跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/13 19:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐研婷
研究生(外文):HSU, YEN-TING
論文名稱:臺灣成年人暴露於雙酚A與其替代物對於甲狀腺素功能之相關性研究
論文名稱(外文):Association study of bisphenol A and its analogues exposure with thyroid function in Taiwanese adults
指導教授:黃翰斌
指導教授(外文):HUANG, HAN-BIN
口試委員:黃柏菁鐘羅元婷黃翰斌
口試委員(外文):HUANG, PO-CHINCHUNG LO, YUAN-TINGHUANG, HAN-BIN
口試日期:2024-05-10
學位類別:碩士
校院名稱:國防醫學院
系所名稱:公共衛生學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:198
中文關鍵詞:雙酚A雙酚S雙酚F成人甲狀腺功能指標
外文關鍵詞:Bisphenol ABisphenol SBisphenol Fadultsthyroid function
相關次數:
  • 被引用被引用:0
  • 點閱點閱:15
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究背景:
近年來因雙酚A(Bisphenol A, BPA)有嚴格的法規限制,因此逐漸開始有BPS(Bisphenol S)及BPF(Bisphenol F)出現,大部分皆探討雙酚A對於人體的健康風險的影響,而僅有少數研究針對替代物對成人族群產生不良健康效應(例如甲狀腺功能)進行探討且研究結果仍不明確。
研究目的:
一、瞭解臺灣成年人BPA、BPS、BPF暴露及每日攝入量分布情形。
二、分析臺灣成年人BPA(Bisphenol A)、BPS(Bisphenol S)、BPF(Bisphenol F)暴露與成人甲狀腺功能指標相關性。
三、分析BPA、BPS、BPF混合物暴露與甲狀腺功能指標相關性。
研究方法:
本研究為橫斷性研究,使用臺灣環境毒物調查(Taiwan Environmental Survey for Toxicants , TESTs)資料庫來做分析,以臺灣一般成人族群為研究對象,收案時間為2013年5月至12月,並收集問卷、生物檢驗結果,分別使用血液及尿液檢測甲狀腺功能指標(如: TSH、T3、T4、FT4)及BPA、BPS、BPF濃度,計算其每日攝入量(Daily intake, DI),共採用262名成年人(18歲以上)進行分析,以廣義線性模型(generalized linear model, GLM)探討BPA、BPS、BPF與甲狀腺功能指標之關係。此外,使用Quantile g-computation(qgcomp)模型與貝葉斯核函數迴歸(Bayesian kernel machine regression, BKMR)估計整體雙酚物質暴露對於甲狀腺功能指標的影響。
結果:
臺灣成年人暴露於BPA濃度會與FT4 (β=0.027,95%CI : 0.002, 0.053) 及SPINA-GT (β=0.079,95%CI : 0.009, 0.148)呈正相關。BPA、BPS每日攝入量與T4呈正相關(β=0.054,95%CI : 0.016, 0.091 for BPA;β=0.039,95%CI : 0.006, 0.072 for BPS);BPA及BPS每日攝入量則與T3/ T4呈負相關(β= -0.047,95%CI : -0.092, -0.001 for BPA;β= -0.052,95%CI : -0.097, -0.007 for BPS);BPA每日攝入量和TSH/ T4 呈負相關(β=-0.144,95%CI : -0.265, -0.024),和SPINA-GT則呈正相關(β=0.115,95%CI : 0.033, 0.198)。而在BPA、BPS、BPF混合暴露的qgcomp模型中發現與T4 (ψ=0.025,95%CI : 0.001, 0.050)呈正相關,BPA、BPS、BPF每日攝入量增加與T4 (β=0.040,95%CI : 0.011, 0.069)呈顯著正相關,與T3/ T4(β= -0.041,95%CI : -0.080, -0.002)呈負相關。
結論:
本研究發現暴露在環境中的BPA、BPS、BPF可能會影響普通成年人的甲狀腺激素的平衡。然而,仍需要更多追蹤性研究來證實這些發現。
Background :
In recent years, due to strict regulations on bisphenol A (BPA), bisphenol S (BPS) and bisphenol F (BPF) have gradually emerged. Most studies have focused on the health risks of BPA to the human body, while only a few have investigated the adverse health effects of alternatives in adult populations, such as thyroid function, with inconclusive results.
Objectives :
The aim of this study was to assess the exposure levels and daily intake of BPA, BPS, and BPF and the distribution of hazard indices in Taiwanese adults. It also aimed to explore the associations between exposure to BPA, BPS, and BPF, both individually and as a mixture, and thyroid function indicators in this population.
Methods :
This cross-sectional study used data from the Taiwan Environmental Survey for Toxicants (TESTs) database. Data collection was conducted during the period from May 2013 to December, encompassing both questionnaire-based information and biological samples. Blood and urine specimens were analyzed to determine thyroid function indicators, such as thyroid-stimulating hormone (TSH), triiodothyronine (T3), thyroxine (T4), and free thyroxine (FT4), as well as to quantify BPA, BPS, and BPF concentrations and daily intake (DI). A total of 262 adults (aged 18 and above) were included in the analysis. Generalized linear models (GLMs) were employed to examine the associations between BPA, BPS, and BPF exposure and thyroid function indicators. Furthermore, quantile g-computation (qgcomp) models and Bayesian kernel machine regression (BKMR) were applied to estimate the overall effect of exposure to the bisphenol mixture on thyroid function indicators.
Results :
We found that the concentration of BPA exposure in Taiwanese adults was positively correlated with FT4 (β=0.027, 95%CI: 0.002, 0.053) and SPINA-GT (β=0.079, 95%CI: 0.009, 0.148). Daily intake of BPA and BPS was positively correlated with T4 (β=0.054, 95%CI: 0.016, 0.091 for BPA; β=0.039, 95%CI: 0.006, 0.072 for BPS). However, daily intake of BPA and BPS was negatively correlated with T3/ T4 (β=-0.047, 95%CI: -0.092, -0.001 for BPA; β=-0.052, 95%CI: -0.097, -0.007 for BPS). Daily intake of BPA was negatively correlated with TSH/ T4 (β=-0.144, 95%CI: -0.265, -0.024) and positively correlated with SPINA-GT (β=0.115, 95%CI: 0.033, 0.198). In the qgcomp model of mixed exposure to BPA, BPS, and BPF, there was a positive correlation with T4 (ψ=0.025, 95%CI: 0.001, 0.050), and daily intake of BPA, BPS, and BPF showed a significant positive correlation with T4 (β=0.040, 95%CI: 0.011, 0.069) and a negative correlation with T3/T4 (β=-0.041, 95%CI: -0.080, -0.002). 
Conclusion :
Our results suggest that exposure to BPA, BPS and BPF may affect thyroid hormone balance in the general adult population. However, further follow-up studies are needed to confirm these findings.
目錄 I
表目錄 III
圖目錄 VI
中文摘要 VII
Abstract VIII
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究必要性及重要性 2
第三節 研究目的 3
第二章 文獻查證 4
第一節 雙酚A (Bisphenol A, BPA)及其替代物使用情形 4
第二節 雙酚A及其替代物毒理特性 7
第三節 雙酚A及其替代物暴露評估 12
第四節 甲狀腺激素種類及功能指標 15
第五節 雙酚A及其替代物影響甲狀腺激素的相關生物機制 18
第六節 雙酚A及其替代物與甲狀腺激素相關流行病學 20
第三章 研究材料與方法 23
第一節 研究設計及對象 23
第二節 研究架構 24
第三節 研究假設 24
第四節 研究對象資料來源 26
第五節 研究工具 27
第六節 研究變項與操作型定義 30
第七節 資料處理與統計分析 34
第四章 結果 37
第一節 社會基本人口學資料分布情形 37
第二節 尿中BPA及其替代物濃度分布情形及生物標記間相關性 39
第三節 BPA及其替代物每日攝入量暴露分布情形 41
第四節 尿中BPA及其替代物濃度與甲狀腺功能指標之關係 42
第五節 評估代謝混合物和甲狀腺功能指標之關係 44
第六節 BPA及其替代物每日攝入量與甲狀腺功能指標之關係 46
第五章 討論 50
第一節 尿中BPA、BPS、BPF代謝物濃度探討 50
第二節 尿中BPA、BPS、BPF每日攝入量探討 53
第三節 BPA、BPS、BPF暴露與甲狀腺功能關係之探討 55
第四節 BPA替代物對於甲狀腺激素影響的可能生物機制探討 60
第五節 研究限制與優勢 62
第六章 結論與建議 65
第七章 參考文獻 66
附表 84
英文參考文獻:
Acconcia, F., Pallottini, V., & Marino, M. (2015). Molecular Mechanisms of Action of BPA. Dose Response, 13(4), 1559325815610582. https://doi.org/10.1177/1559325815610582
Ahmed, R. G. (2016). Maternal bisphenol A alters fetal endocrine system: Thyroid adipokine dysfunction. Food and Chemical Toxicology, 95, 168-174. https://doi.org/https://doi.org/10.1016/j.fct.2016.06.017
Andersen, S., Pedersen, K. M., Bruun, N. H., & Laurberg, P. (2002). Narrow Individual Variations in Serum T4 and T3 in Normal Subjects: A Clue to the Understanding of Subclinical Thyroid Disease. The Journal of Clinical Endocrinology & Metabolism, 87(3), 1068-1072. https://doi.org/10.1210/jcem.87.3.8165
Arakawa, C., Fujimaki, K., Yoshinaga, J., Imai, H., Serizawa, S., & Shiraishi, H. (2004). Daily urinary excretion of bisphenol A. Environmental Health and Preventive Medicine, 9(1), 22-26. https://doi.org/10.1265/ehpm.9.22
Baudry, N., Lejeune, P.-J., Delom, F., Vinet, L., Carayon, P., & Mallet, B. (1998). Role of Multimerized Porcine Thyroglobulin in Iodine Storage. Biochemical and biophysical research communications, 242(2), 292-296. https://doi.org/https://doi.org/10.1006/bbrc.1997.7952
Bilgin, H., & Pirgon, Ö. (2014). Thyroid function in obese children with non-alcoholic fatty liver disease. J Clin Res Pediatr Endocrinol, 6(3), 152-157. https://doi.org/10.4274/Jcrpe.1488
Blanco, A. M. (2020). Hypothalamic- and pituitary-derived growth and reproductive hormones and the control of energy balance in fish. General and comparative endocrinology, 287, 113322. https://doi.org/https://doi.org/10.1016/j.ygcen.2019.113322
Boas, M., Feldt-Rasmussen, U., & Main, K. M. (2012). Thyroid effects of endocrine disrupting chemicals. Molecular and Cellular Endocrinology, 355(2), 240-248. https://doi.org/https://doi.org/10.1016/j.mce.2011.09.005
Boas, M., Feldt-Rasmussen, U., Skakkebæk, N. E., & Main, K. M. (2006). Environmental chemicals and thyroid function. European Journal of Endocrinology, 154(5), 599-611. https://doi.org/10.1530/eje.1.02128
Bobb, J. F., Valeri, L., Claus Henn, B., Christiani, D. C., Wright, R. O., Mazumdar, M., Godleski, J. J., & Coull, B. A. (2015). Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics, 16(3), 493-508. https://doi.org/10.1093/biostatistics/kxu058
Bolli, A., Galluzzo, P., Ascenzi, P., Del Pozzo, G., Manco, I., Vietri, M. T., Mita, L., Altucci, L., Mita, D. G., & Marino, M. (2008). Laccase treatment impairs bisphenol A-induced cancer cell proliferation affecting estrogen receptor α-dependent rapid signals. IUBMB Life, 60(12), 843-852. https://doi.org/https://doi.org/10.1002/iub.130
Brand, M. D. (2016). Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radical Biology and Medicine, 100, 14-31.
Canesi, L., Lorusso, L. C., Ciacci, C., Betti, M., Zampini, M., & Gallo, G. (2004). Environmental estrogens can affect the function of mussel hemocytes through rapid modulation of kinase pathways. General and comparative endocrinology, 138(1), 58-69.
Carli, F., Tait, S., Busani, L., Ciociaro, D., Della Latta, V., Pala, A. P., Deodati, A., Raffaelli, A., Pratesi, F., Conte, R., Maranghi, F., Tassinari, R., Fabbrizi, E., Toffol, G., Cianfarani, S., La Rocca, C., Gastaldelli, A., & Group, L. P. P. (2022). Exposure to Endocrine Disruptors (Di(2-Ethylhexyl)phthalate (DEHP) and Bisphenol A (BPA)) in Women from Different Residing Areas in Italy: Data from the LIFE PERSUADED Project. International Journal of Molecular Sciences, 23(24), 16012. https://www.mdpi.com/1422-0067/23/24/16012
Carvalho, D. P., & Dupuy, C. (2017). Thyroid hormone biosynthesis and release. Molecular and Cellular Endocrinology, 458, 6-15. https://doi.org/https://doi.org/10.1016/j.mce.2017.01.038
Chailurkit, L.-o., Aekplakorn, W., & Ongphiphadhanakul, B. (2016). The Association of Serum Bisphenol A with Thyroid Autoimmunity. International Journal of Environmental Research and Public Health, 13(11), 1153. https://www.mdpi.com/1660-4601/13/11/1153
Chen, D., Kannan, K., Tan, H., Zheng, Z., Feng, Y.-L., Wu, Y., & Widelka, M. (2016). Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity—A Review. Environmental Science & Technology, 50(11), 5438-5453. https://doi.org/10.1021/acs.est.5b05387
Chen, H. C., Chang, J. W., Sun, Y. C., Chang, W. T., & Huang, P. C. (2022). Determination of Parabens, Bisphenol A and Its Analogs, Triclosan, and Benzophenone-3 Levels in Human Urine by Isotope-Dilution-UPLC-MS/MS Method Followed by Supported Liquid Extraction. Toxics, 10(1). https://doi.org/10.3390/toxics10010021
Choi, J. Y., Lee, J., Huh, D.-A., & Moon, K. W. (2022). Urinary bisphenol concentrations and its association with metabolic disorders in the US and Korean populations. Environmental Pollution, 295, 118679. https://doi.org/https://doi.org/10.1016/j.envpol.2021.118679
Choi, S., Kim, M. J., Park, Y. J., Kim, S., Choi, K., Cheon, G. J., Cho, Y. H., Jeon, H. L., Yoo, J., & Park, J. (2020). Thyroxine-binding globulin, peripheral deiodinase activity, and thyroid autoantibody status in association of phthalates and phenolic compounds with thyroid hormones in adult population. Environment International, 140, 105783. https://doi.org/https://doi.org/10.1016/j.envint.2020.105783
Citterio, C. E., Targovnik, H. M., & Arvan, P. (2019). The role of thyroglobulin in thyroid hormonogenesis. Nature Reviews Endocrinology, 15(6), 323-338. https://doi.org/10.1038/s41574-019-0184-8
da Silva, M. M., Gonçalves, C. F. L., Miranda-Alves, L., Fortunato, R. S., Carvalho, D. P., & Ferreira, A. C. F. (2019). Inhibition of Type 1 Iodothyronine Deiodinase by Bisphenol A. Horm Metab Res, 51(10), 671-677. https://doi.org/10.1055/a-0919-3879
da Silva, M. M., Xavier, L. L. F., Gonçalves, C. F. L., Santos-Silva, A. P., Paiva-Melo, F. D., de Freitas, M. L., Fortunato, R. S., Miranda-Alves, L., & Ferreira, A. C. F. (2018). Bisphenol A increases hydrogen peroxide generation by thyrocytes both in vivo and in vitro. Endocrine Connections, 7(11), 1196-1207. https://doi.org/10.1530/ec-18-0348
Davies, L., & Welch, H. G. (2006). Increasing Incidence of Thyroid Cancer in the United States, 1973-2002. JAMA, 295(18), 2164-2167. https://doi.org/10.1001/jama.295.18.2164
Dietrich, J. W., Landgrafe-Mende, G., Wiora, E., Chatzitomaris, A., Klein, H. H., Midgley, J. E. M., & Hoermann, R. (2016). Calculated Parameters of Thyroid Homeostasis: Emerging Tools for Differential Diagnosis and Clinical Research [Perspective]. Frontiers in Endocrinology, 7. https://doi.org/10.3389/fendo.2016.00057
Dietrich, J. W., Müller, P., Schiedat, F., Schlömicher, M., Strauch, J., Chatzitomaris, A., Klein, H. H., Mügge, A., Köhrle, J., & Rijntjes, E. (2015). Nonthyroidal illness syndrome in cardiac illness involves elevated concentrations of 3, 5-diiodothyronine and correlates with atrial remodeling. European thyroid journal, 4(2), 129-137.
Dupuy, C., Dème, D., Kaniewski, J., Pommier, J., & Virion, A. (1988). Ca2+ regulation of thyroid NADPH-dependent H2O2 generation. FEBS Letters, 233(1), 74-78. https://doi.org/https://doi.org/10.1016/0014-5793(88)81358-9
Durando, M., Kass, L., Piva, J., Sonnenschein, C., Soto Ana, M., Luque Enrique, H., & Muñoz-de-Toro, M. (2007). Prenatal Bisphenol A Exposure Induces Preneoplastic Lesions in the Mammary Gland in Wistar Rats. Environmental Health Perspectives, 115(1), 80-86. https://doi.org/10.1289/ehp.9282
Efsa Panel on Food Contact Materials, E., Processing, A., Lambré, C., Barat Baviera, J. M., Bolognesi, C., Chesson, A., Cocconcelli, P. S., Crebelli, R., Gott, D. M., Grob, K., Lampi, E., Mengelers, M., Mortensen, A., Rivière, G., Silano, V., Steffensen, I.-L., Tlustos, C., Vernis, L., Zorn, H., . . . Van Loveren, H. (2023). Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA Journal, 21(4), e06857. https://doi.org/https://doi.org/10.2903/j.efsa.2023.6857
European Union. (2011). Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food Text with EEA relevance. Retrieved July 31 from https://eur-lex.europa.eu/eli/reg/2011/10/oj
Ferris, J., Favetta, L. A., & King, W. A. (2015). Bisphenol A Exposure during Oocyte Maturation in vitro Results in Spindle Abnormalities and Chromosome Misalignment in Bos taurus. Cytogenetic and Genome Research, 145(1), 50-58. https://doi.org/10.1159/000381321
Fillol, C., Oleko, A., Saoudi, A., Zeghnoun, A., Balicco, A., Gane, J., Rambaud, L., Leblanc, A., Gaudreau, É., Marchand, P., Le Bizec, B., Bouchart, V., Le Gléau, F., Durand, G., & Denys, S. (2021). Exposure of the French population to bisphenols, phthalates, parabens, glycol ethers, brominated flame retardants, and perfluorinated compounds in 2014–2016: Results from the Esteban study. Environment International, 147, 106340. https://doi.org/https://doi.org/10.1016/j.envint.2020.106340
Fiore, M., Oliveri Conti, G., Caltabiano, R., Buffone, A., Zuccarello, P., Cormaci, L., Cannizzaro, M. A., & Ferrante, M. (2019). Role of Emerging Environmental Risk Factors in Thyroid Cancer: A Brief Review. International Journal of Environmental Research and Public Health, 16(7), 1185. https://www.mdpi.com/1660-4601/16/7/1185
Fortunato, R. S., Lima de Souza, E. C., Hassani, R. A.-e., Boufraqech, M., Weyemi, U., Talbot, M., Lagente-Chevallier, O., de Carvalho, D. P., Bidart, J.-M., Schlumberger, M., & Dupuy, C. (2010). Functional Consequences of Dual Oxidase-Thyroperoxidase Interaction at the Plasma Membrane. The Journal of Clinical Endocrinology & Metabolism, 95(12), 5403-5411. https://doi.org/10.1210/jc.2010-1085
Frederiksen, H., Nielsen, O., Koch, H. M., Skakkebaek, N. E., Juul, A., Jørgensen, N., & Andersson, A.-M. (2020). Changes in urinary excretion of phthalates, phthalate substitutes, bisphenols and other polychlorinated and phenolic substances in young Danish men; 2009–2017. International Journal of Hygiene and Environmental Health, 223(1), 93-105. https://doi.org/https://doi.org/10.1016/j.ijheh.2019.10.002
Galloway, T., Cipelli, R., Guralnik, J., Ferrucci, L., Bandinelli, S., Corsi, A. M., Money, C., McCormack, P., & Melzer, D. (2010). Daily Bisphenol A Excretion and Associations with Sex Hormone Concentrations: Results from the InCHIANTI Adult Population Study. Environmental Health Perspectives, 118(11), 1603-1608. https://doi.org/doi:10.1289/ehp.1002367
Gao, X., & Wang, H. S. (2014). Impact of bisphenol a on the cardiovascular system - epidemiological and experimental evidence and molecular mechanisms. Int J Environ Res Public Health, 11(8), 8399-8413. https://doi.org/10.3390/ijerph110808399
Geens, T., Aerts, D., Berthot, C., Bourguignon, J.-P., Goeyens, L., Lecomte, P., Maghuin-Rogister, G., Pironnet, A.-M., Pussemier, L., Scippo, M.-L., Van Loco, J., & Covaci, A. (2012). A review of dietary and non-dietary exposure to bisphenol-A. Food and Chemical Toxicology, 50(10), 3725-3740. https://doi.org/https://doi.org/10.1016/j.fct.2012.07.059
Geens, T., Goeyens, L., & Covaci, A. (2011). Are potential sources for human exposure to bisphenol-A overlooked? International Journal of Hygiene and Environmental Health, 214(5), 339-347. https://doi.org/https://doi.org/10.1016/j.ijheh.2011.04.005
Han, B., Wang, L., Wang, X., Huang, K., Shen, Y., Wang, Z., & Jing, T. (2024). Association between multipollutant exposure and thyroid hormones in elderly people: A cross-sectional study in China. Environmental Research, 252, 118781. https://doi.org/https://doi.org/10.1016/j.envres.2024.118781
Hassan, Z. K., Elobeid, M. A., Virk, P., Omer, S. A., ElAmin, M., Daghestani, M. H., & AlOlayan, E. M. (2012). Bisphenol A Induces Hepatotoxicity through Oxidative Stress in Rat Model. Oxidative Medicine and Cellular Longevity, 2012, 194829. https://doi.org/10.1155/2012/194829
Health Canada. (2008). ARCHIVED - Health Risk Assessment of Bisphenol A from Food Packaging Applications. Retrieved August 21 from https://www.canada.ca/en/health-canada/services/food-nutrition/food-safety/packaging-materials/bisphenol/health-risk-assessment-bisphenol-food-packaging-applications.html
Hidetomo, I., Hiroki, I., Miyu, N., Jumpei, F., & Hiroshi, Y. (2018). Biotransformation of Bisphenol A and Its Adverse Effects on the Next Generation. In R. G. Ahmed (Ed.), Endocrine Disruptors (pp. Ch. 5). IntechOpen. https://doi.org/10.5772/intechopen.78275
Hornung, R. W., & Reed, L. D. (1990). Estimation of Average Concentration in the Presence of Nondetectable Values. Applied Occupational and Environmental Hygiene, 5(1), 46-51. https://doi.org/10.1080/1047322X.1990.10389587
Hu, C., Xu, Y., Wang, M., Cui, S., Zhang, H., & Lu, L. (2023). Bisphenol analogues induce thyroid dysfunction via the disruption of the thyroid hormone synthesis pathway. Science of The Total Environment, 900, 165711. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.165711
Huang, Cheng, P. K., Siao, C. Y., Lo, Y. C., Chou, W. C., & Huang, P. C. (2022). Mediation effects of thyroid function in the associations between phthalate exposure and lipid metabolism in adults. Environ Health, 21(1), 61. https://doi.org/10.1186/s12940-022-00873-9
Huang, Liang, J., Tang, P., Yu, C., Fan, H., Liao, Q., Long, J., Pan, D., Zeng, X., Liu, S., Huang, D., & Qiu, X. (2022a). Associations of bisphenol exposure with thyroid hormones in pregnant women: a prospective birth cohort study in China. Environ Sci Pollut Res Int, 29(58), 87170-87183. https://doi.org/10.1007/s11356-022-21817-3
Huang, Liang, J., Tang, P., Yu, C., Fan, H., Liao, Q., Long, J., Pan, D., Zeng, X., Liu, S., Huang, D., & Qiu, X. (2022b). Associations of bisphenol exposure with thyroid hormones in pregnant women: a prospective birth cohort study in China. Environmental Science and Pollution Research, 29(58), 87170-87183. https://doi.org/10.1007/s11356-022-21817-3
Huang, H.-B., Pan, W.-H., Chang, J.-W., Chiang, H.-C., Guo, Yue L., Jaakkola, J. J. K., & Huang, P.-C. (2017). Does exposure to phthalates influence thyroid function and growth hormone homeostasis? The Taiwan Environmental Survey for Toxicants (TEST) 2013. Environmental Research, 153, 63-72. https://doi.org/https://doi.org/10.1016/j.envres.2016.11.014
Huang, P.-C., Chen, H.-C., Leung, S.-H., Lin, Y.-J., Huang, H.-B., Chang, W.-T., Huang, H.-I., & Chang, J.-W. (2024). Associations between paraben exposure, thyroid capacity, homeostasis and pituitary thyrotropic function in the general Taiwanese: Taiwan Environmental Survey for Toxicants (TEST) 2013. Environmental Science and Pollution Research, 31(1), 1288-1303. https://doi.org/10.1007/s11356-023-31277-y
Huang, P.-C., Tsai, C.-H., Liang, W.-Y., Li, S.-S., Pan, W.-H., & Chiang, H.-C. (2015). Age and Gender Differences in Urinary Levels of Eleven Phthalate Metabolites in General Taiwanese Population after a DEHP Episode. PLOS ONE, 10(7), e0133782. https://doi.org/10.1371/journal.pone.0133782
Jalal, N., Surendranath, A. R., Pathak, J. L., Yu, S., & Chung, C. Y. (2018). Bisphenol A (BPA) the mighty and the mutagenic. Toxicol Rep, 5, 76-84. https://doi.org/10.1016/j.toxrep.2017.12.013
Jassim. M. A. Alkalby. (2015). EFFECT OF BISPHENOL A ON THYROID, LIVER AND TESTICULAR FUNCTIONS IN ADULT MALE RATS. Basrah Journal of Veterinary Research, 2015 Volume 14, Issue 1, p187-p206. https://doi.org/https://www.iasj.net/iasj/article/102436
Jiang, S., Liu, H., Zhou, S., Zhang, X., Peng, C., Zhou, H., Tong, Y., & Lu, Q. (2020). Association of bisphenol A and its alternatives bisphenol S and F exposure with hypertension and blood pressure: A cross-sectional study in China. Environmental Pollution, 257, 113639. https://doi.org/https://doi.org/10.1016/j.envpol.2019.113639
Jiang, Y., Xia, W., Zhu, Y., Li, X., Wang, D., Liu, J., Chang, H., Li, G., Xu, B., Chen, X., Li, Y., & Xu, S. (2014). Mitochondrial dysfunction in early life resulted from perinatal bisphenol A exposure contributes to hepatic steatosis in rat offspring. Toxicology Letters, 228(2), 85-92. https://doi.org/https://doi.org/10.1016/j.toxlet.2014.04.013
Köhrle, J., & Gärtner, R. (2009). Selenium and thyroid. Best Practice & Research Clinical Endocrinology & Metabolism, 23(6), 815-827. https://doi.org/https://doi.org/10.1016/j.beem.2009.08.002
Köhrle, J., & Frädrich, C. (2021). Thyroid hormone system disrupting chemicals. Best Practice & Research Clinical Endocrinology & Metabolism, 35(5), 101562. https://doi.org/https://doi.org/10.1016/j.beem.2021.101562
Keil, A. P., Buckley Jessie, P., O’Brien Katie, M., Ferguson Kelly, K., Zhao, S., & White Alexandra, J. (2020). A Quantile-Based g-Computation Approach to Addressing the Effects of Exposure Mixtures. Environmental Health Perspectives, 128(4), 047004. https://doi.org/10.1289/EHP5838
Kharrazian, D. (2014). The Potential Roles of Bisphenol A (BPA) Pathogenesis in Autoimmunity. Autoimmune Diseases, 2014(1), 743616. https://doi.org/https://doi.org/10.1155/2014/743616
Koch, H. M., & Calafat, A. M. (2009). Human body burdens of chemicals used in plastic manufacture. Philos Trans R Soc Lond B Biol Sci, 364(1526), 2063-2078. https://doi.org/10.1098/rstb.2008.0208
Kwon, J. A., Shin, B., & Kim, B. (2020). Urinary bisphenol A and thyroid function by BMI in the Korean National Environmental Health Survey (KoNEHS) 2012–2014. Chemosphere, 240, 124918. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.124918
LaKind, J. S., Levesque, J., Dumas, P., Bryan, S., Clarke, J., & Naiman, D. Q. (2012). Comparing United States and Canadian population exposures from National Biomonitoring Surveys: Bisphenol A intake as a case study. Journal of Exposure Science & Environmental Epidemiology, 22(3), 219-226. https://doi.org/10.1038/jes.2012.1
LaKind, J. S., & Naiman, D. Q. (2011). Daily intake of bisphenol A and potential sources of exposure: 2005–2006 National Health and Nutrition Examination Survey. Journal of Exposure Science & Environmental Epidemiology, 21(3), 272-279. https://doi.org/10.1038/jes.2010.9
LaKind, J. S., & Naiman, D. Q. (2015). Temporal trends in bisphenol A exposure in the United States from 2003–2012 and factors associated with BPA exposure: Spot samples and urine dilution complicate data interpretation. Environmental Research, 142, 84-95. https://doi.org/https://doi.org/10.1016/j.envres.2015.06.013
Landrigan, P. J., Raps, H., Cropper, M., Bald, C., Brunner, M., Canonizado, E. M., Charles, D., Chiles, T. C., Donohue, M. J., Enck, J., Fenichel, P., Fleming, L. E., Ferrier-Pages, C., Fordham, R., Gozt, A., Griffin, C., Hahn, M. E., Haryanto, B., Hixson, R., . . . Dunlop, S. (2023). The Minderoo-Monaco Commission on Plastics and Human Health. Annals of Global Health. https://doi.org/10.5334/aogh.4056
Lawson, C., Gieske, M., Murdoch, B., Ye, P., Li, Y., Hassold, T., & Hunt, P. A. (2011). Gene Expression in the Fetal Mouse Ovary Is Altered by Exposure to Low Doses of Bisphenol A1. Biology of Reproduction, 84(1), 79-86. https://doi.org/10.1095/biolreprod.110.084814
Le Blaye, O. (2011). The EMA guideline on bioanalytical method validation. EMA, London, UK.
Lee, S., Kim, C., Shin, H., Kho, Y., & Choi, K. (2019). Comparison of thyroid hormone disruption potentials by bisphenols A, S, F, and Z in embryo-larval zebrafish. Chemosphere, 221, 115-123. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.01.019
Lee, S., Kim, C., Youn, H., & Choi, K. (2017). Thyroid hormone disrupting potentials of bisphenol A and its analogues-in vitro comparison study employing rat pituitary (GH3) and thyroid follicular (FRTL-5) cells. Toxicology in Vitro, 40, 297-304.
Li, C., Zhao, Y., Chen, Y., Wang, F., Tse, L. A., Wu, X., Xiao, Q., Deng, Y., Li, M., Kang, L., & Lu, S. (2021). The internal exposure of bisphenol analogues in South China adults and the associated health risks. Science of The Total Environment, 795, 148796. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.148796
Li, M., Bi, Y., Qi, L., Wang, T., Xu, M., Huang, Y., Xu, Y., Chen, Y., Lu, J., Wang, W., & Ning, G. (2012). Exposure to bisphenol A is associated with low-grade albuminuria in Chinese adults. Kidney International, 81(11), 1131-1139. https://doi.org/https://doi.org/10.1038/ki.2012.6
Liao, C., & Kannan, K. (2014). A Survey of Alkylphenols, Bisphenols, and Triclosan in Personal Care Products from China and the United States. Archives of Environmental Contamination and Toxicology, 67(1), 50-59. https://doi.org/10.1007/s00244-014-0016-8
Lin, Y.-J., Chen, H.-C., Chang, J.-W., Huang, H.-B., Chang, W.-T., & Huang, P.-C. (2024). Exposure characteristics and cumulative risk assessment of bisphenol A and its substitutes: the Taiwan environmental survey for toxicants 2013 [Original Research]. Frontiers in Public Health, 12. https://doi.org/10.3389/fpubh.2024.1396147
Lite, C., Raja, G. L., Juliet, M., Sridhar, V. V., Subhashree, K. D., Kumar, P., Chakraborty, P., & Arockiaraj, J. (2022). In utero exposure to endocrine-disrupting chemicals, maternal factors and alterations in the epigenetic landscape underlying later-life health effects. Environmental Toxicology and Pharmacology, 89, 103779.
Liu, B., Yan, Y., Xie, J., Sun, J., Lehmler, H.-J., Trasande, L., Wallace, R. B., & Bao, W. (2024). Bisphenol S, bisphenol F, bisphenol a exposure and body composition in US adults. Chemosphere, 346, 140537. https://doi.org/https://doi.org/10.1016/j.chemosphere.2023.140537
Müller, M. (2012). Generalized Linear Models. In J. E. Gentle, W. K. Härdle, & Y. Mori (Eds.), Handbook of Computational Statistics: Concepts and Methods (pp. 681-709). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-21551-3_24
Ma, Y., Liu, H., Wu, J., Yuan, L., Wang, Y., Du, X., Wang, R., Marwa, P. W., Petlulu, P., Chen, X., & Zhang, H. (2019). The adverse health effects of bisphenol A and related toxicity mechanisms. Environmental Research, 176, 108575. https://doi.org/https://doi.org/10.1016/j.envres.2019.108575
Mage, D. T., Allen, R. H., Gondy, G., Smith, W., Barr, D. B., & Needham, L. L. (2004). Estimating pesticide dose from urinary pesticide concentration data by creatinine correction in the Third National Health and Nutrition Examination Survey (NHANES-III). Journal of Exposure Science & Environmental Epidemiology, 14(6), 457-465. https://doi.org/10.1038/sj.jea.7500343
Mage, D. T., Allen, R. H., & Kodali, A. (2008). Creatinine corrections for estimating children's and adult's pesticide intake doses in equilibrium with urinary pesticide and creatinine concentrations. Journal of Exposure Science & Environmental Epidemiology, 18(4), 360-368. https://doi.org/10.1038/sj.jes.7500614
Meeker, J. D., Calafat, A. M., & Hauser, R. (2010). Urinary Bisphenol A Concentrations in Relation to Serum Thyroid and Reproductive Hormone Levels in Men from an Infertility Clinic. Environmental Science & Technology, 44(4), 1458-1463. https://doi.org/10.1021/es9028292
Meeker John, D., & Ferguson Kelly, K. (2011). Relationship between Urinary Phthalate and Bisphenol A Concentrations and Serum Thyroid Measures in U.S. Adults and Adolescents from the National Health and Nutrition Examination Survey (NHANES) 2007–2008. Environmental Health Perspectives, 119(10), 1396-1402. https://doi.org/10.1289/ehp.1103582
Mendez, W., & Eftim, S. E. (2012). Biomarkers of perchlorate exposure are correlated with circulating thyroid hormone levels in the 2007–2008 NHANES. Environmental Research, 118, 137-144. https://doi.org/https://doi.org/10.1016/j.envres.2012.05.010
Michałowicz, J. (2014). Bisphenol A – Sources, toxicity and biotransformation. Environmental Toxicology and Pharmacology, 37(2), 738-758. https://doi.org/https://doi.org/10.1016/j.etap.2014.02.003
Milczarek-Banach, J., Rachoń, D., Bednarczuk, T., Myśliwiec-Czajka, K., Wasik, A., & Miśkiewicz, P. (2020). Exposure to Bisphenol A Analogs and the Thyroid Function and Volume in Women of Reproductive Age-Cross-Sectional Study. Front Endocrinol (Lausanne), 11, 587252. https://doi.org/10.3389/fendo.2020.587252
Moriyama, K., Tagami, T., Akamizu, T., Usui, T., Saijo, M., Kanamoto, N., Hataya, Y., Shimatsu, A., Kuzuya, H., & Nakao, K. (2002). Thyroid Hormone Action Is Disrupted by Bisphenol A as an Antagonist. The Journal of Clinical Endocrinology & Metabolism, 87(11), 5185-5190. https://doi.org/10.1210/jc.2002-020209
Ohtaki, S., Nakagawa, H., Nakamura, M., & Yamazaki, I. (1982). One- and two-electron oxidations of tyrosine, monoiodotyrosine, and diiodotyrosine catalyzed by hog thyroid peroxidase. Journal of Biological Chemistry, 257(22), 13398-13403. https://doi.org/10.1016/S0021-9258(18)33462-8
Ouchi, K., & Watanabe, S. (2002). Measurement of bisphenol A in human urine using liquid chromatography with multi-channel coulometric electrochemical detection. Journal of Chromatography B, 780(2), 365-370. https://doi.org/https://doi.org/10.1016/S1570-0232(02)00547-0
Pan, W.-H., Wu, H.-J., Yeh, C.-J., Chuang, S.-Y., Chang, H.-Y., Yeh, N.-H., & Hsieh, Y.-T. (2011). Diet and Health Trends in Taiwan: Comparison of Two Nutrition and Health Surveys from 1993-1996 and 2005- 2008 [Journal Article]. Asia Pacific Journal of Clinical Nutrition, 20(2), 238-250. https://search.informit.org/doi/10.3316/informit.120681050263248
https://search.informit.org/doi/full/10.3316/informit.120681050263248
https://search.informit.org/doi/pdf/10.3316/informit.120681050263248
Park, C., Choi, W., Hwang, M., Lee, Y., Kim, S., Yu, S., Lee, I., Paek, D., & Choi, K. (2017). Associations between urinary phthalate metabolites and bisphenol A levels, and serum thyroid hormones among the Korean adult population - Korean National Environmental Health Survey (KoNEHS) 2012–2014. Science of The Total Environment, 584-585, 950-957. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.01.144
Program, N. T. (1982). Carcinogenesis bioassay of bisphenol A (CAS No. 80-05-7) in F344 rats and B6C3F1 mice (feed study). National toxicology program technical report series, 215, 1-116.
Ramírez, V., Gálvez-Ontiveros, Y., Porras-Quesada, P., Martinez-Gonzalez, L. J., Rivas, A., & Álvarez-Cubero, M. J. (2021). Metabolic pathways, alterations in miRNAs expression and effects of genetic polymorphisms of bisphenol a analogues: A systematic review. Environmental Research, 197, 111062. https://doi.org/https://doi.org/10.1016/j.envres.2021.111062
Richter, C. A., Birnbaum, L. S., Farabollini, F., Newbold, R. R., Rubin, B. S., Talsness, C. E., Vandenbergh, J. G., Walser-Kuntz, D. R., & vom Saal, F. S. (2007). In vivo effects of bisphenol A in laboratory rodent studies. Reproductive Toxicology, 24(2), 199-224. https://doi.org/https://doi.org/10.1016/j.reprotox.2007.06.004
Rochester, J. R., & Bolden, A. L. (2015). Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes. Environmental Health Perspectives, 123(7), 643-650. https://doi.org/doi:10.1289/ehp.1408989
Romano, M. E., Webster, G. M., Vuong, A. M., Thomas Zoeller, R., Chen, A., Hoofnagle, A. N., Calafat, A. M., Karagas, M. R., Yolton, K., Lanphear, B. P., & Braun, J. M. (2015). Gestational urinary bisphenol A and maternal and newborn thyroid hormone concentrations: The HOME Study. Environmental Research, 138, 453-460. https://doi.org/https://doi.org/10.1016/j.envres.2015.03.003
Santoro, A., Chianese, R., Troisi, J., Richards, S., Nori, S. L., Fasano, S., Guida, M., Plunk, E., Viggiano, A., Pierantoni, R., & Meccariello, R. (2019). Neuro-toxic and Reproductive Effects of BPA. Curr Neuropharmacol, 17(12), 1109-1132. https://doi.org/10.2174/1570159x17666190726112101
Schmutzler, C., Bacinski, A., Gotthardt, I., Huhne, K., Ambrugger, P., Klammer, H., Schlecht, C., Hoang-Vu, C., Grüters, A., Wuttke, W., Jarry, H., & Köhrle, J. (2007). The Ultraviolet Filter Benzophenone 2 Interferes with the Thyroid Hormone Axis in Rats and Is a Potent in Vitro Inhibitor of Human Recombinant Thyroid Peroxidase. Endocrinology, 148(6), 2835-2844. https://doi.org/10.1210/en.2006-1280
Schrader, T. J., Langlois, I., Soper, K., & Cherry, W. (2002). Mutagenicity of bisphenol A (4,4′-isopropylidenediphenol) in vitro: effects of nitrosylation. Teratogenesis, Carcinogenesis, and Mutagenesis, 22(6), 425-441. https://doi.org/https://doi.org/10.1002/tcm.10039
Schrader, T. J., Langlois, I., Soper, K., & Cherry, W. (2002). Mutagenicity of bisphenol A (4, 4′‐isopropylidenediphenol) in vitro: effects of nitrosylation. Teratogenesis, Carcinogenesis, and Mutagenesis, 22(6), 425-441.
Schweikl, H., Schmalz, G., & Rackebrandt, K. (1998). The mutagenic activity of unpolymerized resin monomers in Salmonella typhimurium and V79 cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 415(1), 119-130. https://doi.org/https://doi.org/10.1016/S1383-5718(98)00067-9
Schweizer, U., Chiu, J., & Köhrle, J. (2008). Peroxides and Peroxide-Degrading Enzymes in the Thyroid. Antioxidants & Redox Signaling, 10(9), 1577-1592. https://doi.org/10.1089/ars.2008.2054
Sheng, Z.-G., Tang, Y., Liu, Y.-X., Yuan, Y., Zhao, B.-Q., Chao, X.-J., & Zhu, B.-Z. (2012). Low concentrations of bisphenol a suppress thyroid hormone receptor transcription through a nongenomic mechanism. Toxicology and applied pharmacology, 259(1), 133-142. https://doi.org/https://doi.org/10.1016/j.taap.2011.12.018
Shirani, M., Alizadeh, S., Mahdavinia, M., & Dehghani, M. A. (2019). The ameliorative effect of quercetin on bisphenol A-induced toxicity in mitochondria isolated from rats. Environmental Science and Pollution Research, 26(8), 7688-7696. https://doi.org/10.1007/s11356-018-04119-5
Siegel, R., Ma, J., Zou, Z., & Jemal, A. (2014). Cancer statistics, 2014. CA: A Cancer Journal for Clinicians, 64(1), 9-29. https://doi.org/https://doi.org/10.3322/caac.21208
Siracusa, J. S., Yin, L., Measel, E., Liang, S., & Yu, X. (2018). Effects of bisphenol A and its analogs on reproductive health: A mini review. Reproductive Toxicology, 79, 96-123. https://doi.org/https://doi.org/10.1016/j.reprotox.2018.06.005
Snyder, R. W., Maness, S. C., Gaido, K. W., Welsch, F., Sumner, S. C. J., & Fennell, T. R. (2000). Metabolism and Disposition of Bisphenol A in Female Rats. Toxicology and applied pharmacology, 168(3), 225-234. https://doi.org/https://doi.org/10.1006/taap.2000.9051
Song, Y., Ruf, J., Lothaire, P., Dequanter, D., Andry, G., Willemse, E., Dumont, J. E., Van Sande, J., & De Deken, X. (2010). Association of Duoxes with Thyroid Peroxidase and Its Regulation in Thyrocytes. The Journal of Clinical Endocrinology & Metabolism, 95(1), 375-382. https://doi.org/10.1210/jc.2009-1727
Sriphrapradang, C., Chailurkit, L.-o., Aekplakorn, W., & Ongphiphadhanakul, B. (2013). Association between bisphenol A and abnormal free thyroxine level in men. Endocrine, 44(2), 441-447. https://doi.org/10.1007/s12020-013-9889-y
Tabuchi, Y., Takasaki, I., & Kondo, T. (2006). Identification of genetic networks involved in the cell injury accompanying endoplasmic reticulum stress induced by bisphenol A in testicular Sertoli cells. Biochemical and biophysical research communications, 345(3), 1044-1050.
Tang, K. T., Wang, F. F., Pan, W. H., Lin, J. D., Won, G. S., Chau, W. K., Lin, H. D., & Hsieh, Y. T. (2016). Iodine status of adults in Taiwan 2005-2008, 5 years after the cessation of mandatory salt iodization. J Formos Med Assoc, 115(8), 645-651. https://doi.org/10.1016/j.jfma.2015.06.014
Taurog, A., Braverman, L., & Utiger, R. (2000). Hormone synthesis: thyroid iodine metabolism. In (pp. 61-85): Lippincott Williams & Wilkins.
Taurog, A., Dorris, M. L., & Doerge, D. R. (1996). Mechanism of Simultaneous Iodination and Coupling Catalyzed by Thyroid Peroxidase. Archives of Biochemistry and Biophysics, 330(1), 24-32. https://doi.org/https://doi.org/10.1006/abbi.1996.0222
Teeguarden, J. G., Waechter, J. M., Jr., Clewell, H. J., III, Covington, T. R., & Barton, H. A. (2005). Evaluation of Oral and Intravenous Route Pharmacokinetics, Plasma Protein Binding, and Uterine Tissue Dose Metrics of Bisphenol A: A Physiologically Based Pharmacokinetic Approach. Toxicological Sciences, 85(2), 823-838. https://doi.org/10.1093/toxsci/kfi135
Tennant, R. W., Margolin, B. H., Shelby, M. D., Zeiger, E., Haseman, J. K., Spalding, J., Caspary, W., Resnick, M., Stasiewicz, S., & Anderson, B. (1987). Prediction of chemical carcinogenicity in rodents from in vitro genetic toxicity assays. Science, 236(4804), 933-941.
Thayer, K. A., Doerge, D. R., Hunt, D., Schurman, S. H., Twaddle, N. C., Churchwell, M. I., Garantziotis, S., Kissling, G. E., Easterling, M. R., Bucher, J. R., & Birnbaum, L. S. (2015). Pharmacokinetics of bisphenol A in humans following a single oral administration. Environment International, 83, 107-115. https://doi.org/https://doi.org/10.1016/j.envint.2015.06.008
Ullah, H., Jahan, S., Ain, Q. U., Shaheen, G., & Ahsan, N. (2016). Effect of bisphenol S exposure on male reproductive system of rats: A histological and biochemical study. Chemosphere, 152, 383-391. https://doi.org/https://doi.org/10.1016/j.chemosphere.2016.02.125
United States Environment Protection Agency. (2010). Bisphenol A (BPA) Summary. Retrieved August 21 from https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/bisphenol-bpa-summary
Völkel, W., Colnot, T., Csanády, G. A., Filser, J. G., & Dekant, W. (2002). Metabolism and Kinetics of Bisphenol A in Humans at Low Doses Following Oral Administration. Chemical Research in Toxicology, 15(10), 1281-1287. https://doi.org/10.1021/tx025548t
van Woerden, I., Payne-Sturges, D. C., Whisner, C. M., & Bruening, M. (2021). Dietary quality and bisphenols: trends in bisphenol A, F, and S exposure in relation to the Healthy Eating Index using representative data from the NHANES 2007–2016. The American Journal of Clinical Nutrition, 114(2), 669-682. https://doi.org/https://doi.org/10.1093/ajcn/nqab080
Vancamp, P., Houbrechts, A. M., & Darras, V. M. (2019). Insights from zebrafish deficiency models to understand the impact of local thyroid hormone regulator action on early development. General and comparative endocrinology, 279, 45-52. https://doi.org/https://doi.org/10.1016/j.ygcen.2018.09.011
Vandenberg, L. N., Hauser, R., Marcus, M., Olea, N., & Welshons, W. V. (2007). Human exposure to bisphenol A (BPA). Reproductive Toxicology, 24(2), 139-177. https://doi.org/https://doi.org/10.1016/j.reprotox.2007.07.010
Wang, F., Hua, J., Chen, M., Xia, Y., Zhang, Q., Zhao, R., Zhou, W., Zhang, Z., & Wang, B. (2012). High urinary bisphenol A concentrations in workers and possible laboratory abnormalities. Occupational and Environmental Medicine, 69(9), 679-684. https://doi.org/10.1136/oemed-2011-100529
Wang, H., Zhao, P., Huang, Q., Chi, Y., Dong, S., & Fan, J. (2019). Bisphenol-A induces neurodegeneration through disturbance of intracellular calcium homeostasis in human embryonic stem cells-derived cortical neurons. Chemosphere, 229, 618-630. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.04.099
Wang, T., Lu, J., Xu, M., Xu, Y., Li, M., Liu, Y., Tian, X., Chen, Y., Dai, M., Wang, W., Lai, S., Bi, Y., & Ning, G. (2013a). Urinary Bisphenol A Concentration and Thyroid Function in Chinese Adults. Epidemiology, 24(2), 295-302. https://doi.org/10.1097/EDE.0b013e318280e02f
Wang, T., Lu, J., Xu, M., Xu, Y., Li, M., Liu, Y., Tian, X., Chen, Y., Dai, M., Wang, W., Lai, S., Bi, Y., & Ning, G. (2013b). Urinary Bisphenol A Concentration and Thyroid Function in Chinese Adults. Epidemiology, 24(2). https://journals.lww.com/epidem/fulltext/2013/03000/urinary_bisphenol_a_concentration_and_thyroid.18.aspx
Weng, Y.-I., Hsu, P.-Y., Liyanarachchi, S., Liu, J., Deatherage, D. E., Huang, Y.-W., Zuo, T., Rodriguez, B., Lin, C.-H., & Cheng, A.-L. (2010). Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells. Toxicology and applied pharmacology, 248(2), 111-121.
Wu, L.-H., Zhang, X.-M., Wang, F., Gao, C.-J., Chen, D., Palumbo, J. R., Guo, Y., & Zeng, E. Y. (2018). Occurrence of bisphenol S in the environment and implications for human exposure: A short review. Science of The Total Environment, 615, 87-98. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.09.194
Wu, Y., Beland, F. A., & Fang, J.-L. (2016). Effect of triclosan, triclocarban, 2,2′,4,4′-tetrabromodiphenyl ether, and bisphenol A on the iodide uptake, thyroid peroxidase activity, and expression of genes involved in thyroid hormone synthesis. Toxicology in Vitro, 32, 310-319. https://doi.org/https://doi.org/10.1016/j.tiv.2016.01.014
Yang, Lai, S., Li, Y., Wu, X., Xing, M., Li, X., Xu, D., Chen, Y., Xiang, J., Cheng, P., Wang, X., Chen, Z., Ding, H., Xu, P., & Lou, X. (2023). Association of urinary bisphenols with thyroid function in the general population: a cross-sectional study of an industrial park in China. Environmental Science and Pollution Research, 30(49), 107517-107532. https://doi.org/10.1007/s11356-023-29932-5
Yuan, N., Sun, J., Zhao, X., & Li, W. (2024). Relationship between bisphenol A and autoimmune thyroid disease in women of childbearing age [Original Research]. Frontiers in Endocrinology, 15. https://doi.org/10.3389/fendo.2024.1333915
Yuan, S., Du, X., Liu, H., Guo, X., Zhang, B., Wang, Y., Wang, B., Zhang, H., & Guo, H. (2023). Association between bisphenol A exposure and thyroid dysfunction in adults: a systematic review and meta-analysis. Toxicology and Industrial Health, 39(4), 188-203. https://doi.org/10.1177/07482337231156284
Yue, B., Ning, S., Miao, H., Fang, C., Li, J., Zhang, L., Bao, Y., Fan, S., Zhao, Y., & Wu, Y. (2023). Human exposure to a mixture of endocrine disruptors and serum levels of thyroid hormones: A cross-sectional study. Journal of Environmental Sciences, 125, 641-649. https://doi.org/https://doi.org/10.1016/j.jes.2022.01.017
Zheng, H., Wang, J., Wei, X., Chang, L., & Liu, S. (2021). Proinflammatory properties and lipid disturbance of polystyrene microplastics in the livers of mice with acute colitis. Science of The Total Environment, 750, 143085. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.143085

中文參考文獻:
行政院環境保護署(2023)。110年申報毒性化學物質釋放量。
https://www.cha.gov.tw/cp-326-3120-f7716-1.html
衛生福利部食品藥物管理署(2023)。112年食品器具容器包裝衛生標準
https://www.mohw.gov.tw/dl-81751-eb236112-7c28-42bc-a801-d40c2386f1ce.html
衛生福利部國民健康署(2012)。2012年癌症登記報告
https://www.hpa.gov.tw/Pages/ashx/File.ashx?FilePath=~/File/Attach/2892/File_3646.pdf
衛生福利部國民健康署(2020)。2020年癌症登記報告
https://www.mohw.gov.tw/cp-5275-73012-1.html
衛生福利部國民健康署(2024)。「國人膳食營養素參考攝取量及其說明」第八版之增修訂
https://health99.hpa.gov.tw/material/8287

電子全文 電子全文(網際網路公開日期:20290722)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top