|
參考文獻 [1]J. Mohd Jani, M. Leary, A. Subic, and M. A. Gibson, "A review of shape memory alloy research, applications and opportunities," Materials & Design (1980-2015), vol. 56, pp. 1078-1113, 2014, doi: 10.1016/j.matdes.2013.11.084. [2]G. Singh Rajput, J. Vora, P. Prajapati, and R. Chaudhari, "Areas of recent developments for shape memory alloy: A review," Materials Today: Proceedings, vol. 62, pp. 7194-7198, 2022, doi: 10.1016/j.matpr.2022.03.407. [3]K. K. Alaneme and E. A. Okotete, "Reconciling viability and cost-effective shape memory alloy options – A review of copper and iron based shape memory metallic systems," Engineering Science and Technology, an International Journal, vol. 19, no. 3, pp. 1582-1592, 2016, doi: 10.1016/j.jestch.2016.05.010. [4]V. Recarte, R. B. Pérez-Sáez, E. H. Bocanegra, M. L. Nó, and J. San Juan, "Dependence of the martensitic transformation characteristics on concentration in Cu–Al–Ni shape memory alloys," Materials Science and Engineering: A, vol. 273-275, pp. 380-384, 1999/12/15/ 1999, doi: https://doi.org/10.1016/S0921-5093(99)00302-0. [5]C. E. Sobrero, P. La Roca, A. Roatta, R. E. Bolmaro, and J. Malarría, "Shape memory properties of highly textured Cu–Al–Ni–(Ti) alloys," Materials Science and Engineering: A, vol. 536, pp. 207-215, 2012/02/28/ 2012, doi: https://doi.org/10.1016/j.msea.2011.12.104. [6]S.-H. Chang, "Internal friction of Cu–13.5Al–4Ni shape memory alloy measured by dynamic mechanical analysis under isothermal conditions," Materials Letters, vol. 64, no. 1, pp. 93-95, 2010, doi: 10.1016/j.matlet.2009.10.018. [7]S. H. Chang, "Influence of chemical composition on the damping characteristics of Cu–Al–Ni shape memory alloys," Materials Chemistry and Physics, vol. 125, no. 3, pp. 358-363, 2011, doi: 10.1016/j.matchemphys.2010.09.077. [8]G. Lojen, M. Gojić, and I. Anžel, "Continuously cast Cu–Al–Ni shape memory alloy – Properties in as-cast condition," Journal of Alloys and Compounds, vol. 580, pp. 497-505, 2013/12/15/ 2013, doi: https://doi.org/10.1016/j.jallcom.2013.06.136. [9]J. Seo, Y. C. Kim, and J. W. Hu, "Pilot Study for Investigating the Cyclic Behavior of Slit Damper Systems with Recentering Shape Memory Alloy (SMA) Bending Bars Used for Seismic Restrainers," Applied Sciences, vol. 5, no. 3, pp. 187-208doi: 10.3390/app5030187. [10]D. Kim, E. Choi, H. Cheon, and W. Kim, "Effect of Aging Condition on Microstructure, Mechanical Properties, and Shape Memory Behavior of Solution-Treated Fe-17Mn-5Si-5Cr-4Ni-0.2Ti-0.1C Shape Memory Alloy," Journal of Materials Engineering and Performance, vol. 33, no. 5, pp. 2253-2267, 2024/03/01 2024, doi: 10.1007/s11665-023-08587-w. [11]B. Ben Fraj and S. Zghal, "Correlation between Hardness Behavior, Shape Memory, and Superelasticity in Ni-Rich NiTi Shape Memory Alloy," Journal of Materials Engineering and Performance, 2024/03/18 2024, doi: 10.1007/s11665-024-09313-w. [12]C. Laureanda, "One Way and Two Way—Shape Memory Effect: Thermo—Mechanical Characterization of Ni—Ti Wires," Universitá degli Studi di Pavia Pavia, Italy, 2008. doi:https://doi.org/10.1016/j.msea.2007.03.118 [13]M. Sato, A. Ishida, and S. Miyazaki, "Two-way shape memory effect of sputter-deposited thin films of Ti 51.3 at.% Ni," Thin Solid Films, vol. 315, no. 1, pp. 305-309, 1998/03/02/ 1998, doi: https://doi.org/10.1016/S0040-6090(97)00746-3. [14]F. Masdeu, J. Pons, Y. Chumlyakov, and E. Cesari, "Two-way shape memory effect in Ni49Fe18Ga27Co6 ferromagnetic shape memory single crystals," Materials Science and Engineering: A, vol. 805, p. 140543, 2021/02/23/ 2021, doi: https://doi.org/10.1016/j.msea.2020.140543. [15]G. Scalet, F. Niccoli, C. Garion, P. Chiggiato, C. Maletta, and F. Auricchio, "A three-dimensional phenomenological model for shape memory alloys including two-way shape memory effect and plasticity," Mechanics of Materials, vol. 136, p. 103085, 2019/09/01/ 2019, doi: https://doi.org/10.1016/j.mechmat.2019.103085. [16]R. Amireche, M. Morin, and S. Belkahla, "Study of the “All-Round-Effect” generated by aging in traction in a Ni rich TiNi shape memory alloy," Journal of Alloys and Compounds, vol. 516, pp. 5-8, 2012/03/05/ 2012, doi: https://doi.org/10.1016/j.jallcom.2011.11.154. [17]K. Otsuka and X. Ren, "Physical metallurgy of Ti–Ni-based shape memory alloys," Progress in Materials Science, vol. 50, no. 5, pp. 511-678, 2005/07/01/ 2005, doi: https://doi.org/10.1016/j.pmatsci.2004.10.001. [18]C. P. Frick, T. W. Lang, K. Spark, and K. Gall, "Stress-induced martensitic transformations and shape memory at nanometer scales," Acta Materialia, vol. 54, no. 8, pp. 2223-2234, 2006/05/01/ 2006, doi: https://doi.org/10.1016/j.actamat.2006.01.030. [19]Z. Xie, Y. Liu, and J. Van Humbeeck, "Microstructure of NiTi shape memory alloy due to tension–compression cyclic deformation," Acta Materialia, vol. 46, no. 6, pp. 1989-2000, 1998/03/23/ 1998, doi: https://doi.org/10.1016/S1359-6454(97)00379-0. [20]A. Jury, X. Balandraud, and L. Heller, "Thermal Conductivity and Specific Heat Capacity of Austenite and Stress-Induced Martensite in Superelastic NiTi at Ambient Temperature," International Journal of Thermophysics, vol. 44, no. 11, p. 162, 2023/10/25 2023, doi: 10.1007/s10765-023-03279-y. [21]P. Chowdhury and H. Sehitoglu, "A revisit to atomistic rationale for slip in shape memory alloys," Progress in Materials Science, vol. 85, pp. 1-42, 2017/04/01/ 2017, doi: https://doi.org/10.1016/j.pmatsci.2016.10.002. [22]C. M. Wayman, "Shape Memory Alloys," MRS Bulletin, vol. 18, pp. 49-56, 04/01 2013, doi: 10.1557/S0883769400037350. [23]Y. Sutou, R. Kainuma, and K. Ishida, "Effect of alloying elements on the shape memory properties of ductile Cu–Al–Mn alloys," Materials Science and Engineering: A, vol. 273-275, pp. 375-379, 1999/12/15/ 1999, doi: https://doi.org/10.1016/S0921-5093(99)00301-9. [24]S. Yang, Y. Su, C. Wang, and X. Liu, "Microstructure and properties of Cu–Al–Fe high-temperature shape memory alloys," Materials Science and Engineering: B, vol. 185, pp. 67-73, 2014, doi: 10.1016/j.mseb.2014.02.001. [25]U. S. Mallik and V. Sampath, "Effect of composition and ageing on damping characteristics of Cu–Al–Mn shape memory alloys," Materials Science and Engineering: A, vol. 478, no. 1, pp. 48-55, 2008/04/15/ 2008, doi: https://doi.org/10.1016/j.msea.2007.05.073. [26]R. Kainuma, S. Takahashi, and K. Ishida, "Thermoelastic martensite and shape memory effect in ductile Cu-Al-Mn alloys," Metallurgical and Materials Transactions A, vol. 27, no. 8, pp. 2187-2195, 1996/08/01 1996, doi: 10.1007/BF02651873. [27]S. Miyazaki and K. Otsuka, "Development of Shape Memory Alloys," ISIJ International, vol. 29, no. 5, pp. 353-377, 1989, doi: 10.2355/isijinternational.29.353. [28]S. Alkan, Y. Wu, A. Ojha, and H. Sehitoglu, "Transformation stress of shape memory alloy CuZnAl: Non-Schmid behavior," Acta Materialia, vol. 149, pp. 220-234, 2018/05/01/ 2018, doi: https://doi.org/10.1016/j.actamat.2018.02.011. [29]R. D. Dar, H. Yan, and Y. Chen, "Grain boundary engineering of Co–Ni–Al, Cu–Zn–Al, and Cu–Al–Ni shape memory alloys by intergranular precipitation of a ductile solid solution phase," Scripta Materialia, vol. 115, pp. 113-117, 2016/04/01/ 2016, doi: https://doi.org/10.1016/j.scriptamat.2016.01.014. [30]S. Chakravorty and C. M. Wayman, "Electron microscopy of internally faulted Cu-Zn-Al martensite," Acta Metallurgica, vol. 25, no. 9, pp. 989-1000, 1977/09/01/ 1977, doi: https://doi.org/10.1016/0001-6160(77)90127-4. [31]K. Rashidi, A. B. Sulong, N. Muhamad, A. Fayyaz, F. M. Foudzi, and A. Basir, "Martensitic transformation characteristics, mechanical properties and damping behavior of Cu–Al–Ni shape memory alloys: A review of their modifications and improvements," Journal of Materials Research and Technology, vol. 29, pp. 2732-2749, 2024/03/01/ 2024, doi: https://doi.org/10.1016/j.jmrt.2024.02.012. [32]H. Cheniti, M. Bouabdallah, and E. Patoor, "High temperature decomposition of the β1 phase in a Cu–Al–Ni shape memory alloy," Journal of Alloys and Compounds, vol. 476, no. 1, pp. 420-424, 2009/05/12/ 2009, doi: https://doi.org/10.1016/j.jallcom.2008.09.003. [33]S. Jaisee, F. Yue, and Y. H. Ooi, "A state-of-the-art review on passive friction dampers and their applications," Engineering Structures, vol. 235, p. 112022, 2021/05/15/ 2021, doi: https://doi.org/10.1016/j.engstruct.2021.112022. [34]R. Radhamani and M. Balakrishnan, "NiTi shape memory alloy: Unraveling the role of internal friction in passive damping – A review," Materials Today Communications, vol. 37, p. 107276, 2023/12/01/ 2023, doi: https://doi.org/10.1016/j.mtcomm.2023.107276. [35]N. E. Dowling, "Mechanical behavior of materials," vol. 3, no. 3, pp. 139-147, 1999. [36]A. Granato and K. Lücke, "Theory of Mechanical Damping Due to Dislocations," Journal of Applied Physics, vol. 27, no. 6, pp. 583-593, 1956, doi: 10.1063/1.1722436. [37]Y. Takahashi and K. Uesugi, "Stress induced diffusion along adhesional contact interfaces," Acta Materialia, vol. 51, no. 8, pp. 2219-2234, 2003/05/07/ 2003, doi: https://doi.org/10.1016/S1359-6454(03)00015-6. [38]Benjamin Joseph Lazan, "Damping of materials and members in structural mechanics," Pergamon Press, 1968 1968. doi: 10.1016/j.matdes.2013.11.084 [39]I. G. Ritchie, Z. L. Pan, K. W. Sprungmann, H. K. Schmidt, and R. Dutton, "High Damping Alloys—The Metallurgist's Cure for Unwanted Vibrations," Canadian Metallurgical Quarterly, vol. 26, no. 3, pp. 239-250, 1987 1987, doi: 10.1179/cmq.1987.26.3.239. [40]I. G. Ritchie and Z. L. Pan, "High-damping metals and alloys," Metallurgical Transactions A, vol. 22, no. 3, pp. 607-616, 1991 1991, doi: 10.1007/BF02670281. [41]S. Y. Yang, C. P. Wang, Y. Su, and X. J. Liu, "Evolutions of Microstructure and Phase Transformation in Cu-Al-Fe-Nb/Ta High-Temperature Shape Memory Alloys," Materials Science Forum, vol. 833, pp. 67-70, 2015, doi: 10.4028/www.scientific.net/MSF.833.67.
|