跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/12 04:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐昊昇
研究生(外文):Xu,Hao-Sheng
論文名稱:添加鈮對銅鋁鐵形狀記憶合金制振性質影響之研究
論文名稱(外文):Effects of the Nb Addition on the Damping Properties of Cu-Al-Fe Shape Memory Alloys
指導教授:張世航薛仲娟
指導教授(外文):Chang,Shih-HangHsueh,Chung-Chuan
口試委員:吳錫侃林新智周棟勝張世航
口試委員(外文):Wu,Shyi-KaanLin,Hsni-ChihChou,Tung-ShengChang,Shih-Hang
口試日期:2024-07-17
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:化學工程與材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:68
中文關鍵詞:Cu-Al-Fe形狀記憶合金制振能麻田散體相變態動態機械分析儀
外文關鍵詞:Cu-Al-Fe shape memory alloysDamping capacityMartensitic transformationDynamic mechanical analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究係探討添加Nb原子以及熱處理對於Cu-Al-Fe-Nb形狀記憶合金性質之影響。Cu-14Al-4Fe-xNb(x=0,1,2 and 3 wt%)形狀記憶合金之麻田散體相變態行為皆為β1(DO3)⇄ γ 1' (2H),隨著Nb原子含量的增加Cu-14Al-4Fe-xNb形狀記憶合金之麻田散體相變態溫度略為降低。Cu-14Al-4Fe-xNb形狀記憶合金的晶粒大小與Nb原子的含量並無顯著關聯。由動態機械分析結果得知,添加Nb原子至Cu-14Al-4Fe形狀記憶合金會降低(IF)β1(DO3)⇄ γ 1' (2H)內耗峰。經600oC熱處理溫度後,Cu-14Al-4Fe-2Nb形狀記憶合金顯示出大量Nb(Cu,Al,Fe)2析出物,並且無法觀察到麻田散體相變態行為。隨者熱處理溫度升高,Nb(Cu,Al,Fe)2析出物含量減少,當熱處理溫度超過700oC時,Cu-14Al-4Fe-2Nb形狀記憶合金在室溫附近具有顯著的內耗峰。
In this study, we investigated the effects of Nb addition and heat treatment on the properties of Cu-Al-Fe-Nb shape memory alloys. The martensitic transformation of Cu-14Al-4Fe-xNb (x=0, 1, 2, and 3 wt%) shape memory alloys was all β1(DO3) ⇄ γ1' (2H). the martensitic transformation temperature of the Cu-14Al-4Fe-xNb shape memory alloys slightly decreased with increased Nb content. The grain size of Cu-14Al-4Fe-xNb shape memory alloys has no significant correlation with the Nb content. Adding Nb into Cu-14Al-4Fe shape memory alloys reduces the damping capacity of the β1(DO3) ⇄ γ1' (2H) internal friction peak. The as-melted Cu-14Al-4Fe-2Nb shape memory alloy exhibited abundant Nb(Cu, Al, Fe)2 precipitates after heat-treating at 600°C, and no martensitic transformation could be obtained. The amount of Nb(Cu, Al, Fe)2 precipitates decreased with increased heat-treated temperature. The Cu-14Al-4Fe-2Nb shape memory alloy exhibited a significant internal friction peak around room temperature when the heat-treated temperature was above 700°C.
目錄
摘要 i
Abstract ii
目錄 iii
圖目錄 v
第一章 前言 1
第二章 文獻回顧 2
2.1形狀記憶合金發展 2
2.1.1 形狀記憶效應 4
2.1.2 超彈性 7
2.1.3 熱彈性麻田散體 8
2.2 Cu基形狀記憶合金 11
2.2.1 Cu基形狀記憶合金之母相結構 11
2.2.2 Cu基形狀記憶合金之麻田散體相結構 13
2.2.3 M18R和N18R麻田散體結構差異 16
2.3 制振能(阻尼性質) 17
第三章 實驗方法及設備 25
3.1形狀記憶合金設計及製備 26
3.2 X光繞射分析 27
3.3 相變態溫度測試 28
3.4 金相觀察 29
3.5維氏硬度測試 31
3.6 制振能測試 33
3.7實驗藥品 36
第四章 結果與討論 37
4.1添加Nb對Cu-Al-Fe形狀記憶合金性質之影響 37
4.1.1 Cu-Al-Fe-Nb形狀記憶合金之X光繞射結果 37
4.1.2 Cu-Al-Fe-Nb形狀記憶合金之相變態溫度測量結果 39
4.1.3 Cu-Al-Fe-Nb形狀記憶合金之表面金相觀察 41
4.1.4 Cu-Al-Fe-Nb形狀記憶合金之硬度分析測量結果 50
4.1.5 Cu-Al-Fe-Nb形狀記憶合金之制振能分析結果 52
4.2 熱處理溫度對Cu-Al-Fe-Nb形狀記憶合金性質之影響 54
4.2.1 X光繞射結果 54
4.2.2相變態溫度測量結果 56
4.2.3表面金相之觀察結果 58
4.2.4硬度分析測量結果 61
4.2.5制振能分析結果 61
第五章結論 64
5.1 添加Nb對Cu-14Al-4Fe形狀記憶合金性質之影響 64
5.2熱處理溫度對Cu-14Al-4Fe-2Nb形狀記憶合金之影響 64
參考文獻 66


圖目錄
圖2.1形狀記憶效應與超彈性示意圖 3
圖2.2單向形狀記憶效應示意圖 4
圖2.3雙向形狀記憶效應示意圖 5
圖2.4全方位形狀記憶效應示意圖 6
圖2.5臨界應力示意圖 8
圖2.6四種麻田散體變態方式示意圖 10
圖2.7 Cu基形狀記憶合金各種母相結構圖 12
圖2.8 Cu-Al合金之相圖 12
圖 2. 9 B2結構之β2母相經過剪切後產生的三種原子平面 14
圖 2. 10 DO3結構之β1母相經過剪切後產生的六種原子平面 14
圖 2. 11各種麻田散體之週期性堆疊結構 15
圖 2.12 庫倫阻尼示意圖 18
圖 2.13 庫倫阻尼哀減震盪 18
圖2.14 遲滯曲線圖 22
圖2.15 一正弦應力下之Transient Creep Plus Elastic Rheological模型 23
圖2. 16Granato-Lücke差排機構模型 23
圖2. 17差排型制振合金(六方晶構造及其底面) 24
圖2. 181 雙晶型制振合金 24
圖2. 19強磁性型制振合金 24
圖 3. 1添加第四合金元素Nb對於Cu-Al-Fe形狀記憶合金研究之實驗流程 25
圖 3. 2真空電弧熔煉爐(VAR) 26
圖 3. 3 X光繞射儀(X-ray Diffractometer, XRD) 27
圖 3. 4 示差掃描熱卡分析儀(DSC) 28
圖 3. 5 掃描式電子顯微鏡 (SEM) 29
圖 3. 8 維式硬度計壓頭 32
圖 3. 9 動態機械分析儀(DMA) 35
圖 3. 10 DMA單/雙懸臂夾具 35
圖4.1 Cu-14Al-4Fe-xNb (x = 0, 1, 2 and 3 wt%)形狀記憶合金之XRD繞射圖 38
圖4.2 Cu-14Al-4Fe-xNb (x = 0, 1, 2 and 3 wt.%)形狀記憶合金之DSC曲線圖 40
圖4.3 Cu-14Al-4Fe-0Nb形狀記憶合金在放大倍率為(a)100、(b)200與(c)500倍之OM圖 42
圖4.4 Cu-14Al-4Fe-1Nb形狀記憶合金在放大倍率為(a)100、(b)200與(c)500倍之OM圖 43
圖4.5 Cu-14Al-4Fe-2Nb形狀記憶合金在放大倍率為(a)100、(b)200與(c)500倍之OM圖 44
圖4.6 Cu-14Al-4Fe-3Nb形狀記憶合金在放大倍率為(a)100、(b)200與(c)500倍之OM圖 45
圖4.7 Cu-14Al-4Fe-0Nb形狀記憶合金在放大倍率為(a)100倍、(b)200倍、(c)500倍及(d)1000倍之SEM圖 46
圖4.8 Cu-14Al-4Fe-1Nb形狀記憶合金在放大倍率為(a)100倍、(b)200倍、(c)500倍及(d)1000倍之SEM圖 47
圖4.9 Cu-14Al-4Fe-2Nb形狀記憶合金在放大倍率為(a)100倍、(b)200倍、(c)500倍及(d)1000倍之SEM圖 48
圖4.10 Cu-14Al-4Fe-3Nb形狀記憶合金在放大倍率為(a)100倍、(b)200倍、(c)500倍及(d)1000倍之SEM圖 49
圖4.11 Cu-14Al-4Fe-xNb (x = 0, 1, 2 and 3 wt.%)形狀記憶合金硬度測量結果 51
圖4.12 Cu-14Al-4Fe-xNb (x = 0, 1, 2 and 3 wt.%)形狀記憶合金在降溫速率3℃/min、頻率1Hz、振幅20μm的實驗條件下之Tan δ曲線圖 53
圖4.13 Cu-14Al-4Fe-2Nb形狀記憶合金之不同熱處理溫度XRD繞射圖 55
圖4.14 Cu-14Al-4Fe-2Nb 之不同熱處理溫度形狀記憶合金DSC曲線圖 57
圖4.15 Cu-14Al-4Fe-2Nb形狀記憶合金經(a)600℃、(b)700℃、(c)800℃及(d)900℃熱處理之500倍OM圖 59
圖4.16 Cu-14Al-4Fe-2Nb形狀記憶合金在經(a)600℃、(b)700℃、(c)800℃及(d)900℃熱處理之1000倍掃描電子顯微鏡SEM結果圖 60
圖4.17 Cu-14Al-4Fe-2Nb形狀記憶合金經600℃、700℃、800℃及900℃熱處理之硬度測量結果圖 61
圖4.18 Cu-14Al-4Fe-2Nb 之不同熱處理溫度形狀記憶合金在降溫速率3℃/min、頻率1Hz、振幅20μm的實驗條件下之Tan δ曲線圖 63


參考文獻
[1]J. Mohd Jani, M. Leary, A. Subic, and M. A. Gibson, "A review of shape memory alloy research, applications and opportunities," Materials & Design (1980-2015), vol. 56, pp. 1078-1113, 2014, doi: 10.1016/j.matdes.2013.11.084.
[2]G. Singh Rajput, J. Vora, P. Prajapati, and R. Chaudhari, "Areas of recent developments for shape memory alloy: A review," Materials Today: Proceedings, vol. 62, pp. 7194-7198, 2022, doi: 10.1016/j.matpr.2022.03.407.
[3]K. K. Alaneme and E. A. Okotete, "Reconciling viability and cost-effective shape memory alloy options – A review of copper and iron based shape memory metallic systems," Engineering Science and Technology, an International Journal, vol. 19, no. 3, pp. 1582-1592, 2016, doi: 10.1016/j.jestch.2016.05.010.
[4]V. Recarte, R. B. Pérez-Sáez, E. H. Bocanegra, M. L. Nó, and J. San Juan, "Dependence of the martensitic transformation characteristics on concentration in Cu–Al–Ni shape memory alloys," Materials Science and Engineering: A, vol. 273-275, pp. 380-384, 1999/12/15/ 1999, doi: https://doi.org/10.1016/S0921-5093(99)00302-0.
[5]C. E. Sobrero, P. La Roca, A. Roatta, R. E. Bolmaro, and J. Malarría, "Shape memory properties of highly textured Cu–Al–Ni–(Ti) alloys," Materials Science and Engineering: A, vol. 536, pp. 207-215, 2012/02/28/ 2012, doi: https://doi.org/10.1016/j.msea.2011.12.104.
[6]S.-H. Chang, "Internal friction of Cu–13.5Al–4Ni shape memory alloy measured by dynamic mechanical analysis under isothermal conditions," Materials Letters, vol. 64, no. 1, pp. 93-95, 2010, doi: 10.1016/j.matlet.2009.10.018.
[7]S. H. Chang, "Influence of chemical composition on the damping characteristics of Cu–Al–Ni shape memory alloys," Materials Chemistry and Physics, vol. 125, no. 3, pp. 358-363, 2011, doi: 10.1016/j.matchemphys.2010.09.077.
[8]G. Lojen, M. Gojić, and I. Anžel, "Continuously cast Cu–Al–Ni shape memory alloy – Properties in as-cast condition," Journal of Alloys and Compounds, vol. 580, pp. 497-505, 2013/12/15/ 2013, doi: https://doi.org/10.1016/j.jallcom.2013.06.136.
[9]J. Seo, Y. C. Kim, and J. W. Hu, "Pilot Study for Investigating the Cyclic Behavior of Slit Damper Systems with Recentering Shape Memory Alloy (SMA) Bending Bars Used for Seismic Restrainers," Applied Sciences, vol. 5, no. 3, pp. 187-208doi: 10.3390/app5030187.
[10]D. Kim, E. Choi, H. Cheon, and W. Kim, "Effect of Aging Condition on Microstructure, Mechanical Properties, and Shape Memory Behavior of Solution-Treated Fe-17Mn-5Si-5Cr-4Ni-0.2Ti-0.1C Shape Memory Alloy," Journal of Materials Engineering and Performance, vol. 33, no. 5, pp. 2253-2267, 2024/03/01 2024, doi: 10.1007/s11665-023-08587-w.
[11]B. Ben Fraj and S. Zghal, "Correlation between Hardness Behavior, Shape Memory, and Superelasticity in Ni-Rich NiTi Shape Memory Alloy," Journal of Materials Engineering and Performance, 2024/03/18 2024, doi: 10.1007/s11665-024-09313-w.
[12]C. Laureanda, "One Way and Two Way—Shape Memory Effect: Thermo—Mechanical Characterization of Ni—Ti Wires," Universitá degli Studi di Pavia Pavia, Italy, 2008. doi:https://doi.org/10.1016/j.msea.2007.03.118
[13]M. Sato, A. Ishida, and S. Miyazaki, "Two-way shape memory effect of sputter-deposited thin films of Ti 51.3 at.% Ni," Thin Solid Films, vol. 315, no. 1, pp. 305-309, 1998/03/02/ 1998, doi: https://doi.org/10.1016/S0040-6090(97)00746-3.
[14]F. Masdeu, J. Pons, Y. Chumlyakov, and E. Cesari, "Two-way shape memory effect in Ni49Fe18Ga27Co6 ferromagnetic shape memory single crystals," Materials Science and Engineering: A, vol. 805, p. 140543, 2021/02/23/ 2021, doi: https://doi.org/10.1016/j.msea.2020.140543.
[15]G. Scalet, F. Niccoli, C. Garion, P. Chiggiato, C. Maletta, and F. Auricchio, "A three-dimensional phenomenological model for shape memory alloys including two-way shape memory effect and plasticity," Mechanics of Materials, vol. 136, p. 103085, 2019/09/01/ 2019, doi: https://doi.org/10.1016/j.mechmat.2019.103085.
[16]R. Amireche, M. Morin, and S. Belkahla, "Study of the “All-Round-Effect” generated by aging in traction in a Ni rich TiNi shape memory alloy," Journal of Alloys and Compounds, vol. 516, pp. 5-8, 2012/03/05/ 2012, doi: https://doi.org/10.1016/j.jallcom.2011.11.154.
[17]K. Otsuka and X. Ren, "Physical metallurgy of Ti–Ni-based shape memory alloys," Progress in Materials Science, vol. 50, no. 5, pp. 511-678, 2005/07/01/ 2005, doi: https://doi.org/10.1016/j.pmatsci.2004.10.001.
[18]C. P. Frick, T. W. Lang, K. Spark, and K. Gall, "Stress-induced martensitic transformations and shape memory at nanometer scales," Acta Materialia, vol. 54, no. 8, pp. 2223-2234, 2006/05/01/ 2006, doi: https://doi.org/10.1016/j.actamat.2006.01.030.
[19]Z. Xie, Y. Liu, and J. Van Humbeeck, "Microstructure of NiTi shape memory alloy due to tension–compression cyclic deformation," Acta Materialia, vol. 46, no. 6, pp. 1989-2000, 1998/03/23/ 1998, doi: https://doi.org/10.1016/S1359-6454(97)00379-0.
[20]A. Jury, X. Balandraud, and L. Heller, "Thermal Conductivity and Specific Heat Capacity of Austenite and Stress-Induced Martensite in Superelastic NiTi at Ambient Temperature," International Journal of Thermophysics, vol. 44, no. 11, p. 162, 2023/10/25 2023, doi: 10.1007/s10765-023-03279-y.
[21]P. Chowdhury and H. Sehitoglu, "A revisit to atomistic rationale for slip in shape memory alloys," Progress in Materials Science, vol. 85, pp. 1-42, 2017/04/01/ 2017, doi: https://doi.org/10.1016/j.pmatsci.2016.10.002.
[22]C. M. Wayman, "Shape Memory Alloys," MRS Bulletin, vol. 18, pp. 49-56, 04/01 2013, doi: 10.1557/S0883769400037350.
[23]Y. Sutou, R. Kainuma, and K. Ishida, "Effect of alloying elements on the shape memory properties of ductile Cu–Al–Mn alloys," Materials Science and Engineering: A, vol. 273-275, pp. 375-379, 1999/12/15/ 1999, doi: https://doi.org/10.1016/S0921-5093(99)00301-9.
[24]S. Yang, Y. Su, C. Wang, and X. Liu, "Microstructure and properties of Cu–Al–Fe high-temperature shape memory alloys," Materials Science and Engineering: B, vol. 185, pp. 67-73, 2014, doi: 10.1016/j.mseb.2014.02.001.
[25]U. S. Mallik and V. Sampath, "Effect of composition and ageing on damping characteristics of Cu–Al–Mn shape memory alloys," Materials Science and Engineering: A, vol. 478, no. 1, pp. 48-55, 2008/04/15/ 2008, doi: https://doi.org/10.1016/j.msea.2007.05.073.
[26]R. Kainuma, S. Takahashi, and K. Ishida, "Thermoelastic martensite and shape memory effect in ductile Cu-Al-Mn alloys," Metallurgical and Materials Transactions A, vol. 27, no. 8, pp. 2187-2195, 1996/08/01 1996, doi: 10.1007/BF02651873.
[27]S. Miyazaki and K. Otsuka, "Development of Shape Memory Alloys," ISIJ International, vol. 29, no. 5, pp. 353-377, 1989, doi: 10.2355/isijinternational.29.353.
[28]S. Alkan, Y. Wu, A. Ojha, and H. Sehitoglu, "Transformation stress of shape memory alloy CuZnAl: Non-Schmid behavior," Acta Materialia, vol. 149, pp. 220-234, 2018/05/01/ 2018, doi: https://doi.org/10.1016/j.actamat.2018.02.011.
[29]R. D. Dar, H. Yan, and Y. Chen, "Grain boundary engineering of Co–Ni–Al, Cu–Zn–Al, and Cu–Al–Ni shape memory alloys by intergranular precipitation of a ductile solid solution phase," Scripta Materialia, vol. 115, pp. 113-117, 2016/04/01/ 2016, doi: https://doi.org/10.1016/j.scriptamat.2016.01.014.
[30]S. Chakravorty and C. M. Wayman, "Electron microscopy of internally faulted Cu-Zn-Al martensite," Acta Metallurgica, vol. 25, no. 9, pp. 989-1000, 1977/09/01/ 1977, doi: https://doi.org/10.1016/0001-6160(77)90127-4.
[31]K. Rashidi, A. B. Sulong, N. Muhamad, A. Fayyaz, F. M. Foudzi, and A. Basir, "Martensitic transformation characteristics, mechanical properties and damping behavior of Cu–Al–Ni shape memory alloys: A review of their modifications and improvements," Journal of Materials Research and Technology, vol. 29, pp. 2732-2749, 2024/03/01/ 2024, doi: https://doi.org/10.1016/j.jmrt.2024.02.012.
[32]H. Cheniti, M. Bouabdallah, and E. Patoor, "High temperature decomposition of the β1 phase in a Cu–Al–Ni shape memory alloy," Journal of Alloys and Compounds, vol. 476, no. 1, pp. 420-424, 2009/05/12/ 2009, doi: https://doi.org/10.1016/j.jallcom.2008.09.003.
[33]S. Jaisee, F. Yue, and Y. H. Ooi, "A state-of-the-art review on passive friction dampers and their applications," Engineering Structures, vol. 235, p. 112022, 2021/05/15/ 2021, doi: https://doi.org/10.1016/j.engstruct.2021.112022.
[34]R. Radhamani and M. Balakrishnan, "NiTi shape memory alloy: Unraveling the role of internal friction in passive damping – A review," Materials Today Communications, vol. 37, p. 107276, 2023/12/01/ 2023, doi: https://doi.org/10.1016/j.mtcomm.2023.107276.
[35]N. E. Dowling, "Mechanical behavior of materials," vol. 3, no. 3, pp. 139-147, 1999.
[36]A. Granato and K. Lücke, "Theory of Mechanical Damping Due to Dislocations," Journal of Applied Physics, vol. 27, no. 6, pp. 583-593, 1956, doi: 10.1063/1.1722436.
[37]Y. Takahashi and K. Uesugi, "Stress induced diffusion along adhesional contact interfaces," Acta Materialia, vol. 51, no. 8, pp. 2219-2234, 2003/05/07/ 2003, doi: https://doi.org/10.1016/S1359-6454(03)00015-6.
[38]Benjamin Joseph Lazan, "Damping of materials and members in structural mechanics," Pergamon Press, 1968 1968. doi: 10.1016/j.matdes.2013.11.084
[39]I. G. Ritchie, Z. L. Pan, K. W. Sprungmann, H. K. Schmidt, and R. Dutton, "High Damping Alloys—The Metallurgist's Cure for Unwanted Vibrations," Canadian Metallurgical Quarterly, vol. 26, no. 3, pp. 239-250, 1987 1987, doi: 10.1179/cmq.1987.26.3.239.
[40]I. G. Ritchie and Z. L. Pan, "High-damping metals and alloys," Metallurgical Transactions A, vol. 22, no. 3, pp. 607-616, 1991 1991, doi: 10.1007/BF02670281.
[41]S. Y. Yang, C. P. Wang, Y. Su, and X. J. Liu, "Evolutions of Microstructure and Phase Transformation in Cu-Al-Fe-Nb/Ta High-Temperature Shape Memory Alloys," Materials Science Forum, vol. 833, pp. 67-70, 2015, doi: 10.4028/www.scientific.net/MSF.833.67.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top