|
1. Redondo, N., et al., SARS-CoV-2 Accessory Proteins in Viral Pathogenesis: Knowns and Unknowns. Front Immunol, 2021. 12: p. 708264. 2. Hu, B., et al., Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 2021. 19(3): p. 141-154. 3. González-Vázquez, L.D. and M. Arenas, Molecular Evolution of SARS-CoV-2 during the COVID-19 Pandemic. Genes (Basel), 2023. 14(2). 4. Yadav, R., et al., Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19. Cells, 2021. 10(4). 5. Mohamadian, M., et al., COVID-19: Virology, biology and novel laboratory diagnosis. J Gene Med, 2021. 23(2): p. e3303. 6. Arya, R., et al., Structural insights into SARS-CoV-2 proteins. J Mol Biol, 2021. 433(2): p. 166725. 7. Yang, H. and Z. Rao, Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol, 2021. 19(11): p. 685-700. 8. Schoeman, D. and B.C. Fielding, Coronavirus envelope protein: current knowledge. Virol J, 2019. 16(1): p. 69. 9. Wong, N.A. and M.H. Saier, Jr., The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. Int J Mol Sci, 2021. 22(3). 10. Kadam, S.B., et al., SARS-CoV-2, the pandemic coronavirus: Molecular and structural insights. J Basic Microbiol, 2021. 61(3): p. 180-202. 11. Bai, Z., et al., The SARS-CoV-2 Nucleocapsid Protein and Its Role in Viral Structure, Biological Functions, and a Potential Target for Drug or Vaccine Mitigation. Viruses, 2021. 13(6). 12. Ashour, H.M., et al., Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks. Pathogens, 2020. 9(3). 13. Lim, S.P., Targeting SARS-CoV-2 and host cell receptor interactions. Antiviral Res, 2023. 210: p. 105514. 14. Atri, D., et al., COVID-19 for the Cardiologist: Basic Virology, Epidemiology, Cardiac Manifestations, and Potential Therapeutic Strategies. JACC Basic Transl Sci, 2020. 5(5): p. 518-536. 15. Malone, B., et al., Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Nat Rev Mol Cell Biol, 2022. 23(1): p. 21-39. 1. Redondo, N., et al., SARS-CoV-2 Accessory Proteins in Viral Pathogenesis: Knowns and Unknowns. Front Immunol, 2021. 12: p. 708264. 2. Hu, B., et al., Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 2021. 19(3): p. 141-154. 3. González-Vázquez, L.D. and M. Arenas, Molecular Evolution of SARS-CoV-2 during the COVID-19 Pandemic. Genes (Basel), 2023. 14(2). 4. Yadav, R., et al., Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19. Cells, 2021. 10(4). 5. Mohamadian, M., et al., COVID-19: Virology, biology and novel laboratory diagnosis. J Gene Med, 2021. 23(2): p. e3303. 6. Arya, R., et al., Structural insights into SARS-CoV-2 proteins. J Mol Biol, 2021. 433(2): p. 166725. 7. Yang, H. and Z. Rao, Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol, 2021. 19(11): p. 685-700. 8. Schoeman, D. and B.C. Fielding, Coronavirus envelope protein: current knowledge. Virol J, 2019. 16(1): p. 69. 9. Wong, N.A. and M.H. Saier, Jr., The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. Int J Mol Sci, 2021. 22(3). 10. Kadam, S.B., et al., SARS-CoV-2, the pandemic coronavirus: Molecular and structural insights. J Basic Microbiol, 2021. 61(3): p. 180-202. 11. Bai, Z., et al., The SARS-CoV-2 Nucleocapsid Protein and Its Role in Viral Structure, Biological Functions, and a Potential Target for Drug or Vaccine Mitigation. Viruses, 2021. 13(6). 12. Ashour, H.M., et al., Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks. Pathogens, 2020. 9(3). 13. Lim, S.P., Targeting SARS-CoV-2 and host cell receptor interactions. Antiviral Res, 2023. 210: p. 105514. 14. Atri, D., et al., COVID-19 for the Cardiologist: Basic Virology, Epidemiology, Cardiac Manifestations, and Potential Therapeutic Strategies. JACC Basic Transl Sci, 2020. 5(5): p. 518-536. 15. Malone, B., et al., Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Nat Rev Mol Cell Biol, 2022. 23(1): p. 21-39. 16. V'Kovski, P., et al., Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol, 2021. 19(3): p. 155-170. 17. Al-Horani, R.A. and S. Kar, Potential Anti-SARS-CoV-2 Therapeutics That Target the Post-Entry Stages of the Viral Life Cycle: A Comprehensive Review. Viruses, 2020. 12(10). 18. Wang, M.Y., et al., SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front Cell Infect Microbiol, 2020. 10: p. 587269. 19. Umakanthan, S., et al., Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgrad Med J, 2020. 96(1142): p. 753-758. 20. Lamers, M.M., et al., SARS-CoV-2 productively infects human gut enterocytes. Science, 2020. 369(6499): p. 50-54. 21. Zhou, J., et al., Infection of bat and human intestinal organoids by SARS-CoV-2. Nat Med, 2020. 26(7): p. 1077-1083. 22. Majumder, J. and T. Minko, Recent Developments on Therapeutic and Diagnostic Approaches for COVID-19. Aaps j, 2021. 23(1): p. 14. 23. Parums, D.V., Editorial: COVID-19 and Multisystem Inflammatory Syndrome in Children (MIS-C). Med Sci Monit, 2021. 27: p. e933369. 24. Zhang, J.J., et al., Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality. Clin Rev Allergy Immunol, 2023. 64(1): p. 90-107. 25. Garg, M., et al., The Conundrum of 'Long-COVID-19': A Narrative Review. Int J Gen Med, 2021. 14: p. 2491-2506. 26. Lai, C.C., et al., Long COVID: An inevitable sequela of SARS-CoV-2 infection. J Microbiol Immunol Infect, 2023. 56(1): p. 1-9. 27. Lippi, G., F. Sanchis-Gomar, and B.M. Henry, COVID-19 and its long-term sequelae: what do we know in 2023? Pol Arch Intern Med, 2023. 133(4). 28. Davis, H.E., et al., Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol, 2023. 21(3): p. 133-146. 29. Proal, A.D. and M.B. VanElzakker, Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms. Front Microbiol, 2021. 12: p. 698169. 30. Efstathiou, V., et al., Long COVID and neuropsychiatric manifestations (Review). Exp Ther Med, 2022. 23(5): p. 363. 31. Schultze, J.L. and A.C. Aschenbrenner, COVID-19 and the human innate immune system. Cell, 2021. 184(7): p. 1671-1692. 32. Akira, S., S. Uematsu, and O. Takeuchi, Pathogen recognition and innate immunity. Cell, 2006. 124(4): p. 783-801. 33. Chauhan, S., et al., Innate immunity and inflammophagy: balancing the defence and immune homeostasis. Febs j, 2022. 289(14): p. 4112-4131. 34. Minkoff, J.M. and B. tenOever, Innate immune evasion strategies of SARS-CoV-2. Nat Rev Microbiol, 2023. 21(3): p. 178-194. 35. Lowery, S.A., A. Sariol, and S. Perlman, Innate immune and inflammatory responses to SARS-CoV-2: Implications for COVID-19. Cell Host Microbe, 2021. 29(7): p. 1052-1062. 36. Mistry, P., et al., SARS-CoV-2 Variants, Vaccines, and Host Immunity. Front Immunol, 2021. 12: p. 809244. 37. Ochando, J., et al., Trained immunity - basic concepts and contributions to immunopathology. Nat Rev Nephrol, 2023. 19(1): p. 23-37. 38. Hulme, K.D., et al., Dysregulated Inflammation During Obesity: Driving Disease Severity in Influenza Virus and SARS-CoV-2 Infections. Front Immunol, 2021. 12: p. 770066. 39. Joseph, J., Trained Immunity as a Prospective Tool against Emerging Respiratory Pathogens. Vaccines (Basel), 2022. 10(11). 40. Netea, M.G., et al., Defining trained immunity and its role in health and disease. Nat Rev Immunol, 2020. 20(6): p. 375-388. 41. Brueggeman, J.M., et al., Trained Immunity: An Overview and the Impact on COVID-19. Front Immunol, 2022. 13: p. 837524. 42. Acevedo, O.A., et al., Molecular and Cellular Mechanisms Modulating Trained Immunity by Various Cell Types in Response to Pathogen Encounter. Front Immunol, 2021. 12: p. 745332. 43. Netea, M.G., et al., Trained Immunity: a Tool for Reducing Susceptibility to and the Severity of SARS-CoV-2 Infection. Cell, 2020. 181(5): p. 969-977. 44. Giamarellos-Bourboulis, E.J., et al., Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe, 2020. 27(6): p. 992-1000.e3. 45. Netea, M.G., et al., The role of trained immunity in COVID-19: Lessons for the next pandemic. Cell Host Microbe, 2023. 31(6): p. 890-901. 46. Ryan, F.J., et al., Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection. BMC Med, 2022. 20(1): p. 26. 47. Vijayakumar, B., et al., Immuno-proteomic profiling reveals aberrant immune cell regulation in the airways of individuals with ongoing post-COVID-19 respiratory disease. Immunity, 2022. 55(3): p. 542-556.e5. 48. Khan, S., et al., SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. Elife, 2021. 10. 49. Montezano, A.C., et al., SARS-CoV-2 spike protein induces endothelial inflammation via ACE2 independently of viral replication. Sci Rep, 2023. 13(1): p. 14086. 50. Lee, A.R., et al., SARS-CoV-2 spike protein promotes inflammatory cytokine activation and aggravates rheumatoid arthritis. Cell Commun Signal, 2023. 21(1): p. 44. 51. Bekkering, S., et al., In Vitro Experimental Model of Trained Innate Immunity in Human Primary Monocytes. Clin Vaccine Immunol, 2016. 23(12): p. 926-933. 52. Wang, G., et al., β-Glucan Induces Training Immunity to Promote Antiviral Activity by Activating TBK1. Viruses, 2023. 15(5). 53. Islamuddin, M., et al., Innate Immune Response and Inflammasome Activation During SARS-CoV-2 Infection. Inflammation, 2022. 45(5): p. 1849-1863. 54. Cutler, D.M. and L.H. Summers, The COVID-19 Pandemic and the $16 Trillion Virus. Jama, 2020. 324(15): p. 1495-1496. 55. Turner, S., et al., Long COVID: pathophysiological factors and abnormalities of coagulation. Trends Endocrinol Metab, 2023. 34(6): p. 321-344. 56. Arts, R.J., et al., Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity. Cell Metab, 2016. 24(6): p. 807-819. 57. Chacko, B.K., et al., Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood. Lab Invest, 2013. 93(6): p. 690-700. 58. Bulua, A.C., et al., Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med, 2011. 208(3): p. 519-33. 59. Arts, R.J.W., et al., BCG Vaccination Protects against Experimental Viral Infection in Humans through the Induction of Cytokines Associated with Trained Immunity. Cell Host Microbe, 2018. 23(1): p. 89-100.e5. 60. Vitiello, A., A. Zovi, and G. Rezza, New emerging SARS-CoV-2 variants and antiviral agents. Drug Resist Updat, 2023. 70: p. 100986. 61. Kaku, Y., et al., Virological characteristics of the SARS-CoV-2 JN.1 variant. Lancet Infect Dis, 2024. 24(2): p. e82. 62. Urbán, P., et al., The SARS-CoV-2 Nucleoprotein Induces Innate Memory in Human Monocytes. Front Immunol, 2022. 13: p. 963627. 63. Antunes, M., et al., COVID-19 inactivated and non-replicating viral vector vaccines induce regulatory training phenotype in human monocytes under epigenetic control. Front Cell Infect Microbiol, 2023. 13: p. 1200789. 64. Cvetkovic, J., et al., Human Monocytes Exposed to SARS-CoV-2 Display Features of Innate Immune Memory Producing High Levels of CXCL10 upon Restimulation. J Innate Immun, 2023. 15(1): p. 911-924. 65. Kusiak, A. and G. Brady, Bifurcation of signalling in human innate immune pathways to NF-kB and IRF family activation. Biochemical Pharmacology, 2022. 205: p. 115246. 66. Guo, Q., et al., NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther, 2024. 9(1): p. 53. 67. Barnabei, L., et al., NF-κB: At the Borders of Autoimmunity and Inflammation. Front Immunol, 2021. 12: p. 716469. 68. Al Hamrashdi, M. and G. Brady, Regulation of IRF3 activation in human antiviral signaling pathways. Biochemical Pharmacology, 2022. 200: p. 115026. 69. Schwanke, H., M. Stempel, and M.M. Brinkmann, Of Keeping and Tipping the Balance: Host Regulation and Viral Modulation of IRF3-Dependent IFNB1 Expression. Viruses, 2020. 12(7). 70. Dalskov, L., H.H. Gad, and R. Hartmann, Viral recognition and the antiviral interferon response. Embo j, 2023. 42(14): p. e112907. 71. Matsukura, S., et al., Synthetic double-stranded RNA induces multiple genes related to inflammation through Toll-like receptor 3 depending on NF-kappaB and/or IRF-3 in airway epithelial cells. Clin Exp Allergy, 2006. 36(8): p. 1049-62. 72. Guha, M. and N. Mackman, LPS induction of gene expression in human monocytes. Cellular Signalling, 2001. 13(2): p. 85-94. 73. Baldwin, A.S., Jr., The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol, 1996. 14: p. 649-83. 74. Tsukamoto, H., et al., Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKKϵ-IRF3 axis activation. J Biol Chem, 2018. 293(26): p. 10186-10201. 75. Kumar, A., J. Zhang, and F.S. Yu, Toll-like receptor 3 agonist poly(I:C)-induced antiviral response in human corneal epithelial cells. Immunology, 2006. 117(1): p. 11-21. 76. Freitas, R.S., T.F. Crum, and K. Parvatiyar, SARS-CoV-2 Spike Antagonizes Innate Antiviral Immunity by Targeting Interferon Regulatory Factor 3. Front Cell Infect Microbiol, 2021. 11: p. 789462.
|