, A. Ho,C.Schindhelm, “A 3D optical profilometer using a compact disc reading head,” Meas. Sci. Technol. 9(8), 1259-1265 (1998).
[10]陳彥宏,“像散式讀取頭干涉現象探討與位移量測應用,”國立台灣大學機械工程研究所碩士論文,(2011).
[11]The Michelson Interferometer-A Laser Lab Alignment Guide, Wired Sense.
[12]許宏輝,“光學薄膜厚度量測之研究,”(2005).
[13]G. E. Sommargren, “Optical heterodyne profilometry,” Appl. Opt. 20(2), 610-618 (1981).
[14]D. Pantzer, J. Politch, and L. Ek, “Heterodyne profiling instrument for the angstrom region,” Appl. Opt. 25(22), 4168-4172 (1986).
[15]D.C. Su, M. H. Chiu, and C. D. Chen, “A heterodyne interferometer using an electro-optic modulator for measuring small displacements,” J. Opt. 27(1), 19-23 (1996).
[16]M. H. Chiu, D. C. Su, “Angle measurement using total-internal-reflection heterodyne interferometry,” Opt. Eng. 36(6), 1750-1753 (1997).
[17]M. H. Chiu, D. C. Su, “Improved technique for measuring small angle,” Appl. Opt. 36(28), 7104-7106 (1997).
[18]H. Kikuta, K. Iwata, R. Nagata, “Distance measurement by the wavelength shift of laser diode light,” Appl. Opt. 25(17), 2976-2980 (1986).
[19]E. Gelmini, U. Minomi, F. Docchio, “Tunable, double-wavelength heterodyne detection interferometer for absolute distance measurements,” Opt. Lett. 19(3), 213-215 (1994).
[20]M. H. Chiu, J. Y. Lee, D. C. Su, “Refractive index measurement based on the effects of the total internal reflection and the uses of the heterodyne interferometry,” Appl. Opt. 36(13), 2936-2939 (1997).
[21]D. C. Su, J. Y. Lee, M. H. Chiu, “New type of liquid refractometer,” Opt. Eng. 37(10), 2795-2797 (1998).
[22]J. Y. Lee, D. C. Su, “A method for measuring brewster’s angle by circularly polarized heterodyne interferometry,” J. Opt. 29, 349-353 (1998).
[23]Y. C. Huang, C. Chou, M. Chang, “Direct measurement of refractive Indices of a linear birefringent retardation plate,” Opt. Commun. 133(1-6), 11-16 (1997).
[24]J. C. Suits, “Magneto-optical rotation and ellipticity measurements with a spinning analyzer,” Rev. Sci. Instrum. 42(1), 19-22 (1971).
[25]M. P. Kothiyal, C. Delisle, “Optical frequency shifter for heterodyne interferometry using counterrotating wave plates,” Opt. Lett. 9(8), 319-321 (1984).
[26]W. H. Stevenson, “Optical frequency shifting by means of a rotating diffraction grating,” Appl. Opt. 9(3), 649-652 (1970).
[27]T. Suzuki, R. Hioki, “Translation of light frequency by a moving grating,” J. Opt. Soc. Am. 57(12), 1551 (1967).
[28]P. Dirksen, J. V. D. Werf,W. Bardoel, “Novel two-frequency laser,” Prec. Eng. 17(2), 114-116 (1995).
[29]H. Takasaki, N. Umeda, M. Tsukiji, “Stabilized transverse Zeeman laser as a new light source for optical measurement,” Appl. Opt. 19(3), 435-441 (1980).
[30]N. Umeda, M. Tsukiji, H. Takasaki ,“Stabilized He-Ne transverse Zeeman laser, ” Appl Opt. 19(3), 442-450 (1980).
[31]J.C..Kemp, “Piezo-opical birefringence modulators:new use for a long known effect,” J.Opt.Sci.Am. 59(8), 950-954 (1969).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top