|
1. van Leur, S.W., et al., Pathogenesis and virulence of flavivirus infections. Virulence, 2021. 12(1): p. 2814-2838.
2. Messina, J.P., et al., Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol, 2014. 22(3): p. 138-46.
3. Kok, B.H., et al., Dengue virus infection - a review of pathogenesis, vaccines, diagnosis and therapy. Virus Res, 2023. 324: p. 199018.
4. Chen, W.J., Dengue outbreaks and the geographic distribution of dengue vectors in Taiwan: A 20-year epidemiological analysis. Biomed J, 2018. 41(5): p. 283-289.
5. Hou, J., W. Ye, and J. Chen, Current Development and Challenges of Tetravalent Live-Attenuated Dengue Vaccines. Front Immunol, 2022. 13: p. 840104.
6. Kularatne, S.A. and C. Dalugama, Dengue infection: Global importance, immunopathology and management. Clin Med (Lond), 2022. 22(1): p. 9-13.
7. Guzman, M.G. and E. Harris, Dengue. Lancet, 2015. 385(9966): p. 453-65.
8. Zeyaullah, M., et al., Preparedness for the Dengue Epidemic: Vaccine as a Viable Approach. Vaccines (Basel), 2022. 10(11).
9. Cordero-Rivera, C.D., et al., The importance of viral and cellular factors on flavivirus entry. Curr Opin Virol, 2021. 49: p. 164-175.
10. Salles, T.S., et al., History, epidemiology and diagnostics of dengue in the American and Brazilian contexts: a review. Parasit Vectors, 2018. 11(1): p. 264.
11. Nanaware, N., et al., Dengue Virus Infection: A Tale of Viral Exploitations and Host Responses. Viruses, 2021. 13(10).
12. Pang, X., R. Zhang, and G. Cheng, Progress towards understanding the pathogenesis of dengue hemorrhagic fever. Virol Sin, 2017. 32(1): p. 16-22.
13. Pan, Y., et al., Flaviviruses: Innate Immunity, Inflammasome Activation, Inflammatory Cell Death, and Cytokines. Front Immunol, 2022. 13: p. 829433.
14. Carbaugh, D.L. and H.M. Lazear, Flavivirus Envelope Protein Glycosylation: Impacts on Viral Infection and Pathogenesis. J Virol, 2020. 94(11).
15. Rastogi, M., N. Sharma, and S.K. Singh, Flavivirus NS1: a multifaceted enigmatic viral protein. Virol J, 2016. 13: p. 131.
16. Carpio, K.L. and A.D.T. Barrett, Flavivirus NS1 and Its Potential in Vaccine Development. Vaccines (Basel), 2021. 9(6).
17. Urakami, A., et al., An Envelope-Modified Tetravalent Dengue Virus-Like-Particle Vaccine Has Implications for Flavivirus Vaccine Design. J Virol, 2017. 91(23).
18. Li, A., et al., A Zika virus vaccine expressing premembrane-envelope-NS1 polyprotein. Nat Commun, 2018. 9(1): p. 3067.
19. Sankhala, R.S., et al., Zika-specific neutralizing antibodies targeting inter-dimer envelope epitopes. Cell Rep, 2023. 42(8): p. 112942.
20. Sarker, A., N. Dhama, and R.D. Gupta, Dengue virus neutralizing antibody: a review of targets, cross-reactivity, and antibody-dependent enhancement. Front Immunol, 2023. 14: p. 1200195.
21. Shukla, R., et al., Antibody-Dependent Enhancement: A Challenge for Developing a Safe Dengue Vaccine. Front Cell Infect Microbiol, 2020. 10: p. 572681.
22. Rathore, A.P.S. and A.L. St John, Cross-Reactive Immunity Among Flaviviruses. Front Immunol, 2020. 11: p. 334.
23. Moi, M.L., et al., Development of an antibody-dependent enhancement assay for dengue virus using stable BHK-21 cell lines expressing Fc gammaRIIA. J Virol Methods, 2010. 163(2): p. 205-9.
24. Paradkar, P.N., et al., Unfolded protein response (UPR) gene expression during antibody-dependent enhanced infection of cultured monocytes correlates with dengue disease severity. Biosci Rep, 2011. 31(3): p. 221-30.
25. Rey, F.A., et al., The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design. EMBO Rep, 2018. 19(2): p. 206-224.
26. Plevka, P., et al., Maturation of flaviviruses starts from one or more icosahedrally independent nucleation centres. EMBO Rep, 2011. 12(6): p. 602-6.
27. Huang, C.H., et al., Dengue vaccine: an update. Expert Rev Anti Infect Ther, 2021. 19(12): p. 1495-1502.
28. Ma, E. and G. Cheng, Host immunity and vaccine development against Dengue virus. Infect Med (Beijing), 2022. 1(1): p. 50-58.
29. Hadinegoro, S.R., et al., Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease. N Engl J Med, 2015. 373(13): p. 1195-206.
30. Khetarpal, N. and I. Khanna, Dengue Fever: Causes, Complications, and Vaccine Strategies. J Immunol Res, 2016. 2016: p. 6803098.
31. Sirivichayakul, C., et al., Long-term Safety and Immunogenicity of a Tetravalent Dengue Vaccine Candidate in Children and Adults: A Randomized, Placebo-Controlled, Phase 2 Study. J Infect Dis, 2022. 225(9): p. 1513-1520.
32. López-Medina, E., et al., Efficacy of a Dengue Vaccine Candidate (TAK-003) in Healthy Children and Adolescents 2 Years after Vaccination. J Infect Dis, 2022. 225(9): p. 1521-1532.
33. Kallás, E.G., et al., Live, Attenuated, Tetravalent Butantan-Dengue Vaccine in Children and Adults. N Engl J Med, 2024. 390(5): p. 397-408.
34. Zhang, X., et al., Structures and Functions of the Envelope Glycoprotein in Flavivirus Infections. Viruses, 2017. 9(11).
35. de Alwis, R., et al., Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions. Proc Natl Acad Sci U S A, 2012. 109(19): p. 7439-44.
36. Slon Campos, J.L., J. Mongkolsapaya, and G.R. Screaton, The immune response against flaviviruses. Nat Immunol, 2018. 19(11): p. 1189-1198.
37. Dejnirattisai, W., et al., A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat Immunol, 2015. 16(2): p. 170-177.
38. Barba-Spaeth, G., et al., Structural basis of potent Zika-dengue virus antibody cross-neutralization. Nature, 2016. 536(7614): p. 48-53.
39. Rouvinski, A., et al., Recognition determinants of broadly neutralizing human antibodies against dengue viruses. Nature, 2015. 520(7545): p. 109-13.
40. Rouvinski, A., et al., Covalently linked dengue virus envelope glycoprotein dimers reduce exposure of the immunodominant fusion loop epitope. Nat Commun, 2017. 8: p. 15411.
41. Wang, Y., et al., Substitution of the precursor peptide prevents anti-prM antibody-mediated antibody-dependent enhancement of dengue virus infection. Virus Res, 2017. 229: p. 57-64.
42. Dejnirattisai, W., et al., Cross-reacting antibodies enhance dengue virus infection in humans. Science, 2010. 328(5979): p. 745-8.
43. Smith, S.A., et al., The potent and broadly neutralizing human dengue virus-specific monoclonal antibody 1C19 reveals a unique cross-reactive epitope on the bc loop of domain II of the envelope protein. mBio, 2013. 4(6): p. e00873-13.
44. Deng, Y.Q., et al., A broadly flavivirus cross-neutralizing monoclonal antibody that recognizes a novel epitope within the fusion loop of E protein. PLoS One, 2011. 6(1): p. e16059.
45. Yen, L.C., et al., Neutralizing antibodies targeting a novel epitope on envelope protein exhibited broad protection against flavivirus without risk of disease enhancement. J Biomed Sci, 2023. 30(1): p. 41.
46. Nicholls, C.M.R., M. Sevvana, and R.J. Kuhn, Structure-guided paradigm shifts in flavivirus assembly and maturation mechanisms. Adv Virus Res, 2020. 108: p. 33-83.
47. Kielian, M. and F.A. Rey, Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol, 2006. 4(1): p. 67-76.
48. Li, L., et al., Potent neutralizing antibodies elicited by dengue vaccine in rhesus macaque target diverse epitopes. PLoS Pathog, 2019. 15(6): p. e1007716.
49. Abbink, P., et al., Therapeutic and protective efficacy of a dengue antibody against Zika infection in rhesus monkeys. Nat Med, 2018. 24(6): p. 721-723.
50. Fernandez, E., et al., Human antibodies to the dengue virus E-dimer epitope have therapeutic activity against Zika virus infection. Nat Immunol, 2017. 18(11): p. 1261-1269.
|