跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/18 19:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林昱廷
研究生(外文):LIN, YU-TING
論文名稱:結合數位光程序3D列印與SiC/SiO2原位轉化機制製備之SiC油水分離薄膜
論文名稱(外文):Fabrication of SiC Oil/Water Separation Membranes via Integration of Digital Light Processing 3D Printing and SiC/SiO2 In-Situ Transformation
指導教授:陳建樺陳建樺引用關係
指導教授(外文):CHEN, CHIEN-HUA
口試委員:陳華偉陳韋廷
口試委員(外文):CHEN, HUA-WEICHEN, WEI-TING
口試日期:2024-03-21
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:化學工程與材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:76
中文關鍵詞:碳化矽3D列印原位轉化油水分離薄膜
外文關鍵詞:silicon carbide3D printingin situ transformationoil/water separation membrane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:3
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,碳化矽 (SiC)物件因其卓越的性能而在各個領域中備受青睞,如高溫穩定性、耐磨性、高硬度、高導熱性和抗腐蝕性等。隨著社會的不斷進步,工業和生活中的廢水排放問題日益嚴重,導致油水汙染問題日益突出。SiC薄膜因其在油水分離中的卓越表現而引起了廣泛關注,進而推動了對SiC製備技術的更深入研究和發展。然而,製備SiC物件通常需要超高溫的氣氛燒結系統(>1800℃ @ Ar)。此外,傳統陶瓷製程限制了成品幾合結構的設計發想,從而侷限了SiC製品的應用發展。因此,開發一個更為簡單且靈活的SiC製備技術成為當今SiC相關研究的重要課題之一。
本研究提出了一種結合3D列印和SiC/SiO2原位轉化機制的方法,以實現簡單製備SiC物件。首先,通過高溫氧化過程使SiC粒子的表面生成SiO2,有效降低SiC粒子的吸光度和折射率幫助列印。接著,將這些處理過的粒子與光敏性樹脂混合,形成光固化3D列印的SiC懸浮液。研究中我們使用數位光程序 (DLP)進行列印,製備薄膜生胚。接著,我們探討了不同的脫脂燒結程序對SiC/ SiO2原位轉化與燒結的影響。研究發現,在真空和氬氣保護下,將生胚中的樹脂進行碳化處理 (在200-600℃範圍內) ,並在真空下進行1530°C燒結程序。研究發現,此程序無法將SiO2成功還原回SiC,但能形成具結構強度的SiC/SiO2薄膜,且具有競爭力的水通量與良好的油水分離效能。接續我們改將列印胚體在氬氣中進行脫脂與燒結(1350°C-1600°C),結果發現成功地使SiO2 與C進行還原反應,最終形成SiC物件。
本研究驗證了SiC表面氧化生成SiO2可提升SiC的可印性,成功列印出SiC胚體。而在後續的脫脂燒結過程中,驗證了SiO2殼層確實可成功與碳化樹脂反應還原成SiC,得到純SiC成品。雖然目前最終的SiC列印成品尚未能具有足夠的機械強度進行薄膜應用,但本研究已為我國SiC陶瓷3D列印技術發展立下一個新的里程碑。
In recent years, silicon carbide (SiC) objects have been highly favored in various fields due to their outstanding performance, such as high temperature stability, abrasion resistance, high hardness, high thermal conductivity, and corrosion resistance. With the continuous progress of society, the problem of wastewater discharge from industrial and domestic sources has become increasingly severe, leading to a growing concern over oil/water pollution issues. The excellent performance of SiC membranes in oil/water separation has garnered widespread attention, thereby promoting further in-depth research and development of SiC fabrication technology. However, the fabrication of SiC objects typically requires ultra-high-temperature atmosphere sintering systems (>1800℃ @ Ar). Furthermore, traditional ceramic fabrications limit the design and conception of complex structures, thus restricting the application development of SiC products. Therefore, developing a simpler and more flexible SiC fabrication technique has become one of the key topics in current SiC-related research.
This study proposes a method that combines 3D printing with the in-situ transformation mechanism of SiC/SiO2 to simplify the fabrication of SiC objects. Initially, the study employs an oxidation process to create SiO2 on the surface of SiC particles, effectively reducing the absorbance and refractive index of SiC particles to aid printing. These modified particles are then mixed with photosensitive resin to form a slurry for curable 3D printing of SiC. Using digital light processing (DLP), membrane precursors are printed. Furthermore, the influence of different debinding and sintering processes on the in-situ transformation and sintering of SiC/SiO2 is investigated. It is found that under vacuum and argon protection, resin in the membrane precursors undergoes carbonization treatment (within the range of 200-600℃) and a sintering process at 1530℃ in vacuum. This procedure fails to successfully reduce SiO2 back to SiC but yields SiC/SiO2 membranes with structural strength, competitive water flux, and effective oil/water separation performance. Subsequently, we revised the debinding and sintering of the membrane precursors in argon (1350℃-1600℃), successfully achieving the reduction reaction between SiO2 and C, ultimately forming SiC objects.
This study validates that the surface oxidation of SiC to generate SiO2 enhances the printability of SiC, successfully printing SiC membrane precursors. In the subsequent debinding and sintering process, it is confirmed that the SiO2 shell can indeed react with the carbonized resin to be reduced back to SiC, yielding pure SiC products. Although the current printed SiC membrane precursors do not yet possess sufficient mechanical strength for membrane applications, this study has set a new milestone for the development of SiC ceramic 3D printing technology in our country.
摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VII
表目錄 X
第1章 緒論 1
1-1前言 1
1-2研究方向 4
第2章 文獻回顧 5
2-1 碳化矽 5
2-1-1 碳化矽油水分離薄膜 6
2-2 3D列印 7
2-2-1 3D列印七大製程 9
2-2-2 陶瓷光固化列印 16
2-2-3 碳化矽光固化列印 19
2-3 碳熱還原反應 23
第3章 實驗 26
3-1實驗藥品 26
3-1-1陶瓷粉末材料 26
3-1-2光敏性樹脂成分 27
3-1-3 其他相關藥品 29
3-2實驗儀器 30
3-2-1 陶瓷製程之相關設備 30
3-2-2 特性分析相關儀器 34
3-3碳化矽薄膜製造流程 36
3-4 薄膜通透性測試 38
第4章 結果與討論 40
4-1 二氧化矽殼層助於列印之鑑定 40
4-2 SiC懸浮液配方 48
4-2-1 單體的選用 48
4-2-2 固含量 49
4-2-3 分散劑比例 50
4-3 燒結後薄膜之鑑定 52
4-3-1 真空中脫脂燒結 54
4-3-2 氬氣中脫脂燒結 57
第5章 結論 62
第6章 參考文獻 64
[1]D. Das and N. Kayal, “Influence of additive contents on the properties of SiC ceramic membranes and their performance in oil‐water separation,” Int J Appl Ceram Technol, vol. 2, no. November 2022, pp. 1–15, 2023, doi: 10.1111/ijac.14334.
[2]Y. Wang et al., “Reaction-bonded robust SiC ceramic membranes sintered at low temperature with coal gangue,” Ceram Int, no. February, 2023, doi: 10.1016/j.ceramint.2023.03.097.
[3]X. Wang, Y. Zhou, and Y. Yuan, “Effect of sintering temperature on properties of SiC porous ceramics,” Gongneng Cailiao/Journal of Functional Materials, vol. 53, no. 1, pp. 01072–01076, 2022, doi: 10.3969/j.issn.1001-9731.2022.01.011.
[4]H. Chang, J. Tang, X. Guo, Y. Zhu, M. Liu, and Y. Wei, “Stereolithography-based additive manufacturing of RB-SiC ceramics by a two-step sintering method,” Ceram Int, vol. 49, no. 1, pp. 1085–1091, 2023, doi: 10.1016/j.ceramint.2022.09.083.
[5]Q. Jiang et al., “Lower-temperature preparation of SiC ceramic membrane using zeolite residue as sintering aid for oil-in-water separation,” J Memb Sci, vol. 610, no. March, p. 118238, 2020, doi: 10.1016/j.memsci.2020.118238.
[6]U. Baig, A. Waheed, and M. A. Dastageer, “Facile Fabrication of Silicon Carbide Decorated Ceramic Membrane, Engineered with Selective Surface Wettability for Highly Efficient Separation of Oil-in-Water Emulsions,” J Environ Chem Eng, vol. 11, no. 2, p. 109357, 2023, doi: 10.1016/j.jece.2023.109357.
[7]Y. Wang, Q. Jiang, W. Jing, Z. Zhong, and W. Xing, “Pore structure and surface property design of silicon carbide membrane for water-in-oil emulsification,” J Memb Sci, vol. 648, no. February, p. 120347, 2022, doi: 10.1016/j.memsci.2022.120347.
[8]Q. Jiang et al., “Silicon carbide microfiltration membranes for oil-water separation: Pore structure-dependent wettability matters,” Water Res, vol. 216, no. March, p. 118270, 2022, doi: 10.1016/j.watres.2022.118270.
[9]Q. Wang, R. Zhou, and T. Tsuru, “Recent Progress in Silicon Carbide-Based Membranes for Gas Separation,” Membranes (Basel), vol. 12, no. 12, 2022, doi: 10.3390/membranes12121255.
[10]M. Trevisan, J. Vicente, R. Ghidossi, A. Vincent, and P. Moulin, “Membrane characterisation from the support to the skin layer: Application to silicon carbide (SiC) membranes,” J Eur Ceram Soc, vol. 42, no. 9, pp. 3759–3769, 2022, doi: 10.1016/j.jeurceramsoc.2022.02.045.
[11]D. Jahanshahi, M. Ostadhassan, E. Vessally, and J. Azamat, “Performance of Silicon Carbide Nanomaterials in Separation Process,” Separation and Purification Reviews, vol. 00, no. 00, pp. 1–16, 2022, doi: 10.1080/15422119.2022.2082979.
[12]J. Wang et al., “Pure-SiC ceramic membrane for ultrafiltration: Morphology, pore characteristics and separation performances,” Ceram Int, vol. 50, no. 5, pp. 8162–8170, 2023, doi: 10.1016/j.ceramint.2023.12.146.
[13]J. Cao et al., “3D printing and in situ transformation of SiCnw/SiC structures,” Addit Manuf, vol. 58, no. July, 2022, doi: 10.1016/j.addma.2022.103053.
[14]Z. A. Shi, J. M. Wu, Z. Q. Fang, and Y. S. Shi, “Influence of high-temperature oxidation of SiC powders on curing properties of SiC slurry for digital light processing,” Journal of Advanced Ceramics, vol. 12, no. 1, pp. 169–181, 2023, doi: 10.26599/JAC.2023.9220675.
[15]J. Chen, Y. Zhang, D. Yan, and Y. Gou, “Flexible ultrafine nearly stoichiometric polycrystalline SiC fibers with excellent oxidation resistance and superior thermal stability up to 1900 °C,” J Eur Ceram Soc, vol. 42, no. 5, pp. 1938–1946, 2022, doi: 10.1016/j.jeurceramsoc.2021.12.049.
[16]C. Wang, S. Wu, C. Yan, Y. Shi, G. Wu, and X. Han, “Research and applications of additive manufacturing technology of SiC ceramics,” Kexue Tongbao/Chinese Science Bulletin, vol. 67, no. 11, pp. 1137–1154, 2022, doi: 10.1360/TB-2021-1113.
[17]C. Hu et al., “Effect of SiC powder on the properties of SiC slurry for stereolithography,” Ceram Int, vol. 47, no. 9, pp. 12442–12449, 2021, doi: 10.1016/j.ceramint.2021.01.101.
[18]Y. Liu, G. Li, L. Huan, and S. Cao, “Advancements in silicon carbide-based supercapacitors: materials, performance, and emerging applications,” Nanoscale, no. 2017, pp. 504–526, 2023, doi: 10.1039/d3nr05050e.
[19]H. Liu et al., “Progress of One-Dimensional SiC Nanomaterials: Design, Fabrication and Sensing Applications,” Nanomaterials, vol. 14, no. 2, 2024, doi: 10.3390/nano14020187.
[20]D. Lu et al., “Journal of the European Ceramic Society Microstructure control of SiC w / SiC composites based on SLS technology,” J Eur Ceram Soc, vol. 42, no. 9, pp. 3747–3758, 2022, doi: 10.1016/j.jeurceramsoc.2022.03.053.
[21]X. Guo, J. Tang, H. Chang, Y. Zhu, Y. Wei, and X. Hu, “Application of SiO 2 -coated SiC powder in stereolithography and sintering densification of SiC ceramic composites,” Ceram Int, vol. 49, no. 15, pp. 25016–25024, 2023, doi: 10.1016/j.ceramint.2023.05.030.
[22]S. Chaudhary, S. K. Avinashi, J. Rao, and C. Gautam, “Recent Advances in Additive Manufacturing , Applications and Challenges for Dentistry : A Review,” 2023, doi: 10.1021/acsbiomaterials.2c01561.
[23]H. B. Mamo, M. Adamiak, and A. Kunwar, “Journal of the Mechanical Behavior of Biomedical Materials 3D printed biomedical devices and their applications : A review on state-of-the-art technologies , existing challenges , and future perspectives,” J Mech Behav Biomed Mater, vol. 143, no. May, p. 105930, 2023, doi: 10.1016/j.jmbbm.2023.105930.
[24]S. S. Nath, I. G. Patil, and P. Sundriyal, “Material extrusion of electrochemical energy storage devices for flexible and wearable electronic applications,” J Energy Storage, vol. 79, no. November 2023, p. 110129, 2024, doi: 10.1016/j.est.2023.110129.
[25]M. H. Mobarak et al., “Recent advances of additive manufacturing in implant fabrication – A review,” Applied Surface Science Advances, vol. 18, no. October, p. 100462, 2023, doi: 10.1016/j.apsadv.2023.100462.
[26]J. Sun et al., “A review on additive manufacturing of ceramic matrix composites,” J Mater Sci Technol, vol. 138, pp. 1–16, 2023, doi: 10.1016/j.jmst.2022.06.039.
[27]S. Mika and E. Pei, “Additive manufacturing processes and materials for spare parts,” vol. 37, no. 11, pp. 5979–5990, 2023, doi: 10.1007/s12206-023-1034-0.
[28]K. V. Wong and A. Hernandez, “A Review of Additive Manufacturing,” ISRN Mechanical Engineering, vol. 2012, pp. 1–10, 2012, doi: 10.5402/2012/208760.
[29]S. P. Tadi, S. S. Maddula, and R. S. Mamilla, “Sustainability aspects of composite filament fabrication for 3D printing applications,” Renewable and Sustainable Energy Reviews, vol. 189, no. PA, p. 113961, 2024, doi: 10.1016/j.rser.2023.113961.
[30]D. P. Simunec, J. Jacob, A. E. Z. Kandjani, A. Trinchi, and A. Sola, “Facilitating the additive manufacture of high-performance polymers through polymer blending: A review,” Eur Polym J, vol. 201, no. October, p. 112553, 2023, doi: 10.1016/j.eurpolymj.2023.112553.
[31]J. M. Costa, E. W. Sequeiros, and M. F. Vieira, “Fused Filament Fabrication for Metallic Materials: A Brief Review,” Materials, vol. 16, no. 24, 2023, doi: 10.3390/ma16247505.
[32]D. Li, Y. Yang, A. L. Elias, N. Yan, and F. Guo, “Biopolymer Composites Material Extrusion and their Applications: A Review,” Adv Eng Mater, vol. 25, no. 21, pp. 1–21, 2023, doi: 10.1002/adem.202301048.
[33]C. M. Shebeeb, M. Bin Afif, L. Jacob, D. Choi, and H. Butt, “Vat photopolymerisation 3D printing of graphene-based materials,” Virtual Phys Prototyp, vol. 18, no. 1, 2023, doi: 10.1080/17452759.2023.2276250.
[34]Y. Li, X. Zhang, X. Zhang, Y. Zhang, and D. Hou, “Recent Progress of the Vat Photopolymerization Technique in Tissue Engineering: A Brief Review of Mechanisms, Methods, Materials, and Applications,” Polymers (Basel), vol. 15, no. 19, 2023, doi: 10.3390/polym15193940.
[35]M. Shah et al., “Vat photopolymerization-based 3D printing of polymer nanocomposites: current trends and applications,” RSC Adv, vol. 13, no. 2, pp. 1456–1496, 2023, doi: 10.1039/d2ra06522c.
[36]L. A. Milton, M. S. Viglione, L. J. Y. Ong, G. P. Nordin, and Y. C. Toh, “Vat photopolymerization 3D printed microfluidic devices for organ-on-a-chip applications,” Lab Chip, vol. 23, no. 16, pp. 3537–3560, 2023, doi: 10.1039/d3lc00094j.
[37]J. Mauriello, R. Maury, Y. Guillaneuf, and D. Gigmes, “3D/4D Printing of Polyurethanes by Vat Photopolymerization,” Adv Mater Technol, vol. 8, no. 23, pp. 1–30, 2023, doi: 10.1002/admt.202300366.
[38]J. Wang, R. Zhu, Y. Liu, and L. Zhang, “Understanding melt pool characteristics in laser powder bed fusion: An overview of single- and multi-track melt pools for process optimization,” Advanced Powder Materials, vol. 2, no. 4, 2023, doi: 10.1016/j.apmate.2023.100137.
[39]H. Y. Ma et al., “Advances in additively manufactured titanium alloys by powder bed fusion and directed energy deposition: Microstructure, defects, and mechanical behavior,” J Mater Sci Technol, vol. 183, pp. 32–62, 2024, doi: 10.1016/j.jmst.2023.11.003.
[40]D. Dev Singh, T. Mahender, and A. Raji Reddy, “Powder bed fusion process: A brief review,” Mater Today Proc, vol. 46, pp. 350–355, 2021, doi: 10.1016/j.matpr.2020.08.415.
[41]L. Ladani and M. Sadeghilaridjani, “Review of powder bed fusion additive manufacturing for metals,” Metals (Basel), vol. 11, no. 9, 2021, doi: 10.3390/met11091391.
[42]Z. Liu et al., “Alloy design for laser powder bed fusion additive manufacturing: a critical review,” International Journal of Extreme Manufacturing, 2023, doi: 10.1088/2631-7990/ad1657.
[43]M. Ziaee and N. B. Crane, “Binder jetting: A review of process, materials, and methods,” Addit Manuf, vol. 28, no. May, pp. 781–801, 2019, doi: 10.1016/j.addma.2019.05.031.
[44]Y. Wang, A. Müllertz, and J. Rantanen, “Structured approach for designing drug-loaded solid products by binder jetting 3D printing,” European Journal of Pharmaceutical Sciences, vol. 178, no. August, p. 106280, 2022, doi: 10.1016/j.ejps.2022.106280.
[45]X. Chen et al., “The Application and Challenge of Binder Jet 3D Printing Technology in Pharmaceutical Manufacturing,” Pharmaceutics, vol. 14, no. 12, 2022, doi: 10.3390/pharmaceutics14122589.
[46]A. Elkaseer, K. J. Chen, J. C. Janhsen, O. Refle, V. Hagenmeyer, and S. G. Scholz, “Material jetting for advanced applications: A state-of-the-art review, gaps and future directions,” Addit Manuf, vol. 60, no. PA, p. 103270, 2022, doi: 10.1016/j.addma.2022.103270.
[47]D. Zhang, S. A. Sia, S. F. D. Solco, J. Xu, and A. Suwardi, “Energy harvesting through thermoelectrics: topological designs and materials jetting technology,” Soft Science, vol. 3, no. 1, 2023, doi: 10.20517/ss.2022.29.
[48]V. V. K. Doddapaneni et al., “A Review on Progress, Challenges, and Prospects of Material Jetting of Copper and Tungsten,” Nanomaterials, vol. 13, no. 16, 2023, doi: 10.3390/nano13162303.
[49]S. Mora, N. M. Pugno, and D. Misseroni, “3D printed architected lattice structures by material jetting,” Materials Today, vol. 59, no. October, pp. 107–132, 2022, doi: 10.1016/j.mattod.2022.05.008.
[50]B. Y. Reddy, M. Siddhartha, P. S. R. Reddy, and A. A. Lakshmi, “Influence of Process Parameters on Sheet Lamination Method-based 3D printing: A Review,” E3S Web of Conferences, vol. 430, pp. 1–11, 2023, doi: 10.1051/e3sconf/202343001251.
[51]B. Karaş, P. J. Smith, J. P. A. Fairclough, and K. Mumtaz, “Additive manufacturing of high density carbon fibre reinforced polymer composites,” Addit Manuf, vol. 58, no. April, pp. 1–10, 2022, doi: 10.1016/j.addma.2022.103044.
[52]Y. Abderrafai et al., “Additive manufacturing of short carbon fiber-reinforced polyamide composites by fused filament fabrication: Formulation, manufacturing and characterization,” Mater Des, vol. 214, p. 110358, 2022, doi: 10.1016/j.matdes.2021.110358.
[53]I. Z. Era, M. A. Farahani, T. Wuest, and Z. Liu, “Machine learning in Directed Energy Deposition (DED) additive manufacturing: A state-of-the-art review,” Manuf Lett, vol. 35, pp. 689–700, 2023, doi: 10.1016/j.mfglet.2023.08.079.
[54]T. Liu et al., “Review on Laser Directed Energy Deposited Aluminum Alloys,” International Journal of Extreme Manufacturing, 2023, doi: 10.1088/2631-7990/ad16bb.
[55]J. Haley, J. Karandikar, C. Herberger, E. MacDonald, T. Feldhausen, and Y. Lee, “Review of in situ process monitoring for metal hybrid directed energy deposition,” J Manuf Process, vol. 109, no. October 2023, pp. 128–139, 2024, doi: 10.1016/j.jmapro.2023.12.004.
[56]Z. Chen et al., “3D printing of ceramics: A review,” J Eur Ceram Soc, vol. 39, no. 4, pp. 661–687, 2019, doi: 10.1016/j.jeurceramsoc.2018.11.013.
[57]K. Zhang, Q. Meng, Z. Qu, and R. He, “A review of defects in vat photopolymerization additive-manufactured ceramics: Characterization, control, and challenges,” J Eur Ceram Soc, vol. 44, no. 3, pp. 1361–1384, 2024, doi: 10.1016/j.jeurceramsoc.2023.10.067.
[58]E. Romanczuk-Ruszuk, B. Sztorch, D. Pakuła, E. Gabriel, K. Nowak, and R. E. Przekop, “3D Printing Ceramics—Materials for Direct Extrusion Process,” Ceramics, vol. 6, no. 1, pp. 364–385, 2023, doi: 10.3390/ceramics6010022.
[59]M. I. Hussain, M. Xia, X. N. Ren, C. Ge, M. Jamil, and M. K. Gupta, “Digital light processing 3D printing of ceramic materials: a review on basic concept, challenges, and applications,” International Journal of Advanced Manufacturing Technology, pp. 2241–2267, 2023, doi: 10.1007/s00170-023-12847-3.
[60]X. Wu et al., “Research progress of the defects and innovations of ceramic vat photopolymerization,” Addit Manuf, vol. 65, no. February, p. 103441, 2023, doi: 10.1016/j.addma.2023.103441.
[61]S. Zakeri, M. Vippola, and E. Levänen, “A comprehensive review of the photopolymerization of ceramic resins used in stereolithography,” Addit Manuf, vol. 35, 2020, doi: 10.1016/j.addma.2020.101177.
[62]R. Chaudhary, P. Fabbri, E. Leoni, F. Mazzanti, R. Akbari, and C. Antonini, “Additive manufacturing by digital light processing: a review,” Progress in Additive Manufacturing, vol. 8, no. 2, pp. 331–351, 2023, doi: 10.1007/s40964-022-00336-0.
[63]S. Enbergs, J. Spinnen, T. Dehne, and M. Sittinger, “3D Printing of Bone Substitutes Based on Vat Photopolymerization Processes: A Systematic Review,” J Tissue Eng Regen Med, vol. 2023, 2023, doi: 10.1155/2023/3901448.
[64]C. Hinczewski, S. Corbel, and T. Chartier, “Ceramic suspensions suitable for stereolithography,” J Eur Ceram Soc, vol. 18, no. 6, pp. 583–590, 1998, doi: 10.1016/s0955-2219(97)00186-6.
[65]K. Li and Z. Zhao, “The effect of the surfactants on the formulation of UV-curable SLA alumina suspension,” Ceram Int, vol. 43, no. 6, pp. 4761–4767, 2017, doi: 10.1016/j.ceramint.2016.11.143.
[66]H. Xing et al., “Preparation and characterization of UV curable Al2O3 suspensions applying for stereolithography 3D printing ceramic microcomponent,” Powder Technol, vol. 338, pp. 153–161, 2018, doi: 10.1016/j.powtec.2018.07.023.
[67]E. Fiume, B. Coppola, L. Montanaro, and P. Palmero, “Vat-photopolymerization of ceramic materials: exploring current applications in advanced multidisciplinary fields,” Front Mater, vol. 10, no. October, pp. 1–32, 2023, doi: 10.3389/fmats.2023.1242480.
[68]J. Tang et al., “The preparation of SiC ceramic photosensitive slurry for rapid stereolithography,” J Eur Ceram Soc, vol. 41, no. 15, pp. 7516–7524, 2021, doi: 10.1016/j.jeurceramsoc.2021.08.029.
[69]G. Ding et al., “Stereolithography-based additive manufacturing of gray-colored SiC ceramic green body,” Journal of the American Ceramic Society, vol. 102, no. 12, pp. 7198–7209, 2019, doi: 10.1111/jace.16648.
[70]F. Delobel, J. Cambedouzou, F. Moitrier, and S. Lemonnier, “Effect of low content sintering aids addition on β-SiC sintered by spark plasma sintering,” J Eur Ceram Soc, vol. 42, no. 6, pp. 2609–2617, 2022, doi: 10.1016/j.jeurceramsoc.2022.01.037.
[71]G. Ding, R. He, K. Zhang, N. Zhou, and H. Xu, “Stereolithography 3D printing of SiC ceramic with potential for lightweight optical mirror,” Ceram Int, vol. 46, no. 11, pp. 18785–18790, 2020, doi: 10.1016/j.ceramint.2020.04.196.
[72]R. He, G. Ding, K. Zhang, Y. Li, and D. Fang, “Fabrication of SiC ceramic architectures using stereolithography combined with precursor in fi ltration and pyrolysis,” Ceram Int, vol. 45, no. 11, pp. 14006–14014, 2019, doi: 10.1016/j.ceramint.2019.04.100.
[73]Y. Xu, Y. Gao, X. Yang, C. Tian, and Z. Yang, “Journal of the European Ceramic Society Relationship between topological structures and mechanical properties of artificially architected SiC cellular ceramics : Experimental and numerical study,” J Eur Ceram Soc, vol. 43, no. 10, pp. 4263–4276, 2023, doi: 10.1016/j.jeurceramsoc.2023.03.067.
[74]H. Wang, Z. Li, Z. Shang, and L. Tian, “Journal of the European Ceramic Society Preparation of porous SiC ceramics skeleton with low-cost and controllable gradient based on liquid crystal display 3D printing,” J Eur Ceram Soc, vol. 42, no. 13, pp. 5432–5437, 2022, doi: 10.1016/j.jeurceramsoc.2022.07.002.
[75]J. Tang, H. Chang, X. Guo, M. Liu, and Y. Wei, “Preparation of carbon fiber-reinforced SiC ceramics by stereolithography and secondary silicon infiltration,” Ceram Int, vol. 48, no. 17, pp. 25159–25167, 2022, doi: 10.1016/j.ceramint.2022.05.178.
[76]J. Tang, M. Liu, Y. Wei, Y. Yang, and Z. Huang, “An efficient and low-cost liquid silicon infiltration method to prepare SiC-coated carbon short fiber for fiber protection of C f / SiC ceramic matrix composites,” Ceram Int, vol. 47, no. 9, pp. 13235–13241, 2021, doi: 10.1016/j.ceramint.2021.01.115.
[77]W. Li et al., “Microstructure Evolution and Performance Improvement of Silicon Carbide Ceramics via Impregnation Method,” Materials, vol. 15, no. 5, 2022, doi: 10.3390/ma15051717.
[78]X. Bai, G. Ding, K. Zhang, W. Wang, N. Zhou, and D. Fang, “Stereolithography additive manufacturing and sintering approaches of SiC ceramics,” Open Ceramics, vol. 5, no. December 2020, p. 100046, 2021, doi: 10.1016/j.oceram.2020.100046.
[79]J. Gong, Y. Wang, J. Huang, X. Pei, L. He, and Z. Huang, “Digital light processing of SiC ceramic from allylhydridopolycarbosilane with limited acrylate monomers,” Ceram Int, vol. 48, no. 13, pp. 18468–18474, 2022, doi: 10.1016/j.ceramint.2022.03.116.
[80]J. Chen, Y. Wang, X. Pei, C. Bao, Z. Huang, and L. He, “Preparation and stereolithography of SiC ceramic precursor with high photosensitivity and ceramic yield,” Ceram Int, vol. 46, no. 9, pp. 13066–13072, 2020, doi: 10.1016/j.ceramint.2020.02.077.
[81]L. He, Z. Zhang, X. Yang, L. Jiao, Y. Li, and C. Xu, “Liquid polycarbosilanes: Synthesis and evaluation as precursors for SiC ceramic,” Polym Int, vol. 64, no. 8, pp. 979–985, 2015, doi: 10.1002/pi.4889.
[82]S. Kaur, R. Riedel, and E. Ionescu, “Pressureless fabrication of dense monolithic SiC ceramics from a polycarbosilane,” J Eur Ceram Soc, vol. 34, no. 15, pp. 3571–3578, 2014, doi: 10.1016/j.jeurceramsoc.2014.05.002.
[83]R. Chen, Q. Lian, X. He, J. Wang, and D. Li, “Journal of the European Ceramic Society A stereolithographic diamond-mixed resin slurry for complex SiC ceramic structures,” J Eur Ceram Soc, vol. 41, no. 7, pp. 3991–3999, 2021, doi: 10.1016/j.jeurceramsoc.2021.02.014.
[84]H. Zhang, Y. Yang, K. Hu, B. Liu, M. Liu, and Z. Huang, “Stereolithography-based additive manufacturing of lightweight and high-strength Cf/SiC ceramics,” Addit Manuf, vol. 34, no. December 2019, p. 101199, 2020, doi: 10.1016/j.addma.2020.101199.
[85]R. Chen, Q. Lian, D. Li, X. He, S. Wang, and J. Zhuang, “Stereolithographic additive manufacturing diamond / SiC composites with high thermal conductivity for electronic 3D-packaging applications,” vol. 47, no. November 2020, pp. 14009–14020, 2021.
[86]J. Tang et al., “Preparation of photosensitive SiO2/SiC ceramic slurry with high solid content for stereolithography,” Ceram Int, vol. 48, no. 20, pp. 30332–30337, 2022, doi: 10.1016/j.ceramint.2022.06.306.
[87]G. of silicon carbide ceramic slurry for stereolithographybased additive manufacturing Ye et al., “Preparation of silicon carbide ceramic slurry for stereolithographybased additive manufacturing,” Processing and Application of Ceramics, vol. 17, no. 1, pp. 47–54, 2023, doi: 10.2298/PAC2301047Y.
[88]W. Dong, C. Bao, H. Li, R. Liu, S. Li, and H. Ma, “Curing performance and print accuracy of oxidized SiC ceramic via vat photopolymerization,” Ceram Int, no. June, 2023, doi: 10.1016/j.ceramint.2023.06.176.
[89]Z. Shen, J. Chen, and B. Li, “Chemical A novel two-stage synthesis for 3C – SiC nanowires by carbothermic reduction and their photoluminescence properties,” J Mater Sci, vol. 54, no. 19, pp. 12450–12462, 2019, doi: 10.1007/s10853-019-03749-5.
[90]M. Xu et al., “Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications,” Mater Today Commun, vol. 28, no. April 2021, p. 102533, 2021, doi: 10.1016/j.mtcomm.2021.102533.
[91]S. Kothapally, S. Kotru, R. Paul, and J. A. Abu Qahouq, “Optical studies of pure and (Cu, Co) doped nickel zinc ferrite films deposited on quartz substrate,” Journal of Vacuum Science & Technology A, vol. 41, no. 2, 2023, doi: 10.1116/6.0002262.
[92]T. Liu, L. Yang, Z. Chen, M. Yang, and L. Lu, “Effects of SiC content on the microstructure and mechanical performance of stereolithography-based SiC ceramics,” Journal of Materials Research and Technology, vol. 25, pp. 5184–5195, 2023, doi: 10.1016/j.jmrt.2023.06.260.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top