跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/23 10:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴瑋呈
研究生(外文):WEI-CHENG DAI
論文名稱:相選擇合成多孔性鎳硫化合物應用於超級電容器電極
論文名稱(外文):Phase-selective synthesis of porous nickel sulfides for supercapacitor electrodes
指導教授:田禮嘉
指導教授(外文):Li-Chia Tien
口試委員:林育賢楊天賜田禮嘉
口試委員(外文):Yu-Xian LinTian-Si YangLi-Chia Tien
口試日期:20223-12-12
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:112
語文別:中文
論文頁數:88
中文關鍵詞:鎳硫化合物超級電容器電極偽電容電極電化學分析
外文關鍵詞:Nickel sulfidesSupercapacitor electrodesPseodocapacitor electrodesElectrochemical analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:48
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
鎳 硫化物(NixSy)為一種普遍存在於大自然的礦物,其容易取得、價格低廉、有豐富的價態使其有不同的相組成是相當理想的儲能電極材料。其化合物依硫含量多寡列出為: Ni3S2, Ni6S5, Ni7S6, Ni9S8, NiS, Ni3S4和NiS2。其中,硫化鎳(NiS)為一種p型半導體,應用包含了熱電裝置、記憶體裝置、光催化劑和鋰電池的陰極電極材料,依晶體結構可分為兩種相,α-NiS和β-NiS。α-NiS為六方晶結構(hexagonal),展現特性接近半導體,β-NiS為菱方晶結構(rhombohedral),則展現特性則較接近金屬,兩者皆有超級電容器電極的應用。Ni3S2為菱方晶結構 (rhombohedral) ,同NiS亦有大的理論比電容值。
本實驗以泡沫鎳為基板,利用氣相傳輸法合成多孔性鎳硫化物。透過改變溫度 (350、375、400、425、450 °C)、持溫時間 (5分鐘、1小時) 和硫蒸鍍源的量 (硫鎳莫爾比0.5、1、2)等參數,以確認上述參數對硫鎳化物樣品合成之影響。研究顯示,三種參數對於成長樣品形貌和晶體結構皆有影響,純相的菱方晶Ni3S2出現在硫鎳莫爾比0.5,持溫5分鐘的350、375°C及持溫1小時的350~400 °C,隨著溫度越高逐漸產生β-NiS,形成β-NiS+Ni3S2的混相結構。純相的六方晶α-NiS出現在持溫5分鐘硫鎳莫爾比為1的350°C和硫鎳莫爾比為2的350、375 °C,隨著溫度越高逐漸產生β-NiS,形成α-NiS+β-NiS的混相結構。純相的菱方晶β-NiS則出現在硫鎳莫爾比為0.5,持溫5分鐘的450 °C和硫鎳莫爾比為1、2,持溫1小時的350~450 °C。電化學量測方面,以3M KOH電解液分別對α-NiS、β-NiS、Ni3S2、α-NiS和β-NiS混相、β-NiS和Ni3S2混相電極樣品做循環伏安分析(CV)、電恆電流充放電分析(GCD)與交流阻抗分析(EIS)。在循環伏安分析中,α-NiS、β-NiS、Ni3S2、α-NiS+β-NiS混相、β-NiS+Ni3S2混相電極樣品儲能機制皆偽電容機制,在掃描速率為1 mV/s的比電容分別為: 983.9、1491.9、725.0、1983.2、1820.9 F/g。在恆電流充放電分析中,α-NiS、β-NiS、Ni3S2、α-NiS+β-NiS混相、β-NiS+Ni3S2混相電極樣品在電流密度為1 A/g時比電容分別為944.6、785.9、509.7、1058.7、1362.2 F/g。在EIS量測上,5種電極的材料溶液阻抗值(RS)相差不大。擁有混相結構的α-NiS+β-NiS混相及β-NiS+Ni3S2混相電極樣品有相對純相結構較小的電荷轉移阻抗(Charge transfer resistance, Rct)、物質擴散阻抗(Warburg resistance,W-R)與物質擴散時間(Warburg time, W-T),表示在混相結構電極充放電時,電解液中的離子能更快速的擴散至電極內部進行電荷轉移與化學反應。而純相結構的電極樣品中,Ni3S2相較於α-NiS和β-NiS有較小的Rct、W-R、W-T。
上述數據說明混相結構由於結合不同結構電極材料產生晶體結構的不匹配與缺陷,更有利於離子的傳輸與氧化還原反應,故有較小的阻抗值及較大的比電容,而不同電極材料的結合在電化學表現上有互補特性,有較廣的活性電位範圍,形成協同效應,故有較好的儲能表現。
Nickel sulfide (NixSy) is a commonly existing mineral that is easily accessible, cost-effective, and offers a diverse range of valence states, making it an ideal material for energy storage electrode applications. Depending on the sulfur content, its compounds include Ni3S2, Ni6S5, Ni7S6, Ni9S8, NiS, Ni3S4, and NiS2. Among these compounds, nickel sulfide (NiS) is a p-type semiconductor with various applications, including thermoelectric devices, memory devices, photocatalysts, and lithium-ion battery cathode materials. Based on its crystal structure, it can be categorized into two phases, α-NiS and β-NiS. α-NiS has a hexagonal crystal structure, exhibiting semiconductor-like properties, while β-NiS has a rhombohedral crystal structure, displaying characteristics more akin to metal. Both phases find applications in supercapacitor electrodes. Ni3S2 shares a rhombohedral crystal structure with NiS and possesses a high theoretical specific capacitance.
In this experiment, porous nickel sulfides were synthesized using nickel foam as the substrate and sulfur powder as the sulfur source through a vapor-phase transport method. The growth parameters, including growth temperature (350, 375, 400, 425, 450 °C), growth time (5 minutes, 1 hour), and the sulfur-to-nickel molar ratio (0.5, 1, 2), were systematically varied to investigate their effects on the synthesis of sulfur-nickel compounds. The results showed that these parameters significantly influenced the morphology and crystal structure of the grown samples.
Pure-phase rhombohedral Ni3S2 was observed when using a sulfur-to-nickel molar ratio of 0.5, growth time for 5 minutes at 350 °C and 375 °C, as well as growth time for 1 hour at 350~400 °C. With increasing growth temperature, β-NiS gradually formed, resulting in a mixed-phase structure of β-NiS+Ni3S2. Pure-phase hexagonal α-NiS was observed when using a sulfur-to-nickel molar ratio of 1 at growth temperature of 350 °C and with a molar ratio of 2 at growth temperature of 350 °C and 375 °C, with β-NiS gradually forming at higher temperatures. This led to the formation of an α-NiS+β-NiS mixed-phase structure. Pure-phase rhombohedral β-NiS was observed when using a sulfur-to-nickel molar ratio of 0.5, growth time for 5 minutes at growth temperature of 450 °C, and with a molar ratio of 1 or 2, growth time for 1 hour at growth temperature of 350-450 °C.
Electrochemical measurements were performed using a 3M KOH electrolyte, including cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) on electrodes including α-NiS, β-NiS, Ni3S2, mixed-phase α-NiS+β-NiS, and mixed-phase β-NiS+ Ni3S2. In the CV analysis, all these electrode materials exhibited pseudocapacitive behavior, with specific capacitances at a scan rate of 1 mV/s as follows: 983.9 F/g for α-NiS, 1491.9 F/g for β-NiS, 725.0 F/g for Ni3S2, 1983.2 F/g for α-NiS+β-NiS, and 1820.9 F/g for β-NiS+ Ni3S2. In GCD analysis at a current density of 1 A/g, the specific capacitances were 944.6 F/g for α-NiS, 785.9 F/g for β-NiS, 509.7 F/g for Ni3S2, 1058.7 F/g for α-NiS+β-NiS, and 1362.2 F/g for β-NiS+ Ni3S2. EIS measurements revealed that the solution resistance (RS) was similar for all electrode materials. Electrodes with mixed-phase structures, such as α-NiS+β-NiS and β-NiS+ Ni3S2, exhibited lower charge transfer resistance (Rct), Warburg resistance (W-R), and Warburg time (W-T) compared to pure-phase structures. This indicates that, during the charge and discharge of mixed-phase electrodes, ions in the electrolyte can diffuse more rapidly into the electrode, facilitating charge transfer and chemical reactions. Among the electrodes with pure-phase structures, Ni3S2 showed smaller Rct, W-R, and W-T values than α-NiS and β-NiS.
These findings highlight that the mixed-phase structures, arising from the combination of different electrode materials with mismatched crystal structures and defects, enhance ion transport and redox reactions, resulting in lower impedance values and higher specific capacitance. The combination of different electrode materials in electrochemical performance exhibits complementary properties and a wider active potential range, leading to a synergistic effect and, consequently, improved energy storage performance
謝誌 I
摘要 III
Abstract V
目錄 VIII
圖目錄 XI
表目錄 XVII
第一章 緒論 1
1.1前言 1
1.2研究目標 1
第二章 文獻回顧 3
2.1超級電容器的分類 3
2.2鎳硫化物之基本性質 4
2.3 鎳硫化物的合成方法 6
2.3.1 化學氣相沉積法(Chemical Vapor Deposition, CVD) 6
2.3.2 溶劑熱合成法/水熱法(Solvothermal / Hydrothermal Synthesis) 7
2.3.3 化學水浴沉積法(Chemical bath deposition, CBD) 9
2.3.4 離子交換法(Ionic Exchange Reaction, IER) 10
2.3.5 噴霧裂解法(Spray Pyrolysis) 11
第三章 實驗步驟與分析儀器 19
3.1實驗設計 19
3.2實驗材料 19
3.2.1 儀器 19
3.2.1 基板 19
3.2.3 清洗基板所用溶液 19
3.2.4 氣相傳輸成長源 19
3.2.5 電化學實驗材料 20
3.2.6 電極製備所需材料 20
3.3實驗步驟 20
3.3.1 泡沫鎳基板前處理 20
3.3.2氣相傳輸法合成鎳硫化物 20
3.3.3 工作電極製作 21
3.3.4 電解液配置 21
3.4實驗參數 21
3.4.1 改變成長溫度 21
3.4.2 改變成長時間 22
3.4.3 改變硫蒸鍍源量 22
3.5材料鑑定分析儀器 22
3.5.1 掃描式電子顯微鏡(SEM) 22
3.5.2 X光繞射儀(XRD) 22
3.6電化學性質分析儀器 23
3.6.1 循環伏安法(Cyclic Voltammetry, CV) 23
3.6.2 恆電流充放電(Galvanostatic Charge/Discharge, GCD) 25
3.6.3 電化學阻抗圖譜(Electrochemical impedance spectroscopy,EIS) 25
第四章 結果與討論 29
4.1硫鎳化物的合成 29
4.1.1 探討成長溫度對樣品合成之影響 30
4.1.2 探討持溫時間對樣品合成之影響 34
4.1.3 探討蒸鍍源量對樣品合成之影響 35
4.2硫鎳化物的電化學性質分析 36
4.2.1 循環伏安分析 36
4.2.2 恆電流充放電分析 40
4.2.3 電化學阻抗圖譜 43
第五章 結論 84
第六章 參考文獻 86
[1] Jiang, Y.; Liu, J., Definitions of pseudocapacitive materials: a brief review. Energy & Environmental Materials 2019, 2 (1), 30-37.
[2] Okhay, O.; Tkach, A., Graphene/reduced graphene oxide-carbon nanotubes composite electrodes: From capacitive to battery-type behaviour. Nanomaterials 2021, 11 (5), 1240.
[3] Nandhini, S.; Muralidharan, G., Facile microwave-hydrothermal synthesis of NiS nanostructures for supercapacitor applications. Applied Surface Science 2018, 449, 485-491.
[4] Yan, X.; Tong, X.; Ma, L.; Tian, Y.; Cai, Y.; Gong, C.; Zhang, M.; Liang, L., Synthesis of porous NiS nanoflake arrays by ion exchange reaction from NiO and their high performance supercapacitor properties. Materials Letters 2014, 124, 133-136.
[5] Chen, T.; Liu, Z.; Liu, Z.; Tao, X.; Fan, H.; Guo, L., Fabrication of interconnected 2D/3D NiS/Ni3S4 composites for high performance supercapacitor. Materials Letters 2019, 248, 1-4.
[6] Guan, S.; Fu, X.; Zhang, B.; Lei, M.; Peng, Z., Cation-exchange-assisted formation of NiS/SnS2 porous nanowalls with ultrahigh energy density for battery–supercapacitor hybrid devices. Journal of Materials Chemistry A 2020, 8 (6), 3300-3310.
[7] Gervas, C.; Mlowe, S.; Akerman, M. P.; Ezekiel, I.; Moyo, T.; Revaprasadu, N., Synthesis of rare pure phase Ni3S4 and Ni3S2 nanoparticles in different primary amine coordinating solvents. Polyhedron 2017, 122, 16-24.
[8] Kullerud, G.; Yund, R. A., The Ni-S system and related minerals. Journal of Petrology 1962, 3 (1), 126-175.
[9] Yousfi, O.; Bréchet, Y. J.; Donnadieu, P.; Robaut, F.; Charlot, F.; Kasper, A.; Serruys, F. In Phase transformations in the NiS Nickel sulphide: microstructure, mechanisms and modelling through in situ microscopy, Solid State Phenomena, Trans Tech Publ: 2011; pp 402-407.
[10] Shombe, G. B.; Khan, M. D.; Zequine, C.; Zhao, C.; Gupta, R. K.; Revaprasadu, N., Direct solvent free synthesis of bare α-NiS, β-NiS and α-β-NiS composite as excellent electrocatalysts: Effect of self-capping on supercapacitance and overall water splitting activity. Scientific reports 2020, 10 (1), 3260.
[11] Sparks, J. T.; Komoto, T., Metal-to-semiconductor transition in hexagonal NiS. Reviews of Modern Physics 1968, 40 (4), 752.
[12] Liu, Q.; Díaz, A.; Prosvirin, A.; Luo, Z.; Batteas, J. D., Shape-controlled synthesis of nanopyramids and nanoprisms of nickel sulfide (Ni3S4). Nanoscale 2014, 6 (15), 8935-8942.
[13] Wu, X.; Wang, J.; Zhang, F.; Gong, J.; Xu, P.; Xu, Y.; Zhang, D., Synthesis of the rod-like NiS2@ C for hydrogen evolution reaction in acidic solution. Functional Materials Letters 2020, 13 (02), 2050009.
[14] Kajbafvala, M.; Moradlou, O.; Moshfegh, A. Z., CVD growth of the nanostructured Ni3S2 thin films as efficient electrocatalyst for hydrogen evolution reaction. Vacuum 2021, 188, 110209.
[15] Dai, C.; Li, B.; Li, J.; Zhao, B.; Wu, R.; Ma, H.; Duan, X., Controllable synthesis of NiS and NiS2 nanoplates by chemical vapor deposition. Nano Research 2020, 13, 2506-2511.
[16] Chen, N.; Zhang, W.; Yu, W.; Qian, Y., Synthesis of nanocrystalline NiS with different morphologies. Materials Letters 2002, 55 (4), 230-233.
[17] Basha, K.; Guddeti, P.; Kotte, T., Effect of Deposition Time on the Properties of NiS Films Prepared by Chemical Bath Deposition. Indian Journal of Science and Technology 2022, 15 (45), 2492-2499.
[18] Yan, X.; Tong, X.; Ma, L.; Tian, Y.; Cai, Y.; Gong, C.; Zhang, M.; Liang, L., Synthesis of porous NiS nanoflake arrays by ion exchange reaction from NiO and their high performance supercapacitor properties. Materials Letters 2014, 124, 133-136..
[19] Fan, Z.; Chen, X.; Shi, X.; Jiang, Q.; Zhang, Y., Facile synthesis of NiS nanowires via ion exchange reaction as efficient counter electrode for dye-sensitized solar cells. Journal of Materials Chemistry C 2023.
[20] Barim, G.; Smock, S. R.; Antunez, P. D.; Glaser, D.; Brutchey, R. L., Phase control in the colloidal synthesis of well-defined nickel sulfide nanocrystals. Nanoscale 2018, 10 (34), 16298-16306.
[21] Boughalmi, R.; Rahmani, R.; Boukhachem, A.; Amrani, B.; Driss-Khodja, K.; Amlouk, M., Metallic behavior of NiS thin film under the structural, optical, electrical and ab initio investigation frameworks. Materials Chemistry and Physics 2015, 163, 99-106
[22] Project, M. α-NiS lattice system. https://next-gen.materialsproject.org/materials/mp-594?_skip=15&chemsys=Ni-S.
[23] Project, M. β-NiS lattice system. https://next-gen.materialsproject.org/materials/mp-1547?chemsys=Ni-S.
[24] project, M. Ni3S2 lattice system. https://next-gen.materialsproject.org/materials/mp-362?chemsys=Ni-S.
[25] Locorotondc, E.; Pugi, L.; Berzi, L.; Pierini, M.; Scavuzzc, S.; Ferraris, A.; Airale, A. G.; Carello, M. In Modeling and simulation of constant phase element for battery electrochemical impedance spectroscopy, 2019 IEEE 5th International forum on Research and Technology for Society and Industry (RTSI), IEEE: 2019; pp 225-230.
[26] Li, W.; Wang, S.; Xin, L.; Wu, M.; Lou, X., Single-crystal β-NiS nanorod arrays with a hollow-structured Ni3S2 framework for supercapacitor applications. Journal of Materials Chemistry A 2016, 4 (20), 7700-7709.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top