|
[1]D. Das and N. Kayal, “Influence of additive contents on the properties of SiC ceramic membranes and their performance in oil‐water separation,” Int J Appl Ceram Technol, vol. 2, no. November 2022, pp. 1–15, 2023, doi: 10.1111/ijac.14334. [2]Y. Wang et al., “Reaction-bonded robust SiC ceramic membranes sintered at low temperature with coal gangue,” Ceram Int, no. February, 2023, doi: 10.1016/j.ceramint.2023.03.097. [3]X. Wang, Y. Zhou, and Y. Yuan, “Effect of sintering temperature on properties of SiC porous ceramics,” Gongneng Cailiao/Journal of Functional Materials, vol. 53, no. 1, pp. 01072–01076, 2022, doi: 10.3969/j.issn.1001-9731.2022.01.011. [4]H. Chang, J. Tang, X. Guo, Y. Zhu, M. Liu, and Y. Wei, “Stereolithography-based additive manufacturing of RB-SiC ceramics by a two-step sintering method,” Ceram Int, vol. 49, no. 1, pp. 1085–1091, 2023, doi: 10.1016/j.ceramint.2022.09.083. [5]Q. Jiang et al., “Lower-temperature preparation of SiC ceramic membrane using zeolite residue as sintering aid for oil-in-water separation,” J Memb Sci, vol. 610, no. March, p. 118238, 2020, doi: 10.1016/j.memsci.2020.118238. [6]U. Baig, A. Waheed, and M. A. Dastageer, “Facile Fabrication of Silicon Carbide Decorated Ceramic Membrane, Engineered with Selective Surface Wettability for Highly Efficient Separation of Oil-in-Water Emulsions,” J Environ Chem Eng, vol. 11, no. 2, p. 109357, 2023, doi: 10.1016/j.jece.2023.109357. [7]Y. Wang, Q. Jiang, W. Jing, Z. Zhong, and W. Xing, “Pore structure and surface property design of silicon carbide membrane for water-in-oil emulsification,” J Memb Sci, vol. 648, no. February, p. 120347, 2022, doi: 10.1016/j.memsci.2022.120347. [8]Q. Jiang et al., “Silicon carbide microfiltration membranes for oil-water separation: Pore structure-dependent wettability matters,” Water Res, vol. 216, no. March, p. 118270, 2022, doi: 10.1016/j.watres.2022.118270. [9]Q. Wang, R. Zhou, and T. Tsuru, “Recent Progress in Silicon Carbide-Based Membranes for Gas Separation,” Membranes (Basel), vol. 12, no. 12, 2022, doi: 10.3390/membranes12121255. [10]M. Trevisan, J. Vicente, R. Ghidossi, A. Vincent, and P. Moulin, “Membrane characterisation from the support to the skin layer: Application to silicon carbide (SiC) membranes,” J Eur Ceram Soc, vol. 42, no. 9, pp. 3759–3769, 2022, doi: 10.1016/j.jeurceramsoc.2022.02.045. [11]D. Jahanshahi, M. Ostadhassan, E. Vessally, and J. Azamat, “Performance of Silicon Carbide Nanomaterials in Separation Process,” Separation and Purification Reviews, vol. 00, no. 00, pp. 1–16, 2022, doi: 10.1080/15422119.2022.2082979. [12]J. Wang et al., “Pure-SiC ceramic membrane for ultrafiltration: Morphology, pore characteristics and separation performances,” Ceram Int, vol. 50, no. 5, pp. 8162–8170, 2023, doi: 10.1016/j.ceramint.2023.12.146. [13]J. Cao et al., “3D printing and in situ transformation of SiCnw/SiC structures,” Addit Manuf, vol. 58, no. July, 2022, doi: 10.1016/j.addma.2022.103053. [14]Z. A. Shi, J. M. Wu, Z. Q. Fang, and Y. S. Shi, “Influence of high-temperature oxidation of SiC powders on curing properties of SiC slurry for digital light processing,” Journal of Advanced Ceramics, vol. 12, no. 1, pp. 169–181, 2023, doi: 10.26599/JAC.2023.9220675. [15]J. Chen, Y. Zhang, D. Yan, and Y. Gou, “Flexible ultrafine nearly stoichiometric polycrystalline SiC fibers with excellent oxidation resistance and superior thermal stability up to 1900 °C,” J Eur Ceram Soc, vol. 42, no. 5, pp. 1938–1946, 2022, doi: 10.1016/j.jeurceramsoc.2021.12.049. [16]C. Wang, S. Wu, C. Yan, Y. Shi, G. Wu, and X. Han, “Research and applications of additive manufacturing technology of SiC ceramics,” Kexue Tongbao/Chinese Science Bulletin, vol. 67, no. 11, pp. 1137–1154, 2022, doi: 10.1360/TB-2021-1113. [17]C. Hu et al., “Effect of SiC powder on the properties of SiC slurry for stereolithography,” Ceram Int, vol. 47, no. 9, pp. 12442–12449, 2021, doi: 10.1016/j.ceramint.2021.01.101. [18]Y. Liu, G. Li, L. Huan, and S. Cao, “Advancements in silicon carbide-based supercapacitors: materials, performance, and emerging applications,” Nanoscale, no. 2017, pp. 504–526, 2023, doi: 10.1039/d3nr05050e. [19]H. Liu et al., “Progress of One-Dimensional SiC Nanomaterials: Design, Fabrication and Sensing Applications,” Nanomaterials, vol. 14, no. 2, 2024, doi: 10.3390/nano14020187. [20]D. Lu et al., “Journal of the European Ceramic Society Microstructure control of SiC w / SiC composites based on SLS technology,” J Eur Ceram Soc, vol. 42, no. 9, pp. 3747–3758, 2022, doi: 10.1016/j.jeurceramsoc.2022.03.053. [21]X. Guo, J. Tang, H. Chang, Y. Zhu, Y. Wei, and X. Hu, “Application of SiO 2 -coated SiC powder in stereolithography and sintering densification of SiC ceramic composites,” Ceram Int, vol. 49, no. 15, pp. 25016–25024, 2023, doi: 10.1016/j.ceramint.2023.05.030. [22]S. Chaudhary, S. K. Avinashi, J. Rao, and C. Gautam, “Recent Advances in Additive Manufacturing , Applications and Challenges for Dentistry : A Review,” 2023, doi: 10.1021/acsbiomaterials.2c01561. [23]H. B. Mamo, M. Adamiak, and A. Kunwar, “Journal of the Mechanical Behavior of Biomedical Materials 3D printed biomedical devices and their applications : A review on state-of-the-art technologies , existing challenges , and future perspectives,” J Mech Behav Biomed Mater, vol. 143, no. May, p. 105930, 2023, doi: 10.1016/j.jmbbm.2023.105930. [24]S. S. Nath, I. G. Patil, and P. Sundriyal, “Material extrusion of electrochemical energy storage devices for flexible and wearable electronic applications,” J Energy Storage, vol. 79, no. November 2023, p. 110129, 2024, doi: 10.1016/j.est.2023.110129. [25]M. H. Mobarak et al., “Recent advances of additive manufacturing in implant fabrication – A review,” Applied Surface Science Advances, vol. 18, no. October, p. 100462, 2023, doi: 10.1016/j.apsadv.2023.100462. [26]J. Sun et al., “A review on additive manufacturing of ceramic matrix composites,” J Mater Sci Technol, vol. 138, pp. 1–16, 2023, doi: 10.1016/j.jmst.2022.06.039. [27]S. Mika and E. Pei, “Additive manufacturing processes and materials for spare parts,” vol. 37, no. 11, pp. 5979–5990, 2023, doi: 10.1007/s12206-023-1034-0. [28]K. V. Wong and A. Hernandez, “A Review of Additive Manufacturing,” ISRN Mechanical Engineering, vol. 2012, pp. 1–10, 2012, doi: 10.5402/2012/208760. [29]S. P. Tadi, S. S. Maddula, and R. S. Mamilla, “Sustainability aspects of composite filament fabrication for 3D printing applications,” Renewable and Sustainable Energy Reviews, vol. 189, no. PA, p. 113961, 2024, doi: 10.1016/j.rser.2023.113961. [30]D. P. Simunec, J. Jacob, A. E. Z. Kandjani, A. Trinchi, and A. Sola, “Facilitating the additive manufacture of high-performance polymers through polymer blending: A review,” Eur Polym J, vol. 201, no. October, p. 112553, 2023, doi: 10.1016/j.eurpolymj.2023.112553. [31]J. M. Costa, E. W. Sequeiros, and M. F. Vieira, “Fused Filament Fabrication for Metallic Materials: A Brief Review,” Materials, vol. 16, no. 24, 2023, doi: 10.3390/ma16247505. [32]D. Li, Y. Yang, A. L. Elias, N. Yan, and F. Guo, “Biopolymer Composites Material Extrusion and their Applications: A Review,” Adv Eng Mater, vol. 25, no. 21, pp. 1–21, 2023, doi: 10.1002/adem.202301048. [33]C. M. Shebeeb, M. Bin Afif, L. Jacob, D. Choi, and H. Butt, “Vat photopolymerisation 3D printing of graphene-based materials,” Virtual Phys Prototyp, vol. 18, no. 1, 2023, doi: 10.1080/17452759.2023.2276250. [34]Y. Li, X. Zhang, X. Zhang, Y. Zhang, and D. Hou, “Recent Progress of the Vat Photopolymerization Technique in Tissue Engineering: A Brief Review of Mechanisms, Methods, Materials, and Applications,” Polymers (Basel), vol. 15, no. 19, 2023, doi: 10.3390/polym15193940. [35]M. Shah et al., “Vat photopolymerization-based 3D printing of polymer nanocomposites: current trends and applications,” RSC Adv, vol. 13, no. 2, pp. 1456–1496, 2023, doi: 10.1039/d2ra06522c. [36]L. A. Milton, M. S. Viglione, L. J. Y. Ong, G. P. Nordin, and Y. C. Toh, “Vat photopolymerization 3D printed microfluidic devices for organ-on-a-chip applications,” Lab Chip, vol. 23, no. 16, pp. 3537–3560, 2023, doi: 10.1039/d3lc00094j. [37]J. Mauriello, R. Maury, Y. Guillaneuf, and D. Gigmes, “3D/4D Printing of Polyurethanes by Vat Photopolymerization,” Adv Mater Technol, vol. 8, no. 23, pp. 1–30, 2023, doi: 10.1002/admt.202300366. [38]J. Wang, R. Zhu, Y. Liu, and L. Zhang, “Understanding melt pool characteristics in laser powder bed fusion: An overview of single- and multi-track melt pools for process optimization,” Advanced Powder Materials, vol. 2, no. 4, 2023, doi: 10.1016/j.apmate.2023.100137. [39]H. Y. Ma et al., “Advances in additively manufactured titanium alloys by powder bed fusion and directed energy deposition: Microstructure, defects, and mechanical behavior,” J Mater Sci Technol, vol. 183, pp. 32–62, 2024, doi: 10.1016/j.jmst.2023.11.003. [40]D. Dev Singh, T. Mahender, and A. Raji Reddy, “Powder bed fusion process: A brief review,” Mater Today Proc, vol. 46, pp. 350–355, 2021, doi: 10.1016/j.matpr.2020.08.415. [41]L. Ladani and M. Sadeghilaridjani, “Review of powder bed fusion additive manufacturing for metals,” Metals (Basel), vol. 11, no. 9, 2021, doi: 10.3390/met11091391. [42]Z. Liu et al., “Alloy design for laser powder bed fusion additive manufacturing: a critical review,” International Journal of Extreme Manufacturing, 2023, doi: 10.1088/2631-7990/ad1657. [43]M. Ziaee and N. B. Crane, “Binder jetting: A review of process, materials, and methods,” Addit Manuf, vol. 28, no. May, pp. 781–801, 2019, doi: 10.1016/j.addma.2019.05.031. [44]Y. Wang, A. Müllertz, and J. Rantanen, “Structured approach for designing drug-loaded solid products by binder jetting 3D printing,” European Journal of Pharmaceutical Sciences, vol. 178, no. August, p. 106280, 2022, doi: 10.1016/j.ejps.2022.106280. [45]X. Chen et al., “The Application and Challenge of Binder Jet 3D Printing Technology in Pharmaceutical Manufacturing,” Pharmaceutics, vol. 14, no. 12, 2022, doi: 10.3390/pharmaceutics14122589. [46]A. Elkaseer, K. J. Chen, J. C. Janhsen, O. Refle, V. Hagenmeyer, and S. G. Scholz, “Material jetting for advanced applications: A state-of-the-art review, gaps and future directions,” Addit Manuf, vol. 60, no. PA, p. 103270, 2022, doi: 10.1016/j.addma.2022.103270. [47]D. Zhang, S. A. Sia, S. F. D. Solco, J. Xu, and A. Suwardi, “Energy harvesting through thermoelectrics: topological designs and materials jetting technology,” Soft Science, vol. 3, no. 1, 2023, doi: 10.20517/ss.2022.29. [48]V. V. K. Doddapaneni et al., “A Review on Progress, Challenges, and Prospects of Material Jetting of Copper and Tungsten,” Nanomaterials, vol. 13, no. 16, 2023, doi: 10.3390/nano13162303. [49]S. Mora, N. M. Pugno, and D. Misseroni, “3D printed architected lattice structures by material jetting,” Materials Today, vol. 59, no. October, pp. 107–132, 2022, doi: 10.1016/j.mattod.2022.05.008. [50]B. Y. Reddy, M. Siddhartha, P. S. R. Reddy, and A. A. Lakshmi, “Influence of Process Parameters on Sheet Lamination Method-based 3D printing: A Review,” E3S Web of Conferences, vol. 430, pp. 1–11, 2023, doi: 10.1051/e3sconf/202343001251. [51]B. Karaş, P. J. Smith, J. P. A. Fairclough, and K. Mumtaz, “Additive manufacturing of high density carbon fibre reinforced polymer composites,” Addit Manuf, vol. 58, no. April, pp. 1–10, 2022, doi: 10.1016/j.addma.2022.103044. [52]Y. Abderrafai et al., “Additive manufacturing of short carbon fiber-reinforced polyamide composites by fused filament fabrication: Formulation, manufacturing and characterization,” Mater Des, vol. 214, p. 110358, 2022, doi: 10.1016/j.matdes.2021.110358. [53]I. Z. Era, M. A. Farahani, T. Wuest, and Z. Liu, “Machine learning in Directed Energy Deposition (DED) additive manufacturing: A state-of-the-art review,” Manuf Lett, vol. 35, pp. 689–700, 2023, doi: 10.1016/j.mfglet.2023.08.079. [54]T. Liu et al., “Review on Laser Directed Energy Deposited Aluminum Alloys,” International Journal of Extreme Manufacturing, 2023, doi: 10.1088/2631-7990/ad16bb. [55]J. Haley, J. Karandikar, C. Herberger, E. MacDonald, T. Feldhausen, and Y. Lee, “Review of in situ process monitoring for metal hybrid directed energy deposition,” J Manuf Process, vol. 109, no. October 2023, pp. 128–139, 2024, doi: 10.1016/j.jmapro.2023.12.004. [56]Z. Chen et al., “3D printing of ceramics: A review,” J Eur Ceram Soc, vol. 39, no. 4, pp. 661–687, 2019, doi: 10.1016/j.jeurceramsoc.2018.11.013. [57]K. Zhang, Q. Meng, Z. Qu, and R. He, “A review of defects in vat photopolymerization additive-manufactured ceramics: Characterization, control, and challenges,” J Eur Ceram Soc, vol. 44, no. 3, pp. 1361–1384, 2024, doi: 10.1016/j.jeurceramsoc.2023.10.067. [58]E. Romanczuk-Ruszuk, B. Sztorch, D. Pakuła, E. Gabriel, K. Nowak, and R. E. Przekop, “3D Printing Ceramics—Materials for Direct Extrusion Process,” Ceramics, vol. 6, no. 1, pp. 364–385, 2023, doi: 10.3390/ceramics6010022. [59]M. I. Hussain, M. Xia, X. N. Ren, C. Ge, M. Jamil, and M. K. Gupta, “Digital light processing 3D printing of ceramic materials: a review on basic concept, challenges, and applications,” International Journal of Advanced Manufacturing Technology, pp. 2241–2267, 2023, doi: 10.1007/s00170-023-12847-3. [60]X. Wu et al., “Research progress of the defects and innovations of ceramic vat photopolymerization,” Addit Manuf, vol. 65, no. February, p. 103441, 2023, doi: 10.1016/j.addma.2023.103441. [61]S. Zakeri, M. Vippola, and E. Levänen, “A comprehensive review of the photopolymerization of ceramic resins used in stereolithography,” Addit Manuf, vol. 35, 2020, doi: 10.1016/j.addma.2020.101177. [62]R. Chaudhary, P. Fabbri, E. Leoni, F. Mazzanti, R. Akbari, and C. Antonini, “Additive manufacturing by digital light processing: a review,” Progress in Additive Manufacturing, vol. 8, no. 2, pp. 331–351, 2023, doi: 10.1007/s40964-022-00336-0. [63]S. Enbergs, J. Spinnen, T. Dehne, and M. Sittinger, “3D Printing of Bone Substitutes Based on Vat Photopolymerization Processes: A Systematic Review,” J Tissue Eng Regen Med, vol. 2023, 2023, doi: 10.1155/2023/3901448. [64]C. Hinczewski, S. Corbel, and T. Chartier, “Ceramic suspensions suitable for stereolithography,” J Eur Ceram Soc, vol. 18, no. 6, pp. 583–590, 1998, doi: 10.1016/s0955-2219(97)00186-6. [65]K. Li and Z. Zhao, “The effect of the surfactants on the formulation of UV-curable SLA alumina suspension,” Ceram Int, vol. 43, no. 6, pp. 4761–4767, 2017, doi: 10.1016/j.ceramint.2016.11.143. [66]H. Xing et al., “Preparation and characterization of UV curable Al2O3 suspensions applying for stereolithography 3D printing ceramic microcomponent,” Powder Technol, vol. 338, pp. 153–161, 2018, doi: 10.1016/j.powtec.2018.07.023. [67]E. Fiume, B. Coppola, L. Montanaro, and P. Palmero, “Vat-photopolymerization of ceramic materials: exploring current applications in advanced multidisciplinary fields,” Front Mater, vol. 10, no. October, pp. 1–32, 2023, doi: 10.3389/fmats.2023.1242480. [68]J. Tang et al., “The preparation of SiC ceramic photosensitive slurry for rapid stereolithography,” J Eur Ceram Soc, vol. 41, no. 15, pp. 7516–7524, 2021, doi: 10.1016/j.jeurceramsoc.2021.08.029. [69]G. Ding et al., “Stereolithography-based additive manufacturing of gray-colored SiC ceramic green body,” Journal of the American Ceramic Society, vol. 102, no. 12, pp. 7198–7209, 2019, doi: 10.1111/jace.16648. [70]F. Delobel, J. Cambedouzou, F. Moitrier, and S. Lemonnier, “Effect of low content sintering aids addition on β-SiC sintered by spark plasma sintering,” J Eur Ceram Soc, vol. 42, no. 6, pp. 2609–2617, 2022, doi: 10.1016/j.jeurceramsoc.2022.01.037. [71]G. Ding, R. He, K. Zhang, N. Zhou, and H. Xu, “Stereolithography 3D printing of SiC ceramic with potential for lightweight optical mirror,” Ceram Int, vol. 46, no. 11, pp. 18785–18790, 2020, doi: 10.1016/j.ceramint.2020.04.196. [72]R. He, G. Ding, K. Zhang, Y. Li, and D. Fang, “Fabrication of SiC ceramic architectures using stereolithography combined with precursor in fi ltration and pyrolysis,” Ceram Int, vol. 45, no. 11, pp. 14006–14014, 2019, doi: 10.1016/j.ceramint.2019.04.100. [73]Y. Xu, Y. Gao, X. Yang, C. Tian, and Z. Yang, “Journal of the European Ceramic Society Relationship between topological structures and mechanical properties of artificially architected SiC cellular ceramics : Experimental and numerical study,” J Eur Ceram Soc, vol. 43, no. 10, pp. 4263–4276, 2023, doi: 10.1016/j.jeurceramsoc.2023.03.067. [74]H. Wang, Z. Li, Z. Shang, and L. Tian, “Journal of the European Ceramic Society Preparation of porous SiC ceramics skeleton with low-cost and controllable gradient based on liquid crystal display 3D printing,” J Eur Ceram Soc, vol. 42, no. 13, pp. 5432–5437, 2022, doi: 10.1016/j.jeurceramsoc.2022.07.002. [75]J. Tang, H. Chang, X. Guo, M. Liu, and Y. Wei, “Preparation of carbon fiber-reinforced SiC ceramics by stereolithography and secondary silicon infiltration,” Ceram Int, vol. 48, no. 17, pp. 25159–25167, 2022, doi: 10.1016/j.ceramint.2022.05.178. [76]J. Tang, M. Liu, Y. Wei, Y. Yang, and Z. Huang, “An efficient and low-cost liquid silicon infiltration method to prepare SiC-coated carbon short fiber for fiber protection of C f / SiC ceramic matrix composites,” Ceram Int, vol. 47, no. 9, pp. 13235–13241, 2021, doi: 10.1016/j.ceramint.2021.01.115. [77]W. Li et al., “Microstructure Evolution and Performance Improvement of Silicon Carbide Ceramics via Impregnation Method,” Materials, vol. 15, no. 5, 2022, doi: 10.3390/ma15051717. [78]X. Bai, G. Ding, K. Zhang, W. Wang, N. Zhou, and D. Fang, “Stereolithography additive manufacturing and sintering approaches of SiC ceramics,” Open Ceramics, vol. 5, no. December 2020, p. 100046, 2021, doi: 10.1016/j.oceram.2020.100046. [79]J. Gong, Y. Wang, J. Huang, X. Pei, L. He, and Z. Huang, “Digital light processing of SiC ceramic from allylhydridopolycarbosilane with limited acrylate monomers,” Ceram Int, vol. 48, no. 13, pp. 18468–18474, 2022, doi: 10.1016/j.ceramint.2022.03.116. [80]J. Chen, Y. Wang, X. Pei, C. Bao, Z. Huang, and L. He, “Preparation and stereolithography of SiC ceramic precursor with high photosensitivity and ceramic yield,” Ceram Int, vol. 46, no. 9, pp. 13066–13072, 2020, doi: 10.1016/j.ceramint.2020.02.077. [81]L. He, Z. Zhang, X. Yang, L. Jiao, Y. Li, and C. Xu, “Liquid polycarbosilanes: Synthesis and evaluation as precursors for SiC ceramic,” Polym Int, vol. 64, no. 8, pp. 979–985, 2015, doi: 10.1002/pi.4889. [82]S. Kaur, R. Riedel, and E. Ionescu, “Pressureless fabrication of dense monolithic SiC ceramics from a polycarbosilane,” J Eur Ceram Soc, vol. 34, no. 15, pp. 3571–3578, 2014, doi: 10.1016/j.jeurceramsoc.2014.05.002. [83]R. Chen, Q. Lian, X. He, J. Wang, and D. Li, “Journal of the European Ceramic Society A stereolithographic diamond-mixed resin slurry for complex SiC ceramic structures,” J Eur Ceram Soc, vol. 41, no. 7, pp. 3991–3999, 2021, doi: 10.1016/j.jeurceramsoc.2021.02.014. [84]H. Zhang, Y. Yang, K. Hu, B. Liu, M. Liu, and Z. Huang, “Stereolithography-based additive manufacturing of lightweight and high-strength Cf/SiC ceramics,” Addit Manuf, vol. 34, no. December 2019, p. 101199, 2020, doi: 10.1016/j.addma.2020.101199. [85]R. Chen, Q. Lian, D. Li, X. He, S. Wang, and J. Zhuang, “Stereolithographic additive manufacturing diamond / SiC composites with high thermal conductivity for electronic 3D-packaging applications,” vol. 47, no. November 2020, pp. 14009–14020, 2021. [86]J. Tang et al., “Preparation of photosensitive SiO2/SiC ceramic slurry with high solid content for stereolithography,” Ceram Int, vol. 48, no. 20, pp. 30332–30337, 2022, doi: 10.1016/j.ceramint.2022.06.306. [87]G. of silicon carbide ceramic slurry for stereolithographybased additive manufacturing Ye et al., “Preparation of silicon carbide ceramic slurry for stereolithographybased additive manufacturing,” Processing and Application of Ceramics, vol. 17, no. 1, pp. 47–54, 2023, doi: 10.2298/PAC2301047Y. [88]W. Dong, C. Bao, H. Li, R. Liu, S. Li, and H. Ma, “Curing performance and print accuracy of oxidized SiC ceramic via vat photopolymerization,” Ceram Int, no. June, 2023, doi: 10.1016/j.ceramint.2023.06.176. [89]Z. Shen, J. Chen, and B. Li, “Chemical A novel two-stage synthesis for 3C – SiC nanowires by carbothermic reduction and their photoluminescence properties,” J Mater Sci, vol. 54, no. 19, pp. 12450–12462, 2019, doi: 10.1007/s10853-019-03749-5. [90]M. Xu et al., “Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications,” Mater Today Commun, vol. 28, no. April 2021, p. 102533, 2021, doi: 10.1016/j.mtcomm.2021.102533. [91]S. Kothapally, S. Kotru, R. Paul, and J. A. Abu Qahouq, “Optical studies of pure and (Cu, Co) doped nickel zinc ferrite films deposited on quartz substrate,” Journal of Vacuum Science & Technology A, vol. 41, no. 2, 2023, doi: 10.1116/6.0002262. [92]T. Liu, L. Yang, Z. Chen, M. Yang, and L. Lu, “Effects of SiC content on the microstructure and mechanical performance of stereolithography-based SiC ceramics,” Journal of Materials Research and Technology, vol. 25, pp. 5184–5195, 2023, doi: 10.1016/j.jmrt.2023.06.260.
|