|
[1] T. Abdeljwad, Meir-Keeler α-contractive fixed and common fixed point theorems, Fixed Point Theory and Applications, 2013, 19 (2013). [2] H. Aydi and E. Karapinar, A Meir-Keeler common type fixed point theorem on partial metric spaces, Fixed Point Theory and Applications, 2012, 26 (2012). [3] S. Banach, Sur les op´erations dans les ensembles abstraits et leurs applications aux ´equations int´egrales, Fundamenta Mathematicae 3 (1922) 133-181. [4] S.K. Chatterjea, Fixed-point theorems, Comptes Rendus de l’Academie bulgare des Sciences 25 (1972) 727-730. [5] W.-S. Du, New simultaneous generalizations of common fixed point theorems of Kannan type, Chatterjea type and Mizoguchi-Takahashi type, Applied Mathematical Sciences 11(20) (2017) 995-1005. [6] W.-S. Du, E. Karapinar, Z. He, Some simultaneous generalizations of wellknown fixed point theorems and their applications to fixed point theory, Mathematics 2018 6(7) 117. [7] W.-S. Du, T.M. Rassias, Simultaneous generalizations of known fixed point theorems for a Meir-Keeler type condition with applications, International Journal of Nonlinear Analysis and Applications 11(1) (2020) 55-66. [8] K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990. [9] D.H. Hyers, G. Isac and Th. M. Rassias, Topics in Nonlinear Analysis and Applications, World Scientific Publ. Co., Singapore, New Jersey , London, 1997. [10] Z. Kadelburg, S. Radenovic, Meir-Keeler-type conditions in abstract metric spaces, Applied Mathematics Letters 24(8) (2011) 1411-1414. [11] Z. Kadelburg, R. Stojan, S. Shukla, Boyd-Wong and Meir-Keeler type theorems in generalized metric spaces, Journal of Advanced Mathematical Studies 9(1) (2016) 83-93. [12] R. Kannan, Some results on fixed point–II, The American Mathematical Monthly 76 (1969) 405-408. [13] S. Kanwal, A. Azam, Common fixed points of intuitionistic fuzzy maps for MeirKeeler type contractions, Advances in Fuzzy Systems, vol. 2018, Article ID 1989423, 6 pages, 2018. [14] E. Karapınar, A. Rold´ an, J. Mart´ ınez-Moreno, C. Rold´ an, Meir-Keeler type multidimensional fixed point theorems in partially ordered metric spaces, Abstract and Applied Analysis, vol. 2013, Article ID 406026, 9 pages, 2013. [15] M.A. Khamsi, W.A. Kirk, An introduction to metric spaces and fixed point theory, Pure and Applied Mathematics, Wiley-Interscience, New York, 2001. [16] W.A. Kirk, N. Shahzad, Fixed point theory in distance spaces, Springer, Cham, 2014. [17] T.C, Lim, On characterizations of Meir-Keeler contractive maps, Nonlinear Analysis, Theory, Methods and Applications 46(1) (2001) 113-120. [18] A. Meir, E. Keeler, A theorem on contraction mappings, Journal of Mathematical Analysis and Applications 28(2) (1969) 326–329. [19] Z. Mitrovic, S. Radenovic, On Meir-Keeler contraction in Branciari bmetric spaces, Transactions of A. Razmadze Mathematical Institute 173 (2019) 83-90. [20] L. Pasicki, Meir and Keeler were right, Topology and its Applications 228 (2017) 382-390. [21] V. Popa, A.M. Patriciu, A general fixed point theorem of Meir-Keeler type for mappings satisfying an implicit relation in partial metric spaces, Functional Analysis, Approximation and Computation 9(1) (2017) 53-60. [22] E. Pourhadi, R. Saadati, and Z. Kadelburg, Some Krasnosel’skii-type fixed point theorems for Meir-Keeler-type mappings, Nonlinear Analysis : Modelling and Control 25(2) (2020) 257–265. [23] S. Reich, A.J. Zaslavski, Genericity in nonlinear analysis, Springer, New York, 2014. [24] Y. Rohen, T. Dosenovic, and S. Radenovic, A note on the paper a fixed point theorems in Sb-metric spaces, Filomat 31(11) (2017) 3335–3346. [25] T. Senapati, L.K. Dey, B.A. Damjanovi´ c, New fixed results in orthogonal metric spaces with an application, Kragujevac Journal of Mathematics 42 (2018) 505–516.
|