跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/14 22:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉育嘉
研究生(外文):LIOU, YU-JIA
論文名稱:質心位置對四翅昆蟲飛行身體俯仰影響分析
論文名稱(外文):The Effect of Center of Mass Position on Body Pitching of Four-winged Insects in Flapping Flight
指導教授:賴渝翔
指導教授(外文):LAI, YU-HSIANG
口試委員:孔健君張勝凱藍國瑞陳冠宇賴渝翔
口試委員(外文):KUNG, CHIEN-CHUNCHANG, SHENG-KAILAN, BLUESTCHEN, KUAN-YULAI, YU-HSIANG
口試日期:2024-05-09
學位類別:碩士
校院名稱:國防大學
系所名稱:機械工程碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:111
中文關鍵詞:四翅昆蟲豆娘身體俯仰飛行穩定性微飛行器
外文關鍵詞:Four-winged insectDamselflyBody pitchFlight stabilityMicro-aircraft
相關次數:
  • 被引用被引用:0
  • 點閱點閱:5
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
飛行昆蟲在飛行時,沒有任何支撐依託,身體會受到翅膀拍撲動作、空氣氣流變化及質心位置的影響,這些因素會改變飛行中的力與力矩平衡,從而影響飛行姿態。質心位置對於昆蟲的飛行穩定性至關重要,如果質心位置不當,會導致飛行中的不穩定性,從而影響昆蟲的飛行效率和控制能力。
本研究以具有敏捷自由操縱性及高速飛行機動性的「豆娘」為參考物種,運用SOLIDWORKS及ANSYS Fluent等軟體對其進行等比例建模及三維流場暫態模擬,藉由調整頭部及身體半徑尺寸,來獲得5組不同的身體質心位置,並進行24次拍翅週期的模擬分析,探討在相同拍翅動作下,身體質心位置對飛行姿態的影響,總計本研究共完成10組模擬結果及分析。
結果顯示,在身體俯仰方面,在24個拍翅週期中,不同的身體質心位置,直接造成了不同的身體俯仰角度。質心越靠前的,最終容易俯仰向下,反之,越靠後的越易俯仰向上,但身體俯仰過程中均經過兩次的俯仰反轉。在力與力矩分析方面,下拍均是產生正力矩,上拍則是產生負力矩,力矩的大小與趨勢是跟著升推力在變動,當升力或推力較大時,對應的力矩也較大,其中又以「升力」為整體飛行過程中身體俯仰的主要影響,上下拍升力的拉扯,決定最終俯仰的方向。在力臂分析方面,本研究發現在飛行初期及後期,力臂的大小對身體俯仰有關鍵性的影響,飛行初期,升力差異不大,但質心越靠後力臂越大,導致俯仰向下角度較小。在飛行後期,俯仰向下的階段,升力亦差異不大,但力臂的大小,決定後續是否能轉變為俯仰向上。在飛行速度方面,當身體質心越往前時,身體越容易俯仰向下,導致產生較大的推力及較小的升力,使得前飛速度加快;當身體質心越往後時,身體越容易俯仰向上,導致產生較小的推力及較大的升力,使得爬升速度加快。在渦漩結構方面,本研究透過飛行速度與拍翅速度產生的相對運動,解釋翼前緣渦漩的生成位置與結構大小,說明了力分量不合理之處。
本研究嘗試提出對微飛行器操控的設計理念:通過微調整質心位置,使微飛行器能夠在相同拍翅動作下穩定地前飛或俯仰升降,從而提高飛行效率並節省能源。研究結果對於微飛行器的設計和操控有著重要的意義,並有助於優化微飛行器的性能和運動控制策略。
Flying insects, when in flight, have no physical support and their bodies are influenced by wing flapping movements, air flow changes, and the position of the center of mass. These factors alter the balance of forces and moments during flight, thus affecting flight posture. The position of the center of mass is crucial for the flight stability of insects; an improper center of mass can lead to instability during flight, thereby affecting the insect's flight efficiency and control ability.
This study focuses on the damselfly, a species known for its agile maneuverability and high-speed flight. Using software like SOLIDWORKS and ANSYS Fluent, we conducted proportional modeling and three-dimensional transient flow simulations. By adjusting the head and body radius dimensions, we obtained five different body center of mass positions and performed 24 flapping cycle simulations to investigate the impact of body center of mass position on flight posture under the same flapping movements. A total of 10 sets of simulations and analyses were completed.
Results showed that during the 24 flapping cycles, different body center of mass positions directly resulted in different body pitch angles. A more forward center of mass led to a downward pitch, while a more rearward center of mass led to an upward pitch, with the body pitch undergoing two reversals during the process. In terms of force and moment analysis, the downstroke generated positive moments, while the upstroke generated negative moments. The magnitude and trend of the moments varied with the lift and thrust; greater lift or thrust corresponded to larger moments. Lift was identified as the primary influence on body pitch throughout the flight process, with the pull of lift during upstroke and downstroke determining the final pitch direction.
In terms of the moment arm analysis, the size of the moment arm had a crucial impact on body pitch during the initial and final stages of flight. During the initial stage, when lift differences were small, a more rearward center of mass with a larger moment arm resulted in a smaller downward pitch angle. During the final stage, when pitching down, lift differences were still small, but the size of the moment arm determined whether the pitch could transition to an upward direction.
Regarding flight speed, a more forward center of mass caused the body to pitch downwards more easily, resulting in greater thrust and smaller lift, thus accelerating forward flight speed. Conversely, a more rearward center of mass caused the body to pitch upwards more easily, resulting in smaller thrust and greater lift, thereby increasing climbing speed.
In terms of vortex structure, this study explained the generation position and size of leading-edge vortices through the relative motion produced by flight speed and flapping speed, highlighting unreasonable force components.
This study proposes a design concept for micro aerial vehicle (MAV) control: by finely adjusting the center of mass, MAVs can achieve stable forward flight or pitch ascent and descent under the same flapping movements, thereby improving flight efficiency and saving energy. The research findings hold significant implications for the design and control of MAVs, aiding in the optimization of their performance and motion control strategies.
致謝 I
摘要 III
Abstract V
目錄 VII
表目錄 X
圖目錄 XI
辭彙、符號說明和縮寫 XV
1. 前言 1
1.1.研究動機 1
1.2.研究目的 2
1.3.文獻回顧 3
1.3.1.昆蟲專有名詞、空氣動力學及微飛行器介紹 3
1.3.2.昆蟲暫態空氣動力學機制 10
1.3.3.四翅昆蟲(蜻蜓、豆娘)相關研究 14
1.3.4.蝴蝶身體俯仰機制 16
1.4.小結 17
2. 研究流程與方法 19
2.1.研究流程 19
2.2.數學模式 20
2.2.1.基本假設 20
2.2.2.統御方程式 21
2.3.CFD模擬方法 21
3. 物理模型與格點系統 23
3.1.參考物種 23
3.2.物理模型設定 24
3.2.1.SOLIDWORKS建模 24
3.2.2.身體俯仰計算程式運用 26
3.2.3.前飛翅膀動作近似函數運用 29
3.3.求解器設定 30
3.4.邊界條件設定 31
3.5.格點系統設定 32
3.6.網格獨立性驗證 34
4. 研究成果與討論 36
4.1.名詞解釋 36
4.2.不同身體質心位置產生的各別影響 39
4.2.1.飛行拍翅15週期後進行身體俯仰結果 40
4.2.2.飛行啟動即進行身體俯仰結果 41
4.2.3.小結 58
4.3.不同身體質心位置對於飛行整體的影響(升推力的效應) 60
4.3.1.升推力的共同效應 60
4.3.2.小結 63
4.4.不同身體質心位置對於飛行前、後期的影響(力臂的效應) 63
4.4.1.飛行前期的影響 63
4.4.2.飛行後期的影響 65
4.4.3.小結 67
4.5.不同身體質心位置對於速度及力分量的影響 68
4.5.1.速度的影響 68
4.5.2.力分量的影響 69
4.5.3.小結 79
5. 結論與未來研究方向 80
5.1.結論 80
5.2.研究應用 81
5.3.未來研究方向 82
參考文獻 84
自傳 90

[1]Zheng, L., Hedrick, T. L., & Mittal, R. (2013). Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies. PloS one, 8(1), e53060.
[2]Ellington, C. P. (1999). The novel aerodynamics of insect flight: applications to micro-air vehicles. Journal of Experimental Biology, 202(23), 3439-3448.
[3]De Manabendra, M., Sudhakar, Y., Gadde, S., Shanmugam, D., & Vengadesan, S. (2024). Bio-inspired Flapping Wing Aerodynamics: A Review. Journal of the Indian Institute of Science, 1-23.
[4]Song, F., Yan, Y., & Sun, J. (2024). Energy consumption during insect flight and bioinspiration for MAV design: A review. Computers in Biology and Medicine, 108092.
[5]Liu, H., Wang, S., & Liu, T. (2024). Vortices and Forces in Biological Flight: Insects, Birds, and Bats. Annual Review of Fluid Mechanics, 56, 147-170.
[6]Rival, D., Hass, G., & Tropea, C. (2011). Recovery of energy from leading-and trailing-edge vortices in tandem-airfoil configurations. Journal of Aircraft, 48(1), 203-211.
[7]林歆庭(2019)。旋轉時機與旋轉時間對於豆娘飛行表現之影響。台灣大學機械工程學系碩士論文。
[8]Dickinson, M. H., Lehmann, F. O., & Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight. Science, 284(5422), 1954-1960..
[9]Tanaka, H., & Shimoyama, I. (2010). Forward flight of swallowtail butterfly with simple flapping motion. Bioinspiration & Biomimetics, 5(2), 026003.
[10]Lentink, D., Jongerius, S. R., & Bradshaw, N. L. (2010). The scalable design of flapping micro-air vehicles inspired by insect flight. Flying Insects and Robots, 185-205.
[11]Ma, K. Y., Chirarattananon, P., Fuller, S. B., & Wood, R. J. (2013). Controlled flight of a biologically inspired, insect-scale robot. Science, 340(6132), 603-607.
[12]Rosen, M. H., Le Pivain, G., Sahai, R., Jafferis, N. T., & Wood, R. J. (2016, May). Development of a 3.2 g untethered flapping-wing platform for flight energetics and control experiments. In 2016 IEEE international conference on robotics and automation (ICRA) (pp. 3227-3233). IEEE.
[13]Jafferis, N. T., Helbling, E. F., Karpelson, M., & Wood, R. J. (2019). Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature, 570(7762), 491-495.
[14]王彥傑(2016)。腹部及翅膀動態對蝴蝶仿生飛行器控制之研究。台灣大學機械工程學系碩士論文。
[15]邱筠雅(2020)。撓性與旋轉角於大白斑蝶及仿蝴蝶拍撲機構升力之影響。台灣大學機械工程學系碩士論文。
[16]洪千茵(2021)。仿蝴蝶飛行器機構設計與模擬飛行測試。台灣大學機械工程學系碩士論文。
[17]Ellington, C. P., Van Den Berg, C., Willmott, A. P., & Thomas, A. L. (1996). Leading-edge vortices in insect flight. Nature, 384(6610), 626-630.
[18]Kramer, V. M. (1932). Die zunahme des maximalauftriebes von tragflugeln bei plotzlicher anstellwinkelvergrosserung (boeneffekt). Z. Flugtech. Motorluftschiff, 23, 185-189.
[19]Sane, S. P., & Dickinson, M. H. (2002). The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. Journal of Experimental Biology, 205(8), 1087-1096.
[20]Sun, M., & Tang, J. (2002). Lift and power requirements of hovering flight in Drosophila virilis. Journal of Experimental Biology, 205(16), 2413-2427.
[21]Sane, S. P. (2003). The aerodynamics of insect flight. Journal of Experimental Biology, 206(23), 4191-4208.
[22]Weis-Fogh, T. (1973). Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. Journal of Experimental Biology, 59(1), 169-230.
[23]Sunada, S., Kawachi, K., Watanabe, I., & Azuma, A. (1993). Performance of a butterfly in take-off flight. Journal of Experimental Biology, 183(1), 249-277.
[24]Miller, L. A., & Peskin, C. S. (2009). Flexible clap and fling in tiny insect flight. Journal of Experimental Biology, 212(19), 3076-3090.
[25]Marden, J. H. (1987). Maximum lift production during takeoff in flying animals. Journal of Experimental Biology, 130(1), 235-258.
[26]Wakeling, J. M., & Ellington, C. P. (1997). Dragonfly flight: II. Velocities, accelerations and kinematics of flapping flight. Journal of Experimental Biology, 200(3), 557-582.
[27]Bode-Oke, A. T., Zeyghami, S., & Dong, H. (2017). Aerodynamics and flow features of a damselfly in takeoff flight. Bioinspiration & Biomimetics, 12(5), 056006.
[28]Card, G., & Dickinson, M. (2008). Performance trade-offs in the flight initiation of Drosophila. Journal of Experimental Biology, 211(3), 341-353.
[29]Norberg, R. Å. (1975). Hovering flight of the dragonfly Aeschna juncea L., kinematics and aerodynamics. Swimming and Flying in Nature: Volume 2, 763-781.
[30]Azuma, A., & Watanabe, T. (1988). Flight performance of a dragonfly. Journal of Experimental Biology, 137(1), 221-252.
[31]Thomas, A. L., Taylor, G. K., Srygley, R. B., Nudds, R. L., & Bomphrey, R. J. (2004). Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. Journal of Experimental Biology, 207(24), 4299-4323.
[32]Noda, R., Liu, X., Hefler, C., Shyy, W., & Qiu, H. H. (2023). The interplay of kinematics and aerodynamics in multiple flight modes of a dragonfly. Journal of Fluid Mechanics, 967, A31.
[33]Wang, L., Shi, Z., Geng, X., Tong, S., & Chen, Z. (2024). Analyzing the kinematics and longitudinal aerodynamics of a four-wing bionic aircraft. Bioinspiration & Biomimetics, 19(2), 026016.
[34]Alexander, D. E. (1986). Wind tunnel studies of turns by flying dragonflies. Journal of Experimental Biology, 122(1), 81-98.
[35]梁家銘 (2018)。豆娘不對稱拍翅動作與飛行操控研究。台灣大學機械工程系 碩士論文。
[36]蔡子珩 (2019)。偏離角與攻對於豆娘(短腹幽蟌)飛行表現與功率之影響。台灣大學機械工程系碩士論文。
[37]Tahmasian, S., & Kotulak-Smith, B. C. (2024). The effects of wing inertial forces and mean stroke angle on the pitch dynamics of hovering insects. Scientific Reports, 14(1), 2814.
[38]Huang, H., & Sun, M. (2007). Dragonfly forewing-hindwing interaction at various flight speeds and wing phasing. AIAA Journal, 45(2), 508-511.
[39]Dudley, R. (2002). The biomechanics of insect flight: form, function, evolution. Princeton University Press.
[40]Takahashi, H., Tanaka, H., Matsumoto, K., & Shimoyama, I. (2012). Differential pressure distribution measurement with an MEMS sensor on a free-flying butterfly wing. Bioinspiration & Biomimetics, 7(3), 036020.
[41]Huang, H., & Sun, M. (2012). Forward flight of a model butterfly: Simulation by equations of motion coupled with the Navier-Stokes equations. Acta Mechanica Sinica, 28(6), 1590-1601.
[42]Senda, K., Obara, T., Kitamura, M., Yokoyama, N., Hirai, N., & Iima, M. (2012). Effects of structural flexibility of wings in flapping flight of butterfly. Bioinspiration & Biomimetics, 7(2), 025002.
[43]Nakatani, Y., Suzuki, K., & Inamuro, T. (2016). Flight control simulations of a butterfly-like flapping wing–body model by the immersed boundary–lattice Boltzmann method. Computers & Fluids, 133, 103-115.
[44]王彥傑(2016)。腹部及翅膀動態對蝴蝶仿生飛行器控制之研究。台灣大學機械工程學系碩士論文。
[45]Srygley, R. B., & Chai, P. (1990). Flight morphology of Neotropical butterflies: palatability and distribution of mass to the thorax and abdomen. Oecologia, 84, 491-499.
[46]Fang, Y. H., Luu, Y. L., & Yang, J. T. (2024). Kinematics and aerodynamic analysis in the turning flights of butterflies. Physics of Fluids, 36(3).
[47]費約翰(2016)。蝴蝶身體俯仰動態之飛行動力機制與飛行操控研究。台灣大學機械工程學系博士論文。
[48]賴渝翔(2021)。豆娘飛行動力最佳化分析與飛行操控機制研究。台灣大學機械工程學系博士論文。
[49]Noda, R., Nakata, T., & Liu, H. (2023). Effect of hindwings on the aerodynamics and passive dynamic stability of a hovering hawkmoth. Biomimetics, 8(8), 578.
[50]Meng, X., & Sun, M. (2016). Wing kinematics, aerodynamic forces and vortex-wake structures in fruit-flies in forward flight. Journal of Bionic Engineering, 13(3), 478-490.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊