跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/19 14:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉昱辰
研究生(外文):LIU,YU-CHEN
論文名稱:5G毫米波扇出型封裝天線陣列之饋線設計與模擬
論文名稱(外文):Feeding Line Designs and Simulations for 5G mmWave FO_AiP Array
指導教授:羅本喆
指導教授(外文):LOW,BEN-JE
口試委員:陳永樹吳美玲羅本喆
口試委員(外文):CHEN,YEONG-SHUWU,MEI-LINGLOW,BEN-JE
口試日期:2024-05-10
學位類別:碩士
校院名稱:國防大學
系所名稱:機械工程碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:97
中文關鍵詞:5G扇出型天線封裝陣列天線因子分析饋線設計
外文關鍵詞:5GFan-Out Antenna in packagingarray antennasingle factorfeeding line designs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:14
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
第五代移動通訊(5th Generation Mobile Networks, 5G)擁有較高的傳輸頻率且波長較短可以使天線設計尺寸更小,因此適合將天線設計於天線封裝(Antenna in Package, AiP)內。然而5G頻段訊號容易受到障礙物或大氣影響,導致信號衰減降低整體天線傳輸性能。為了解決上述問題,需將天線陣列化以增強信號強度和增加通信距離,提高整體天線性能。陣列天線需將多個單一天線利用饋線連結在一起,並且天線也必須透過饋線與IC連接,因此適當的饋線不只可以將天線組合成陣列天線,還可以盡可能地減少傳輸損耗,實現最佳的天線性能。
本研究首先利用ANSYS HFSS 2019 3D電磁模擬軟體設計單一扇出型天線封裝(Fan Out Antenna in Package, FO_AiP)結構,並且使用單一因子分析探究影響天線性能的關鍵因子,完成單一天線最終設計。隨後將饋線與單一天線結合,分析連接方式對於天線性能的影響。再來利用饋線分析出來的結果將單一天線與饋線組合成2 × 1 陣列天線提升天線性能,獲得中心頻率為59.99 GHz ;帶寬為5.33 GHz;增益為6.9 dB之設計。最後利用兩組2 × 1 陣列天線完成具有饋線的4 × 1 陣列天線設計,其最佳設計天線中心頻率為60.01 GHz ;帶寬為6.77 GHz;增益為8.4 dB,並且符合5G中60 GHz頻段的應用。

The fifth-generation mobile networks (5G) have higher transmission frequencies and shorter wavelengths, allowing for smaller antenna designs and integration into Antenna in Package (AiP). However, 5G signals are easily affected by obstacles or atmosphere, leading to signal attenuation and antenna performance reduction. In order to solve the aforementioned problem, the antenna array is needed in order to enhance signal strength. Array antennas use feed lines to interconnect multiple antennas, and the antennas connect to integrated circuits (ICs) via feed lines. Therefore, appropriate feed lines not only achieve array antenna but minimize transmission losses.
This study used ANSYS HFSS 2019, 3D electromagnetic simulation software to design a single Fan Out Antenna in Package (FO_AiP) structure. A single-factor analysis was first conducted to identify the key factors and completed the final single antenna design. Subsequently, the impact of the feed line connection method on antenna performance was analyzed. Next, utilizing the connection method analysis results to combine the single antenna and feed lines, a 2 × 1 array antenna was presented. The 2 × 1 array antenna has 59.99 GHz central frequency, 5.33 GHz bandwidth and 6.9 dB gain. Finally, a 4 × 1 array antenna with suitable feed line design was accomplished by combining two 2 × 1 array antenna. The 4 × 1 array antenna has 60.01 GHz central frequency, 6.77 GHz bandwidth and 8.4 dB gain, meeting the 5G applications requirements in the 60 GHz frequency band.

誌謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vii
圖目錄 viii
符號表 xiii
1. 緒論 1
1.1 前言 1
1.2 扇出型天線封裝(Fan-out Antenna in Package, FO_AiP) 3
1.3 研究動機與目的 4
1.4 文獻回顧 5
1.5 論文架構 23
2. 原理探討 24
2.1 電磁波理論 24
2.1.1 高斯定律 24
2.1.2 高斯磁定律 26
2.1.3 法拉第電磁感應定律 26
2.1.4 馬克士威-安培定律 27
2.2 天線性能表示法 27
2.2.1 天線效率(Antenna Efficiency) 28
2.2.2 天線方向性(Antenna Directivity) 28
2.2.3 天線增益(Antenna Gain) 29
2.2.4 回波損耗(Return Loss, RL) 29
2.2.5 帶寬(BandWidth, BW) 30
2.2.6 中心頻率(Central Frequency, CF) 31
2.2.7 四分之一波轉換器(Quarter-Wave Converter) 31
2.3 阻抗與高頻饋線 32
2.3.1 特性阻抗(Characteristic Impedance) 32
2.3.2 輸入阻抗(Input Impedance) 33
2.3.3 高頻饋線介紹 33
3. 研究方法與規劃 36
3.1 模擬工具 36
3.1.1 饋線阻抗模擬 37
3.2 模擬規劃 38
3.2.1 單一天線原始構型 38
3.2.2 單一天線結構之單一因子分析 40
3.2.3 單一天線饋線模擬 41
3.2.4 2 × 1陣列天線饋線設計與模擬 41
3.2.5 4 × 1陣列天線饋線設計與模擬 42
4. 研究成果及討論 43
4.1 單一天線設計與模擬結果 43
4.1.1 單一天線單一因子模擬與分析 46
4.1.2 單一天線最終設計 56
4.2 單一天線饋線設計與模擬結果 58
4.3 2 × 1陣列天線設計與模擬結果 60
4.3.1 2 × 1陣列天線饋線單一因子模擬與分析 61
4.3.2 2 × 1陣列天線最終設計 70
4.4 4 × 1陣列天線設計與模擬結果 73
4.4.1 4 × 1陣列天線饋線單一因子模擬與分析 74
4.4.2 4 × 1陣列天線最終設計 78
4.5 天線邊緣寬度分析 80
4.6 激發源阻抗 88
4.7 模擬結果整理與討論 89
5. 結論與未來工作 91
6. 參考文獻 93
自傳 97


[1]Rappaport, T. S., Xing, Y., MacCartney, G. R., Molisch, A. F., Mellios, E., and Zhang, J., 2017, “Overview of millimeter wave communications for fifth-generation (5G) wireless networks—With a focus on propagation models,” IEEE Transactions on Antennas and Propagation, Volume 65, Issue 12, pp. 6213-6230.
[2]Zhang, J., Ge, X., Li, Q., Guizani, M., and Zhang, Y., 2016, “5G millimeter-wave antenna array: Design and challenges,” IEEE Wireless communications, Volume 24, No. 2, pp. 106-112.
[3]Dahiya, M., 2017, "Need and advantages of 5G wireless communication systems," International Journal of Advance Research in Computer Science and Management Studies Volume 5, Issue 6, pp. 48-51.
[4]Lau, J. H., 2018, “Fan-out wafer-level packaging,” Springer, Singapore, pp. 1-18.
[5]Che, F. X., and Chen, Z., 2018, “Study on electrical performance and mechanical reliability of antenna in package (AIP) with fan-out wafer level packaging technology,” 2018 IEEE 20th Electronics Packaging Technology Conference (EPTC), pp. 180-185.
[6]Le, T. H., Kanitkar, A., Rossi, M., Ndip, I., Braun, T., Mueller, F., and Trewhella, J., 2020, “Dual-band 5G antenna Array in fan-out wafer-level packaging (FOWLP) technology,” 2020 23rd International Microwave and Radar Conference (MIKON), pp. 157-161.
[7]Tsai, C. H., Hsieh, J. S., Liu, M., Yeh, E. H., Chen, H. H., Hsiao, C. W., Chen, C. S., Liu, C. S., Lii, M. J., Wang, C. T., and Yu, D., 2013, “Array Antenna Integrated Fan-out Wafer Level Packaging (InFO-WLP) for Millimeter Wave System Applications,” 2013 IEEE International Electron Devices Meeting, Washington DC, USA, pp. 25.1.1-25.1.4.
[8]Wang, C.T., Hsieh, J.S., Liu, M., and Yu, C.H., 2016, “Integrated Fan Out Antenna and Method of Forming the Same,” United States Patent, US 9,843,106 B2.
[9]Zhang, T., Li, L., Xie, M., Xia, H., Ma, X., and Cui, T. J., 2017, “Low-cost aperture-coupled 60-GHz-phased array antenna package with compact matching network,” IEEE Transactions on Antennas and Propagation, Volume 65, No. 12, pp. 6355-6362.
[10]Wang, C. T., Tang, T. C., Lin, C. W., Hsu, C. W., Hsieh, J. S., Chung, H. T., Wu, K. C., Pu, H. P., and Yu, D., 2018, “InFO_AiP Technology for High Performance and Compact 5G Millimeter Wave System Integration,” 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, pp. 202-207.
[11]Wu, H. and Shi, J., 2020, "A wideband dual-slot coupled multiple dense dielectric patch antenna," IEEE Antennas and Wireless Propagation Letters, vol. 19 No. 6, pp. 944-948.
[12]Aziz, I., Wu, D., Öjefors, E., Hanning, J., Wiklund, E., and Dancila, D., 2021, “ Broadband fan-out phased antenna array at 28 GHz for 5G applications,” 2020 50th European Microwave Conference (EuMC), pp. 212-215.
[13]Liu, X., Zhang, W., Hao, D., and Liu, Y., 2021, “Cost-effective surface-mount off-center-fed dipole antenna element and its array for 5G millimeter wave new radio applications,” IEEE Transactions on Components, Packaging and Manufacturing Technology, Volume. 11, No. 7, pp. 1106-1114.
[14]Yu, B., Qian Z. , Lin, C. ,Lin, J. , Zhang,Y. ,Yang, G., and Luo, Y. , 2021, “A Wideband mmWave Antenna in Fan-Out Wafer Level Packaging With Tall Vertical Interconnects for 5G Wireless Communication,” IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, pp. 6906-6911.
[15]Zinal, S., Murugesan, K. S., Rossi, M., Böttcher, M., Ndip, I., Lang, K. D., and Trewhella, J., 2022, “Design and Measurement of Interconnects in Fan-Out Wafer-Level Packaging (FOWLP) for mm-Wave Applications up to 100 GHz,” 51st European Microwave Conference (EuMC), pp. 2-5.
[16]Jang, T. H., Jung, K. P., and Park, C. S., 2023, “Broadband Millimeter-Wave Antenna in Package with L-Probed E-Shaped Patch Covering 57 GHz to 71 GHz,” IEEE Transactions on Antennas and Propagation, Volume 71, No. 1, pp. 89-98.
[17]Zhang, T., Zhu, Z., Xia, C., Xia, H., Liu, Z., Wu, X., and Cui, T. J., 2024,” A Miniaturized Vivaldi Antenna in Fan-out Wafer-Level Package for 5G Millimeter Wave Applications,” IEEE Antennas and Wireless Propagation Letters.
[18]Liu, C. H., Chung, H., Lu, R. K., Lwo, B. J., Ni, T., and Pan, A., 2022, “Glass-Embedded Fan-Out Antenna-in-Packaging for 5G Millimeter Wave Applications,” International Journal of Integrated Engineering, Volume 14, No. 6, pp. 216-222.
[19]Lin, I. H., Lin, C. C., Pan, Y. C., Lwo, B. J., and Ni, T., 2022, “Characteristics of Glass-Embedded FOAiP with Antenna Arrays for 60GHz mmWave Applications,” 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), pp. 358-364.
[20]陳映璇,2022,“毫米波扇出型天線封裝之饋線設計與陣列模擬”, 碩士論文,國防大學理工學院,桃園。
[21]Derbora M.K., 2016, Physics for Scientists and Engineers with Modern Physics, Cengage Learning, Taipei Taiwan, pp. 1085-1093.
[22]網站:http://masteringmasteringphysics.blogspot.com/2017/02/27-gausss-law-in-3-2-and-1-dimension.html, July, 2023
[23]網站: https://en.wikipedia.org/wiki/Quarter-wave_impedance_transformer, July, 2023
[24]網站: https://www.nwengineeringllc.com/article/what-is-input-impedance.php, March, 2024
[25]王小軍,2015,HFSS射頻仿真設計實例大全,電子工業出版社,中國北京,第三十九頁。
[26]李明洋,2019,HFSS電磁仿真設計從入門到精隨,人民郵電出版社,中國北京市,第九十頁。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top