跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/25 18:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭冠麟
研究生(外文):KUO, KUAN-LIN
論文名稱:應用於WSN系統之高線性度的基極輸入降頻混波器設計
論文名稱(外文):High-linearity Bulk-injection Downconverter Designs for WSN Applications
指導教授:吳建銘吳建銘引用關係
指導教授(外文):Jian-Ming Wu
口試委員:黃智裕潘善政
口試委員(外文):Chih-Yu Huang
口試日期:2024-01-10
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:43
中文關鍵詞:降頻混波器混波器變壓器低本地振盪源功率基極輸入零交越調變失真無線感測網路
外文關鍵詞:DownconverterMixerTransformerLow Local Oscillator PowerBulk InjectionWireless Sensor Network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:16
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
      本論文模擬一種低本地振盪器(LOCAL OSCILLATOR)的低功耗2.4GHz批量注入下降頻混波器用於無線傳感器網絡(WIRELESS SENSOR NETWORK)應用的直接轉換接收機。基極輸入技術是目前用來使降頻混波器的功率消耗低於0.5 mW最廣泛的方法。然而,由於體積大的輸入阻抗高,這種技術需要高LO功率。 所呈現作品的LO功率在0dBm以上。
      在電路模擬上,利用使用圈數比為1:6的變壓器來減小LO信號的振幅。經過初期評估所擬採用之方法歸納為鏈路預算,在鏈路預算之結果,基極輸入降頻混波器之LO功率在-10 dBm之下其轉換增益與三階互調截點(Third-Order Intercept point,IIP3)均可分別達到7dB以及-6dBm,由此可見,原本可能遭遇的困難在於採用變壓器技術的基極輸入降頻混波器雖然降低LO功率,但需提高IIP3,目前提出之解決途徑是採用零交越調變失真之線性化技術提高變壓器之基極輸入降頻混波器的線性度,由零交越調變失真的偏壓明顯抑制三階交越調變項,改善三階交越調變失真(third-order intermodulation distortion, IMD3)約17 dBc,換算成IIP3約提高8.5 dBm。
 This paper examines alow-power 2.4GHz bulk-injection down-conversion mixer with a low localoscillator (LO) for direct conversion receivers used in Wireless Sensor Network(WSN) applications. The baseband injection technique is currently the mostwidely used method to keep the power consumption of down-conversion mixersbelow 0.5 mW. However, this technique requires high LO power due to the largeinput impedance. The presented work specifies LO power above 0dBm.

In circuit simulation, a transformer with a turnsratio of 1:6 is employed to reduce the amplitude of the LO (Local Oscillator)signal. After an initial assessment, the chosen approach is summarized in alink budget analysis. According to the link budget results, for the basebandinput down-conversion mixer, when the LO power is below -10 dBm, the conversiongain and the third-order intercept point (IIP3) can achieve 7 dB and-6 dBm, respectively. It is evident that the challenge encountered with the useof transformer technology in the baseband input down-conversion mixer is theneed to increase IIP3, despite the reduction in LO power. Theproposed solution involves implementing a linearization technique using zerocrossing modulation distortion to enhance the linearity of the transformer'sbaseband input down-conversion mixer. The bias of the zero-crossing modulationdistortion significantly suppresses the third-order intermodulation distortion(IMD3), leading to an improvement of approximately 17 dBc. Thistranslates to an estimated increase of 8.5 dBm in IIP3.
目錄
摘要i
Abstractiii
目錄v
圖目錄vi
表目錄viii
 第一章 緒論1
1.1 無線感測網路之應用及架構1
1.2 基極輸入降頻混波器9
1.3 研究動機10
1.4 章節討論10
第二章 直接降頻接收機11
2.1 接收機架構11
2.2 功率消耗低於1 mW之壓控震盪器24
2.3 鏈路預算26
第三章 高線性度之基極輸入降頻混波器28
3.1 具有變壓器之基極輸入降頻混波器設計28
3.2 零交越調變失真技術34
3.3 結果與討論36
第四章 結論38
參考文獻39


圖目錄
圖 1.1 感測網路系統基本架構[7]1
圖 1.2 感測器的硬體設計[7]2
圖 1.3 Crossbow 公司 Mote 相關產品[8]4
圖 1.4 MoteIV 實體圖(內建溫濕度與光量感測器[8]5
圖 1.5 在 Antarctica 的 Sensor Web [8]5
圖 1.6 架構框圖[9]6
圖 1.7 橋樑安全監控系統[10]7
圖 1.8 公鑰與私鑰介紹圖[12]8
圖 2.1 超外差架構[17]11
圖 2.2 低中頻接收機[20]12
圖 2.3 零中頻接收機[20]12
圖 2.4 轉頻WSN接收機14
圖 2.5 Sensium™ SoC 晶片照片[23]15
圖 2.6 系統架構採用CMOS-SRWSN[24]16
圖 2.7 定位感測器網路的系統架構[25]16
圖 2.8中頻濾波器[26]19
圖 2.9 500 Hz中頻濾波器之比較[26]20
圖 2.10 影像頻率訊號[26]23
圖 2.11 中頻偏移[26]23
圖 2.12 凹陷濾波器[26]24
圖 2.13 能量擷取的來源[28]25
圖 3.1 具有變壓器之基極輸入降頻混波器設計[33][34]29
圖 3.2 電晶體隨著LO訊號導通或截止之模擬結果[33]30
圖 3.3 降頻混波器轉換增益對次線圈圈數N之模擬結果[33]31
圖 3.4 單端LO訊號功率為-10 dBm之變壓器主線圈與次線圈的電壓波形模擬結果[33]32
圖 3.5 變壓器次線圈之差動訊號波形模擬結果[33]32
圖 3.6 具有變壓器之基極輸入降頻混波器輸出訊號與三階交越調變項的輸出功率模擬結果33
圖 3.7 泰勒級數之三階與五階係數隨VGS變化的模擬結果35
圖 3.8 三階交越調變的頻譜模擬結果36


表目錄
表 2 1靈敏度 (Sensitivity) [26]17
表 2 2選擇性[26]18
表 2 3目前文獻所設計之功率消耗小於1 mW的壓控振盪器25
表 2 4本計畫所提出之WSN接收機各級、串級元件參數規劃以及訊號雜訊比值分析26
[1]H. Wang, “A 1 V multi-gigahertz RF mixer core in 0.5 μm CMOS,” IEEE International Conference on Solid-State Circuits, 1998, pp. 370-371.
[2]H.M. Wang, “A 1-V multigigahertz RF mixer core in 0.5-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 2265-2267, Dec. 1998.
[3]N. Jafferali and M.J. Deen, “Low-voltage and low-power 1.9 GHz body-input downconversion mixer,” Canadian Conference on Electrical and Computer Engineering, pp. 1413-1416, 2004.
[4]K.-H. Liang, H.-Y. Chang, and Y.-J.Chan, “A 0.5–7.5 GHz ultra low-voltage low-power mixer using bulk-injection method by 0.18-μm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 17, pp. 531-533, Jul. 2007.
[5]K.-H. Liang and H.-Y. Chang, “0.5–6 GHz low-voltage low-power mixer using a modified cascode topology in 0.18 μm CMOS technology,” IET Microwaves, Antennas & Propagation, vol. 5, pp. 167-174, Feb. 2011.
[6]https://people.cs.nycu.edu.tw/~wangyc/publications/reports/r001-maganize03-wsn.pdf
[7]Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks, IEEE Communications Magazine, 40(8), 102–114. 
[8]方煒. (2006). 田間伺服器與無線感測網路的國內外發展. 作物、環境與生物資訊, 3(1), 78–95. https://doi.org/10.30061/CEB.200603.0008
[9]Mir, A., & Khachane, A. (2018). Sensing Harmful Gases in Industries Using IOT and WSN, 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), 1–3. 
[10]https://www.memstec.com.tw/applicationDetail.php?PNo=1172
[11]Murali, R., Arunachalam, V., Jeevanantham, S., Venkatesan, C., & Rebekka, B. (2023). Lightweight Certificate-less Digital Signature Scheme for WSNs. 2023 IEEE International Conference on Public Key Infrastructure and its Applications (PKIA), 1–7. 
[12]https://kknews.cc/news/ky8xn2q.html
[13]D. Ham and A. Hajimiri, “Design and optimization of a low noise 2.4 GHz CMOS VCO with integrated LC tank and MOSCAP tuning,” IEEE International Symposium on Circuits and Systems, 2000, pp. 331-334.
[14]D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 896-909, Jun. 2001.
[15]M.-L. Hsia and O.T.-C. Chen, “A multi-band CMOS LC quadrature VCO for GSM/DCS/DECT/WCDMA/Bluetooth systems,” International Symposium on Wireless Pervasive Computing, 2006, pp. 1-4.
[16]H.L. Kao, D.Y. Yang, A. Chin, and S.P. McAlister, “A 2.4/5 GHz dual-band VCO using a variable inductor and switched resonator,” IEEE MTT-S International Microwave Symposium, 2007, pp. 1553-1536.
[17] https://yufan-fansbook.blogspot.com/2014/05/02_10.html
[18]Choi, P., Park, H. C., Kim, S., Park, S., Nam, I., Kim, T. W., Park, S., Shin, S., Kim, M. S., Kang, K., Ku, Y., Choi, H., Park, S. M., & Lee, K. (2003). An experimental coin-sized radio for extremely low-power WPAN (IEEE 802.15.4) application at 2.4 GHz, IEEE Journal of Solid-State Circuits, 38(12), 2258–2268.
[19]Valla, M., Montagna, G., Castello, R., Tonietto, R., & Bietti, I. (2005). A 72-mW CMOS 802.11a direct conversion front-end with 3.5-dB NF and 200-kHz 1/f noise corner, IEEE Journal of Solid-State Circuits, 40(4), 970–977. 
[20]射頻知識基礎:三種接收機的介紹, https://read01.com/JR6APa.html
[21]H.-M. Seo, Y.K. Moon, Y.-K. Park, D. Kim, D.-S. Kim, Y.-S. Lee, K.-Ho Won, S.-D. Kim, and P. Choi, “A low power fully CMOS integrated RF transceiver IC for wireless sensor networks,” IEEE Transactions on Very Large Scale Integration Systems, vol. 15, pp. 227-231, Feb. 2007.
[22]D.C. Daly and A.P. Chandrakasan, “An energy-efficient OOK transceiver for wireless sensor networks,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 1003-1011, May 2007.
[23]A.C.W. Wong, G. Kathiresan, C.K.T. Chan, O. Eljamaly, O. Omeni, D. McDonagh, A.J. Burdett, and C. Toumazou, “A 1 V wireless transceiver for an ultra-low-power SoC for biotelemetry applications,” IEEE Journal of Solid-State Circuits, vol. 43, pp. 1511-1521, Jul. 2008.
[24]J.P. Carmo, P.M. Mendes, C. Couto, and J.H. Correia, “A 2.4-GHz CMOS short-range wireless-sensor-network interface for automotive applications,” IEEE Transactions on Industrial Electronics, vol. 57, pp. 1764-1771, May 2010.
[25]J. Xia, C.L. Law, Y. Zhou, and K.S. Koh, “3–5 GHz UWB impulse radio transmitter and receiver MMIC optimized for long range precision wireless sensor networks,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, pp. 4040-4051, Dec. 2010.
[26]https://www.qsl.net/bv3fg/survey/bv6er_35.htm
[27]http://www.zigbee.org/
[28]Z. Hadas and V. Singule, “New subject “Energy Harvesting” for education of mechatronics,” International Symposium MECHATRONIKA, 2010, pp. 16-17.
[29]S. Choi, Y. Jeong, and K. Yang, “Low DC-power Ku-band RTD VCO based on an InP monolithic RTD/HBT technology,” IEEE MTT-S International Microwave Symposium, 2005, pp. 1361-1364.
[30]R. Mukhopadhyay, C.-H. Lee, and J. Laskar, “A 580-uW 1.8–6 GHz multiband switched-resonator SiGe VCO with 0.3-V supply voltage,” IEEE Microwave and Wireless Components Letters, vol. 17, pp. 793-795, Nov. 2007.
[31]H. Lee and S. Mohammadi, “A subthreshold low phase noise CMOS LC VCO for ultra low power applications,” IEEE Microwave and Wireless Components Letters, vol. 17, pp. 796-798, Nov. 2007.
[32]C.-K. Hsieh, K.-Y. Kao and K.-Y. Lin, “An ultra-low-power CMOS complementary VCO using three-coil transformer feedback,” IEEE Radio Frequency Integrated Circuits Symposium, 2009, pp. 91-94.
[33]柯明吟(2013)。混波器之失真分析與低功率的技術。﹝碩士論文。國立高雄師範大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/cv97xk
[34]J.-M. Wu, T.-L. Yang, M.-Y. Ko, C.-J. Chuang, and C.-C. Lin, "Low LO-power bulk-injection downconverter design for WSN applications," Asia-Pacific Radio Science Conference, pp. (290759) 1, Sep. 2013.
[35]Y.-C. Lin, K.-S. Chen, T.-S. Horng, and J.-M. Wu, “A 2.5-2.7 GHz pseudo-cascode CMOS receiver front-end with integrated unequal-turn-ratio transformer balun,” Asia Pacific Microwave Conference, 2010, pp. 818-821.
[36]C.C. Lim, K.S. Yeo, K.W. Chew, S.F. Lim, C.C. Boon, Qiu-ping, M.A. Do, and L. Chan, “An area efficient high turn ratio monolithic transformer for silicon RFIC,” IEEE Radio Frequency Integrated Circuits Symposium, 2008, pp. 167-170.
[37]G. Passiopoulos, D.R. Webster, A.E. Parker, D.G. Haigh, and I.D. Robertson, “Effect of bias and load on MESFET nonlinear characteristics,” Electronics Letters, vol. 32, pp. 741-743, Apr. 1996.
[38]A.E. Parker and Q. Guoli, “Intermodulation nulling in HEMT common source amplifiers,” IEEE Microwave Wireless Components Letters, vol. 11, pp. 109-111, Mar. 2001.
[39]J.M. Wu, “Low-noise amplifier design using intermodulation nulling and noise canceling for WiMAX receivers,” International Symposium on Microwave and Optical Technology, invited paper, 2009, pp. 145-148.
[40]J.-M. Wu, “Low-noise amplifier design using intermodulation nulling and noise canceling for WiMAX receivers,” International Journal of Microwave and Optical Technology, vol. 5, pp. 369-374, Nov. 2010.
[41]N.B. de Carvalho and J.C. Pedro, “Large- and small-signal IMD behavior of microwave power amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, pp. 2364-2374, Dec. 1999.
電子全文 電子全文(網際網路公開日期:20290205)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊