跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 11:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周耀偉
研究生(外文):CHOU, YAO-WEI
論文名稱:基於信標偵測「無人機搜救系統」之研製
論文名稱(外文):Development of "UAV Search and Rescue System" Based on Beacon Detection
指導教授:吳德豐
指導教授(外文):WU, TER-FENG
口試委員:吳德豐彭世興吳常熙劉傳璽李征衞
口試委員(外文):WU, TER-FENGPERNG, SHYH-SHINGWU, CHANG-HSILIU, CHUAN-HSILI, CHENG-WEI
口試日期:2024-07-19
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:106
中文關鍵詞:救災多旋翼無人機信標BLE(低功耗藍芽)
外文關鍵詞:Disaster reliefmulti-rotor dronesbeaconsBLE (Bluetooth Low Energy)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
伴隨著各項軟體、硬體科技日新月異的發展,集結電力系統、自動控制、通訊系統以及機電系統於一身的無人機得以乘勢躍居於全球各國科技發展的關注重點之一,不論是在戰爭或是物流、娛樂、救災等領域皆大幅開始使用無人機,使得無人機的發展持續的受到各界密切關注,在救援應用方面2023年的加拿大森林大火、2024年4月的地震花蓮災區皆有無人機被投入應用於災難救援的實例,綜上所述無人機的應用範圍廣泛,而此篇研究將會結合無人機與BLE (Bluetooth Low Energy低功耗藍芽) 信標通訊系統並且應用於搜救搜尋用途之上。
現今普遍被使用於救災的偵查無人機往往是透過影像方式進行救援,但在部分使用環境下還是難以實現,因此使用影像搜索以外的方式實現救援成為研究之主要重點,研究目的為將信標系統裝置於無人機,並且搜索地面穿戴發射信標的人員,以獲得範圍內的目標相對距離,相較於傳統類型的個人型定位裝置PLB,BLE搜救系統具備在無衛星信號的環境運行以及具備更長久廣播的特性,研究主要可以分為二部分分別為無人機平台以及BLE搜索系統,研究以四軸多旋翼為平台搭載BLE通訊設備、地面端穿戴式信標裝置以及無人機基站等設備實現定位偵測搜索系統,此篇研究之目的在於以四軸多旋翼機搭載BLE搜索系統(搜索端),搜尋由人員隨身攜帶的穿戴式BLE(穿戴端),並且由無人機端透過無線傳輸的方式將搜索到的資料傳送到地面端的基站以利地面人員觀測與飛行規劃,以此系統模擬利用救災無人機搜索穿戴信標裝置的失聯人員、物品。

關鍵字 : 救災、多旋翼無人機、信標、BLE(低功耗藍芽)

With the rapid development of various software and hardware technologies, drones that integrate power systems, automatic control, communication systems, and electromechanical systems have taken advantage of the situation to become one of the focuses of scientific and technological development in various countries around the world, whether in war Or logistics, entertainment, disaster relief and other fields have begun to use drones on a large scale, making the development of drones continue to receive close attention from all walks of life. In terms of rescue applications, the Canadian forest fires in 2023 and the earthquake-stricken Hualien area in April 2024 have all There are examples of drones being used in disaster relief. In summary, drones have a wide range of applications, and this study will combine drones with BLE (Bluetooth Low Energy) beacon communications. The system is also used for search and rescue purposes.
Reconnaissance drones that are commonly used for disaster relief today often carry out rescue through images, but this is still difficult to achieve in some use environments. Therefore, using methods other than image search to achieve rescue has become the main focus of research. The purpose of the research is to integrate information into the beacon system is installed on the drone and searches for people on the ground wearing beacons to obtain the relative distance to the target within the range. Compared with the traditional personal positioning device PLB, the BLE search and rescue system has the ability to operate in an environment without satellite signals and with the characteristics of longer-term broadcasting, the research can be mainly divided into two parts: UAV platform and BLE search system. The research uses four-axis multi-rotor as the platform to carry BLE communication equipment, ground-side wearable beacon device and UAV base station. and other equipment to implement positioning detection and search systems. The purpose of this study is to use a four-axis multi-rotor aircraft equipped with a BLE search system to search for wearable BLE carried by personnel, and the UAV searched data is transmitted to the base station on the ground through wireless transmission to facilitate ground personnel observation and flight planning. This system simulates the use of disaster relief drones to search for missing people and items wearing beacon devices.

摘要 I
Abstract II
誌謝詞 IV
表目錄 VIII
圖目錄 X
第壹章 緒論 1
第一節 前言 1
第二節 動機與目的 2
一、山難事故對救援機構造成重大壓力 2
二、難環境地形氣候多變造成救援困難 2
三、無人機是提高搜救效率的重要工具 3
第三節 文獻回顧 4
第四節 研究貢獻 5
第五節 本文架構 6
第貳章 搜救用途無人機之探討與規劃 7
第一節 林區搜救之基本要素 7
第二節 無人機與救災應用的結合發展 8
第三節 市面上既有之搜救無人機實例探討 10
第四節 搜救無人機之研究重點 12
第參章 信標偵測無人機之軟、硬體架構建置 14
第一節 基於信標偵測「無人機搜救系統」之系統架構 14
第二節 無人機平台之種類與其特性 16
第三節 多旋翼無人機之建置 19
第肆章 信標偵測系統之設計 25
第一節 信標偵測系統之系統架構 25
一、 信標偵測系統之理論基本架構 25
二、 於平地之無人機實際應用 30
三、 於坡地之無人機實際應用 31
四、 以光達測繪圖與QGIS地理資訊系統協助坡地地區信標定位 32
五、 以坡地地區三角定位之範例解析量測過程 34
六、 將RSSI信號強度進行距離換算 40
第二節 目標信標端(信標端)之硬體架構 46
第三節 無人機搜索信標端(搜索端)之硬體架構 47
第四節 信標無人機監控平台(地面站端)之系統架構 50
第伍章 模擬與實驗 51
第一節 信標搜索系統之模擬測試 51
一、 信標連線信號強度模擬測試 52
二、 城南校區平地三角定位模擬測試 64
三、 礁溪林場之三角定位模擬測試 67
第二節 實驗場域之設計規劃 71
一、 無人機飛控系統調教 72
二、 平地測試環境規劃 72
三、 坡地測試環境規劃 73
第三節 信標無人機於不同地形、場域之信標接收測試 74
一、 於城南校區不同飛行高度信標接收測試 74
二、 於礁溪林場之不同飛行高度信標接收測試 78
三、 於城南校區之三角信標接收測試 83
四、 礁溪林場之空對地三角信標接收測試 88
第陸章 實驗結果與結論 95
第一節 飛行測試數據分析 95
一、 於城南校區不同飛行高度信標接收測試數據分析 95
二、 於礁溪林場之不同飛行高度信標接收測試數據分析 96
三、 於城南校區之三角定位信標接收測試 96
四、 礁溪林場之三角定位信標接收測試 99
第柒章 結論 101
第一節 結論 101
第二節 未來展望 102
參考文獻 103


[1]行政院內政部(民113年)。提升山域事故救援效能五年中程計畫(113年-117年)。2024.05.16檢自http//www.nfa.gov.tw。
[2]Albanese, A.; Sciancalepore, V.; Costa-Pérez, X. SARDO, “An automated search-and-rescue drone-based solution for victims localization,” arXiv 2020, arXiv:2003.05819.
[3]Półka, M.; Ptak, S.; Kuziora, Ł, “The use of UAV’s for search and rescue operations,” Procedia Eng, 2017, pp.192, 748–752.
[4]Wang, A.; Ji, X.; Wu, D.; Bai, X.; Ding, N.; Pang, J.; Chen, S.; Chen, X.; Fang, D. “UAV-assisted multitarget localization system for disaster rescue. Mob,” Inf. Syst. 2017, 2017 1267608.
[5]Ho, Y.-H.; Chen, Y.-R.; Chen, L.-J. Krypto, “Assisting search and rescue operations using Wi-Fi signal with UAV. In Proceedings of the First Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use, ” Florence, Italy, 18 May 2015.
[6]Deleforge, A.; Di Carlo, D.; Strauss, M.; Serizel, R.; Marcenaro, L, “Audio-based search and rescue with a drone, ” IEEE signal processing cup 2019 student competition [SP competitions]. IEEE Signal Process. Mag. 2019, 36, pp.138–144.
[7]Leader.,(2022, March 8). Life Detector Camera Leader Cam. Available: https://www.leader-group.company/en/usar-victim-search-equipment/usar-life-detectors-search-cameras/victim-search-camera/life-detector-camera-leader-cam (accessed on 8 March 2024).
[8]Tekler, Z.D.; Low, R.; Gunay, B.; Andersen, R.K.; Blessing, L, “A scalable Bluetooth Low Energy approach to identify occupancy patterns and profiles in office spaces Build, ” Environ. 2020, 171, 106681.
[9]Leader., (2022, March 10). Life Detector Device with Seismic Sensors Leader Search. Available : https://www.leader-group.company/en/usar-victim-search-equipment/usar-life-detectors-search-cameras/life-victim-detector/life-detector-device-seismic-sensors-leader-search (accessed on 10 March 2024).
[10]Hashmi, A, “A Novel Drone-based Search and Rescue System using Bluetooth Low Energy Technology,” Eng. Technol. Appl. Sci. Res. 2021, 11, pp.7018–7022.
[11]Putra, G. D., Pratama, A. R., Lazovik, A., & Aiello, M. (2017), “Comparison of energy consumption in Wi-Fi and Bluetooth communication in a Smart Building,” In 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC) pp.1-6
[12]Universal Beacon Library. Available: https://www.nuget.org/packages/UniversalBeaconLibrary (accessed on 18 January 2024).
[13]Mussina, A.; Aubakirov, S, “RSSI Based Bluetooth Low Energy Indoor Positioning,” In Proceedings of the 12th International Conference on Application of Information and Communication Technologies (AICT), Almaty, Kazakhstan, 17–19 October 2018; IEEE: New York, NY, USA, 2018; pp.1–4.
[14]Zuo, Z., Liu, L., Zhang, L., & Fang, Y. (2018), “Indoor positioning based on bluetooth low-energy beacons adopting graph optimization,” Sensors, 2018, 3736.
[15]L. Sultan, M. Anjum, M. Rehman, S. Murawwat and H. Kosar, “Communication Among Heterogeneous Unmanned Aerial Vehicles (UAVs): Classification, Trends, and Analysis,” in IEEE Access, vol. 9, pp. 118815-118836 , 2021.
[16]J. Li, X. Xiong, Y. Yan and Y. Yang, “A Survey of Indoor UAV Obstacle Avoidance Research,” in IEEE Access, vol. 11, pp. 51861-51891 , 2020.
[17]Y. Zeng and R. Zhang, “Energy-Efficient UAV Communication With Trajectory Optimization,” in IEEE Transactions on Wireless Communications, vol. 16, no. 6, pp. 3747-3760 , 2018.
[18]Manal S. Esmail, Mohamed H. Merzban, Ashraf A. M. Khalaf, Hesham F. A. Hamed, Aziza I. Hussein, “Attitude and Altitude Tracking Controller for Quadcopter Dynamical Systems,” IEEE Access, vol. 10, pp. 53344 - 53358, 2022.
[19]Brennan Jones, Anthony Tang, and Carman Neustaedter, “Remote Communication in Wilderness Search and Rescue: Implications for the Design of Emergency Distributed-Collaboration Tools for Network-Sparse Environments,” Proceedings of the ACM on Human-Computer Interaction, Volume 4, Issue GROUP Article No.: 10, Pages 1 – 26 , 2020.
[20]N Nikhil, S M Shreyas, G Vyshnavi and Sudha Yadav, “Unmanned Aerial Vehicles (UAV) in Disaster Management Applications,” 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), 2020.
[21]Milan Erdelj and Enrico Natalizio, “UAV-assisted disaster management: Applications and open issues,” 2016 International Conference on Computing, Networking and Communications (ICNC), 2016.
[22]Ludovic Apvrille, Yves Roudier and Tullio Joseph Tanzi, “Autonomous drones for disasters management: Safety and security verifications,” 2015 1st URSI Atlantic Radio Science Conference (URSI AT-RASC), 2015.
[23]Ma Tielin, Yang Chuanguang, Gan Wenbiao, Xue Zihan, Zhang Qinling and Zhang Xiaoou,C “Analysis of technical characteristics of fixed-wing VTOL UAV,” 2017 IEEE International Conference on Unmanned Systems (ICUS), 2018.
[24]Yu Peng, Junbao Li and Xiyuan Peng, “RSSI-Based Localization Through Uncertain Data Mapping for Wireless Sensor Networks,” IEEE Sensors Journal ( Volume: 16, Issue: 9, May 2016), 2016
[25]Yang-Bae Park and Ye Hoon Lee, “A Novel Unified Trilateration Method for RSSI based Indoor Localization,” 2021 International Conference on Information and Communication Technology Convergence (ICTC), 2021.
[26]Liu, Cheng-Yen, Kuo, Chen-Yuan and Chung, Chin-Hsin, “Influence of extracted characteristics of individual tree by UAV lidar,”
[27]K. Benkic, M. Malajner, P. Planinsic, Z. Cucej, “Using RSSI value for distance estimation in wireless sensor networks based on ZigBee,” 2008 15th International Conference on Systems, Signals and Image Processing, 2008.
[28]Mirko Ivanić and Ivan Mezei, “Distance Estimation Based on RSSI Improvements of Orientation Aware Nodes,” 2018 Zooming Innovation in Consumer Technologies Conference (ZINC), 2018.
[29]Theodore S. Rappapor, Wireless Communications: Principles and Practice Subsequent ver, Prentice Hall, 2002.
[30]David Tse and Pramod Viswanath, Fundamentals of Wireless Communication Illustrated ver, Cambridge University Press, 2005.
[31]NORDIC SEMICONDUCTOR., nRF52833. Available: https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/nRF52833-SoC-Product-Brief.pdf (accessed on 18 May 2024).
[32]NORDIC SEMICONDUCTOR., Nrf52SERIES nRF52840. Available: https://infocenter.nordicsemi.com/pdf/nRF52840_PB_v1.0.pdf (accessed on 18 May 2024).
[33]Ardupilot., Mission Planner. Available: https://ardupilot.org/planner/(accessed on 18 May 2024).
[34]QGIS., over view. Available: https://www.qgis.org/project/overview/(accessed on 18 May 2024).
[35]Visual Studio Code., Docs. Available: https://code.visualstudio.com/docs (accessed on 25 May 2024).
[36]NORDIC., Education. Available: https://www.nordicsemi.com/Applications/Education (accessed on 25 May 2024).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top