跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/09 20:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴怡汝
研究生(外文):LAI, YI-RU
論文名稱:評估SARS-CoV-2棘蛋白在先天免疫記憶中所扮演的角色
論文名稱(外文):Evaluating the Role of SARS-CoV-2 Spike Protein in Trained Immunity
指導教授:張聰賢張聰賢引用關係
指導教授(外文):CHANG,TSUNG-HSIEN
口試委員:黃國洋詹伊琳
口試委員(外文):HUANG, KUO-YANGCHAN, YI-LIN
口試日期:2023-05-09
學位類別:碩士
校院名稱:國防醫學院
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:89
外文關鍵詞:SARS-CoV-2Spike proteinTrained immunityInnate immune memoryCytokine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:2
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
SARS-CoV-2是嚴重特殊傳染性肺炎(Coronavirus disease 2019, COVID-19)的病原體,在全球造成嚴重的疫情,其在個體之間所造成的疾病不盡相同。雖然大多數COVID-19患者表現為無症狀或輕至中度的疾病,但有些個案會出現「長新冠後遺症」,其定義為患者初次感染SARS-CoV-2後3個月內繼續或出現新症狀,並且這些症狀持續至少2個月且沒有其他解釋,確切機制目前不清楚。最近的研究表明,在疾病後期嚴重COVID-19病例中的過度訓練型免疫會導致免疫失調,除此之外在部分患者,即便症狀很輕微也會表現出過度發炎,尤其是伴隨IL-6水平升高。長期以來,人們認為免疫記憶是適應性免疫反應的獨特標誌,然而有越來越多的文獻表明先天免疫細胞在某些感染或疫苗接種後也可以表現出適應性特徵,對隨後獨立於適應性免疫的挑戰產生強化且持久的免疫反應。就目前的研究表明,先天免疫記憶在COVID-19中的作用有兩種說法:一是有助於防止再次感染或減輕繼發病毒感染的嚴重性,二是過度強烈地誘導訓練有素的免疫力可能會導致COVID-19患者的長期炎症和產生其他併發症。因此我們假設與長新冠後遺症相關的免疫失調和多器官功能障礙導致持續性炎症是緣於先天免疫記憶的調節,因此本研究目的主要為了解SARS-CoV-2如何誘導先天免疫記憶,以及這種記憶在長新冠後遺症中起保護作用或加劇感染後的發炎反應。
我們的實驗結果初步顯示,單獨使用SARS-CoV-2 spike protein在初次刺激後對於隨後的刺激無法產生先天免疫記憶,而使用polyI:C或LPS作為先天免疫誘導劑進行刺激對隨後SARS-CoV-2 spike protein的刺激可以表現出記憶反應,這種記憶主要表現為增加產生IL-6的能力。此外,我們還發現當SARS-CoV-2 spike protein與其他刺激物共同刺激時,可以作為先天免疫記憶的誘導劑,然而可能潛在地抑制其他刺激物誘導先天免疫記憶的能力。
我們研究的主要發現SARS-CoV-2的結構蛋白-spike protein,可以在人類細胞中誘導訓練型免疫。儘管我們的實驗結果只能提供基礎的想法,未來還需要進行更多的實驗來驗證和鞏固我們的結論。

SARS-CoV-2, the virus causing the global Coronavirus disease 2019 (COVID-19) pandemic, affects individuals differently. While most COVID-19 cases result in asymptomatic or mild-to-moderate illness, some experience "Long COVID." This condition occurs when patients continue or develop new symptoms for at least two months after their initial infection, and its exact mechanisms remain unclear. Recent research has shown that an excessive trained immunity in severe COVID-19 cases leads to immune dysregulation, particularly in later stages. Some patients, even with mild cases, exhibit excessive inflammation with elevated cytokine levels, notably interleukin-6 (IL-6). Traditionally, immune memory has been considered an acquired immune response feature. However, emerging evidence suggests that the innate immune system can adapt after prior encounters with pathogens. In the context of COVID-19, two perspectives have emerged: innate immunity might contribute to protection against reinfection or worsen long-term inflammatory complications in "Long COVID." Patients with "Long COVID" often show transcriptional dysregulation and immune dysfunction in their innate immune cells. This suggests that immune dysregulation and multi-organ dysfunction during acute COVID-19 may be linked to trained immunity.
We would like to explore the role of trained immunity during SARS-CoV-2 infection. We aim to understand how SARS-CoV-2 triggers trained immunity and whether this memory influences "Long COVID," protective responses, or post-infection outcomes.
Our experimental results preliminarily indicate that utilizing SARS-CoV-2 spike protein following the initial stimulation failed to induce trained immunity. Cells trained with LPS and polyI:C exhibit a memory response upon subsequent stimulation with SARS-CoV-2 spike protein. This memory was almost exclusively represented by an increased capacity to produce IL-6. Furthermore, we found that spike protein can also serve as an inducer of innate immune memory when combined with other stimuli. However, it may inhibit other stimuli's ability to induce trained immunity.
The major finding of our study is that one of the SARS-CoV-2 proteins, spike protein, can elicit trained immunity in human cells. Although our initial experimental findings provide a foundation, additional experiments are imperative to validate and solidify our conclusion.

總目錄 I
正文目錄 II
表目錄 V
圖目錄 VI
中文摘要 VIII
Abstract X
第一章 緒論 1
第一節 嚴重急性呼吸道症候群冠狀病毒2型 1
第二節 先天性免疫 8
第三節 研究動機與目的 13
第二章 實驗材料及方法 15
第一節 建立體外先天免疫記憶模型 15
第二節 誘導先天免疫記憶後所產生之抗病毒和發炎反應分析 21
第三節 先天免疫記憶中第一型干擾素的分析 22
第三章 結果 26
第一節 建立體外先天免疫記憶模型 26
第二節 利用人類免疫和非免疫細胞評估SARS-CoV-2 spike protein誘導先天免疫記憶的能力 28
第三節 探討第一型干擾素在先天免疫記憶中的作用 35
第四章 討論 37
第一節 利用不同的檢測方法來分析先天免疫記憶的產生 37
第二節 不同SARS-CoV-2變異株spike protein之間的差異 38
第三節 SARS-CoV-2或其成分在先天免疫記憶中的角色 39
第四節 SARS-CoV-2 spike protein、polyI:C和LPS對NFκB p65
及IRF3的影響 40
第五章 結論 43
第六章 參考資料 45

1. Redondo, N., et al., SARS-CoV-2 Accessory Proteins in Viral Pathogenesis: Knowns and Unknowns. Front Immunol, 2021. 12: p. 708264.
2. Hu, B., et al., Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 2021. 19(3): p. 141-154.
3. González-Vázquez, L.D. and M. Arenas, Molecular Evolution of SARS-CoV-2 during the COVID-19 Pandemic. Genes (Basel), 2023. 14(2).
4. Yadav, R., et al., Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19. Cells, 2021. 10(4).
5. Mohamadian, M., et al., COVID-19: Virology, biology and novel laboratory diagnosis. J Gene Med, 2021. 23(2): p. e3303.
6. Arya, R., et al., Structural insights into SARS-CoV-2 proteins. J Mol Biol, 2021. 433(2): p. 166725.
7. Yang, H. and Z. Rao, Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol, 2021. 19(11): p. 685-700.
8. Schoeman, D. and B.C. Fielding, Coronavirus envelope protein: current knowledge. Virol J, 2019. 16(1): p. 69.
9. Wong, N.A. and M.H. Saier, Jr., The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. Int J Mol Sci, 2021. 22(3).
10. Kadam, S.B., et al., SARS-CoV-2, the pandemic coronavirus: Molecular and structural insights. J Basic Microbiol, 2021. 61(3): p. 180-202.
11. Bai, Z., et al., The SARS-CoV-2 Nucleocapsid Protein and Its Role in Viral Structure, Biological Functions, and a Potential Target for Drug or Vaccine Mitigation. Viruses, 2021. 13(6).
12. Ashour, H.M., et al., Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks. Pathogens, 2020. 9(3).
13. Lim, S.P., Targeting SARS-CoV-2 and host cell receptor interactions. Antiviral Res, 2023. 210: p. 105514.
14. Atri, D., et al., COVID-19 for the Cardiologist: Basic Virology, Epidemiology, Cardiac Manifestations, and Potential Therapeutic Strategies. JACC Basic Transl Sci, 2020. 5(5): p. 518-536.
15. Malone, B., et al., Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Nat Rev Mol Cell Biol, 2022. 23(1): p. 21-39.
1. Redondo, N., et al., SARS-CoV-2 Accessory Proteins in Viral Pathogenesis: Knowns and Unknowns. Front Immunol, 2021. 12: p. 708264.
2. Hu, B., et al., Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 2021. 19(3): p. 141-154.
3. González-Vázquez, L.D. and M. Arenas, Molecular Evolution of SARS-CoV-2 during the COVID-19 Pandemic. Genes (Basel), 2023. 14(2).
4. Yadav, R., et al., Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19. Cells, 2021. 10(4).
5. Mohamadian, M., et al., COVID-19: Virology, biology and novel laboratory diagnosis. J Gene Med, 2021. 23(2): p. e3303.
6. Arya, R., et al., Structural insights into SARS-CoV-2 proteins. J Mol Biol, 2021. 433(2): p. 166725.
7. Yang, H. and Z. Rao, Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol, 2021. 19(11): p. 685-700.
8. Schoeman, D. and B.C. Fielding, Coronavirus envelope protein: current knowledge. Virol J, 2019. 16(1): p. 69.
9. Wong, N.A. and M.H. Saier, Jr., The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. Int J Mol Sci, 2021. 22(3).
10. Kadam, S.B., et al., SARS-CoV-2, the pandemic coronavirus: Molecular and structural insights. J Basic Microbiol, 2021. 61(3): p. 180-202.
11. Bai, Z., et al., The SARS-CoV-2 Nucleocapsid Protein and Its Role in Viral Structure, Biological Functions, and a Potential Target for Drug or Vaccine Mitigation. Viruses, 2021. 13(6).
12. Ashour, H.M., et al., Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks. Pathogens, 2020. 9(3).
13. Lim, S.P., Targeting SARS-CoV-2 and host cell receptor interactions. Antiviral Res, 2023. 210: p. 105514.
14. Atri, D., et al., COVID-19 for the Cardiologist: Basic Virology, Epidemiology, Cardiac Manifestations, and Potential Therapeutic Strategies. JACC Basic Transl Sci, 2020. 5(5): p. 518-536.
15. Malone, B., et al., Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Nat Rev Mol Cell Biol, 2022. 23(1): p. 21-39.
16. V'Kovski, P., et al., Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol, 2021. 19(3): p. 155-170.
17. Al-Horani, R.A. and S. Kar, Potential Anti-SARS-CoV-2 Therapeutics That Target the Post-Entry Stages of the Viral Life Cycle: A Comprehensive Review. Viruses, 2020. 12(10).
18. Wang, M.Y., et al., SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front Cell Infect Microbiol, 2020. 10: p. 587269.
19. Umakanthan, S., et al., Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgrad Med J, 2020. 96(1142): p. 753-758.
20. Lamers, M.M., et al., SARS-CoV-2 productively infects human gut enterocytes. Science, 2020. 369(6499): p. 50-54.
21. Zhou, J., et al., Infection of bat and human intestinal organoids by SARS-CoV-2. Nat Med, 2020. 26(7): p. 1077-1083.
22. Majumder, J. and T. Minko, Recent Developments on Therapeutic and Diagnostic Approaches for COVID-19. Aaps j, 2021. 23(1): p. 14.
23. Parums, D.V., Editorial: COVID-19 and Multisystem Inflammatory Syndrome in Children (MIS-C). Med Sci Monit, 2021. 27: p. e933369.
24. Zhang, J.J., et al., Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality. Clin Rev Allergy Immunol, 2023. 64(1): p. 90-107.
25. Garg, M., et al., The Conundrum of 'Long-COVID-19': A Narrative Review. Int J Gen Med, 2021. 14: p. 2491-2506.
26. Lai, C.C., et al., Long COVID: An inevitable sequela of SARS-CoV-2 infection. J Microbiol Immunol Infect, 2023. 56(1): p. 1-9.
27. Lippi, G., F. Sanchis-Gomar, and B.M. Henry, COVID-19 and its long-term sequelae: what do we know in 2023? Pol Arch Intern Med, 2023. 133(4).
28. Davis, H.E., et al., Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol, 2023. 21(3): p. 133-146.
29. Proal, A.D. and M.B. VanElzakker, Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms. Front Microbiol, 2021. 12: p. 698169.
30. Efstathiou, V., et al., Long COVID and neuropsychiatric manifestations (Review). Exp Ther Med, 2022. 23(5): p. 363.
31. Schultze, J.L. and A.C. Aschenbrenner, COVID-19 and the human innate immune system. Cell, 2021. 184(7): p. 1671-1692.
32. Akira, S., S. Uematsu, and O. Takeuchi, Pathogen recognition and innate immunity. Cell, 2006. 124(4): p. 783-801.
33. Chauhan, S., et al., Innate immunity and inflammophagy: balancing the defence and immune homeostasis. Febs j, 2022. 289(14): p. 4112-4131.
34. Minkoff, J.M. and B. tenOever, Innate immune evasion strategies of SARS-CoV-2. Nat Rev Microbiol, 2023. 21(3): p. 178-194.
35. Lowery, S.A., A. Sariol, and S. Perlman, Innate immune and inflammatory responses to SARS-CoV-2: Implications for COVID-19. Cell Host Microbe, 2021. 29(7): p. 1052-1062.
36. Mistry, P., et al., SARS-CoV-2 Variants, Vaccines, and Host Immunity. Front Immunol, 2021. 12: p. 809244.
37. Ochando, J., et al., Trained immunity - basic concepts and contributions to immunopathology. Nat Rev Nephrol, 2023. 19(1): p. 23-37.
38. Hulme, K.D., et al., Dysregulated Inflammation During Obesity: Driving Disease Severity in Influenza Virus and SARS-CoV-2 Infections. Front Immunol, 2021. 12: p. 770066.
39. Joseph, J., Trained Immunity as a Prospective Tool against Emerging Respiratory Pathogens. Vaccines (Basel), 2022. 10(11).
40. Netea, M.G., et al., Defining trained immunity and its role in health and disease. Nat Rev Immunol, 2020. 20(6): p. 375-388.
41. Brueggeman, J.M., et al., Trained Immunity: An Overview and the Impact on COVID-19. Front Immunol, 2022. 13: p. 837524.
42. Acevedo, O.A., et al., Molecular and Cellular Mechanisms Modulating Trained Immunity by Various Cell Types in Response to Pathogen Encounter. Front Immunol, 2021. 12: p. 745332.
43. Netea, M.G., et al., Trained Immunity: a Tool for Reducing Susceptibility to and the Severity of SARS-CoV-2 Infection. Cell, 2020. 181(5): p. 969-977.
44. Giamarellos-Bourboulis, E.J., et al., Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe, 2020. 27(6): p. 992-1000.e3.
45. Netea, M.G., et al., The role of trained immunity in COVID-19: Lessons for the next pandemic. Cell Host Microbe, 2023. 31(6): p. 890-901.
46. Ryan, F.J., et al., Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection. BMC Med, 2022. 20(1): p. 26.
47. Vijayakumar, B., et al., Immuno-proteomic profiling reveals aberrant immune cell regulation in the airways of individuals with ongoing post-COVID-19 respiratory disease. Immunity, 2022. 55(3): p. 542-556.e5.
48. Khan, S., et al., SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. Elife, 2021. 10.
49. Montezano, A.C., et al., SARS-CoV-2 spike protein induces endothelial inflammation via ACE2 independently of viral replication. Sci Rep, 2023. 13(1): p. 14086.
50. Lee, A.R., et al., SARS-CoV-2 spike protein promotes inflammatory cytokine activation and aggravates rheumatoid arthritis. Cell Commun Signal, 2023. 21(1): p. 44.
51. Bekkering, S., et al., In Vitro Experimental Model of Trained Innate Immunity in Human Primary Monocytes. Clin Vaccine Immunol, 2016. 23(12): p. 926-933.
52. Wang, G., et al., β-Glucan Induces Training Immunity to Promote Antiviral Activity by Activating TBK1. Viruses, 2023. 15(5).
53. Islamuddin, M., et al., Innate Immune Response and Inflammasome Activation During SARS-CoV-2 Infection. Inflammation, 2022. 45(5): p. 1849-1863.
54. Cutler, D.M. and L.H. Summers, The COVID-19 Pandemic and the $16 Trillion Virus. Jama, 2020. 324(15): p. 1495-1496.
55. Turner, S., et al., Long COVID: pathophysiological factors and abnormalities of coagulation. Trends Endocrinol Metab, 2023. 34(6): p. 321-344.
56. Arts, R.J., et al., Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity. Cell Metab, 2016. 24(6): p. 807-819.
57. Chacko, B.K., et al., Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood. Lab Invest, 2013. 93(6): p. 690-700.
58. Bulua, A.C., et al., Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med, 2011. 208(3): p. 519-33.
59. Arts, R.J.W., et al., BCG Vaccination Protects against Experimental Viral Infection in Humans through the Induction of Cytokines Associated with Trained Immunity. Cell Host Microbe, 2018. 23(1): p. 89-100.e5.
60. Vitiello, A., A. Zovi, and G. Rezza, New emerging SARS-CoV-2 variants and antiviral agents. Drug Resist Updat, 2023. 70: p. 100986.
61. Kaku, Y., et al., Virological characteristics of the SARS-CoV-2 JN.1 variant. Lancet Infect Dis, 2024. 24(2): p. e82.
62. Urbán, P., et al., The SARS-CoV-2 Nucleoprotein Induces Innate Memory in Human Monocytes. Front Immunol, 2022. 13: p. 963627.
63. Antunes, M., et al., COVID-19 inactivated and non-replicating viral vector vaccines induce regulatory training phenotype in human monocytes under epigenetic control. Front Cell Infect Microbiol, 2023. 13: p. 1200789.
64. Cvetkovic, J., et al., Human Monocytes Exposed to SARS-CoV-2 Display Features of Innate Immune Memory Producing High Levels of CXCL10 upon Restimulation. J Innate Immun, 2023. 15(1): p. 911-924.
65. Kusiak, A. and G. Brady, Bifurcation of signalling in human innate immune pathways to NF-kB and IRF family activation. Biochemical Pharmacology, 2022. 205: p. 115246.
66. Guo, Q., et al., NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther, 2024. 9(1): p. 53.
67. Barnabei, L., et al., NF-κB: At the Borders of Autoimmunity and Inflammation. Front Immunol, 2021. 12: p. 716469.
68. Al Hamrashdi, M. and G. Brady, Regulation of IRF3 activation in human antiviral signaling pathways. Biochemical Pharmacology, 2022. 200: p. 115026.
69. Schwanke, H., M. Stempel, and M.M. Brinkmann, Of Keeping and Tipping the Balance: Host Regulation and Viral Modulation of IRF3-Dependent IFNB1 Expression. Viruses, 2020. 12(7).
70. Dalskov, L., H.H. Gad, and R. Hartmann, Viral recognition and the antiviral interferon response. Embo j, 2023. 42(14): p. e112907.
71. Matsukura, S., et al., Synthetic double-stranded RNA induces multiple genes related to inflammation through Toll-like receptor 3 depending on NF-kappaB and/or IRF-3 in airway epithelial cells. Clin Exp Allergy, 2006. 36(8): p. 1049-62.
72. Guha, M. and N. Mackman, LPS induction of gene expression in human monocytes. Cellular Signalling, 2001. 13(2): p. 85-94.
73. Baldwin, A.S., Jr., The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol, 1996. 14: p. 649-83.
74. Tsukamoto, H., et al., Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKKϵ-IRF3 axis activation. J Biol Chem, 2018. 293(26): p. 10186-10201.
75. Kumar, A., J. Zhang, and F.S. Yu, Toll-like receptor 3 agonist poly(I:C)-induced antiviral response in human corneal epithelial cells. Immunology, 2006. 117(1): p. 11-21.
76. Freitas, R.S., T.F. Crum, and K. Parvatiyar, SARS-CoV-2 Spike Antagonizes Innate Antiviral Immunity by Targeting Interferon Regulatory Factor 3. Front Cell Infect Microbiol, 2021. 11: p. 789462.

電子全文 電子全文(網際網路公開日期:20290501)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top