( 您好!臺灣時間:2024/07/25 17:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Kazem Lakzian
論文名稱(外文):Study on the Unique Flash Point Behaviors of ‎Ignitable Mixtures
指導教授(外文):Horng-Jang Liaw
口試委員(外文):Chen, Chan-ChengSu, Chung-HweiShu, Chi-MinKao, Chen-Shan
外文關鍵詞:Flash point‎Minimum flash point behavior (MinFPB)Maximum flash point behavior (MaxFPB)Maximum amount of water that maintains an aqueous-organic mixture flammable ‎‎(MaxWF)‎Maximum flash point (Tfp,max)‎Heat transfer fluid (HTF)
  • 被引用被引用:0
  • 點閱點閱:42
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0

The thesis aimed to investigate the unique flash point (FP) behavior of ternary ‎organic mixtures, as well as binary aqueous-organic solutions. ‎
In the first part of the study that focus on the special and unique FP behavior of ‎ternary mixtures, the FP behavior of four ternary mixtures was examined, namely 1-‎butanol + acetic ‎acid + ethylbenzene, 2-pentanol + acetic acid + ethylbenzene, propyl ‎butyrate + acetic ‎acid + 2-pentanol, and propyl butyrate + acetic acid + 1-butanol, ‎consisting of binary constituents with minimum FP behavior (MinFPB) and maximum FP ‎behavior (MaxFPB). The study concluded that mixtures of acetic acid with the alcohols ‎exhibit MaxFPB behavior, while ‎all binary mixtures containing ethylbenzene and two ‎binary blends of 2-pentanol/1-butanol + ‎propyl butyrate exhibit MinFPB behavior. ‎The ‎study also found that the original UNIFAC and UNIFAC-Dortmund models are unreliable ‎for predicting FPs and trend lines for certain binary mixtures (1-butanol + acetic ‎acid, 2-‎pentanol + acetic acid, propyl butyrate + acetic ‎acid), and caution should be used when ‎using these models. The findings can be used in developing approaches to reduce costs ‎and safety risks associated with handling, storing, transporting, and processing such ‎mixtures. ‎
In the second part of the research, the unique FP behavior of binary aqueous-‎organic mixture was studied to find out the maximum amount of water that maintains an ‎aqueous-organic mixture flammable (MaxWF) and the maximum FP (Tfp,max) of those ‎mixtures. A new model was introduced to forecast the MaxWF and Tfp,max. The model ‎accurately predicted MaxWF and Tfp,max. The fundamental concept behind the model is that ‎the FP will come to an end when the steam concentration in the gas phase exceeds the ‎point of inertization. It was found that a small quantity of water is sufficient to make low-‎volatile combustible liquids nonflammable, while highly volatile flammable liquids need a ‎considerably larger amount of water to reach the inertization point. The findings can aid in ‎formulating fire safety regulations and establishing optimal restrictions on the water ‎content of liquid fuels to prevent inhibiting flame propagation during combustion. ‎
In the third section of the thesis, an examination was conducted on the binary ‎combination of diphenyl ether and biphenyl. This particular blend is extensively applied ‎across various industries, notably playing a significant role in renewable energy systems ‎such as concentrated solar power (CSP) facilities. The primary focus of this investigation ‎is the FP behavior of the blend, a crucial aspect given the elevated operating temperatures ‎in related processes, particularly in its role as a heat transfer fluid (HTF). The research ‎aims to address the dearth of studies on this subject by comprehensively analyzing the ‎entire composition range through experimental measurements and a distinctive ‎mathematical approach grounded in solid-liquid equilibrium (SLE) data, in contrast to the ‎conventional method relying on vapor-liquid equilibrium (VLE) data. The predicted FP ‎results exhibited satisfactory agreement when compared to the experimental data. The ‎insights derived from this study can be applied to minimize the potential risks of fire and ‎explosions associated with processes utilizing the binary mixture of diphenyl ether + ‎biphenyl.‎
Overall, the study's results can be used to evaluate the F&E hazards of organic and ‎aqueous-organic mixtures in order to decrease the corresponding risks. ‎

Table of content
Table of content viii
List of Tables xi
List of Figures xiii
List of Symbols and Abbreviations xv
Chapter 1: Introduction ‎1‎
‎1.1.‎ Flash point explanation ‎1‎
‎1.1.1.‎ Importance of Flash Point Investigation of Ignitable Liquids ‎1‎
‎1.1.2.‎ Flammability of Aqueous-Organic Mixtures ‎2‎
‎1.1.3.‎ Flash Point and Safety Evaluation of Flammable Heat Transfer Fluids ‎3‎
‎1.2.‎ Main Objectives of the Study ‎4‎
‎1.3.‎ Structure of the Dissertation ‎6‎
Chapter 2: Literature Review ‎7‎
‎2.1.‎ FP of Ternary Mixtures ‎9‎
‎2.2.‎ Non-flammability in aqueous-organic mixtures ‎14‎
‎2.3.‎ Flammability hazard investigation of diphenyl ether + biphenyl mixture ‎15‎
‎2.4.‎ Essential questions that shape the research investigation ‎16‎
Chapter 3: Equipment and apparatuses utilized in the research ‎17‎
‎3.1.‎ FP apparatuses ‎17‎
‎3.1.1.‎ HFP 362-Tag tester ‎17‎
‎3.1.2.‎ HFP 360-Pensky Martens tester ‎19‎
‎3.2.‎ Mass balance ‎20‎
‎3.3.‎ Harmony Hotplate Stirrer ‎21‎
Chapter 4: FP Investigation of Ternary Ignitable Mixtures‎ ‎23‎
‎4.1.‎ Ternary mixtures ‎23‎
‎4.1.1.‎ Significance of the research ‎23‎
‎4.1.2.‎ Experimental investigation ‎25‎
‎4.2.‎ Mathematical modeling and simulation ‎26‎
‎4.2.1.‎ Activity coefficient models ‎26‎
‎4.2.2.‎ FP prediction of ternary mixtures ‎27‎
‎4.2.3.‎ Acquisition of the parameters ‎30‎
‎4.3.‎ FP investigation ‎33‎
‎4.3.1.‎ FP of pure ignitable chemicals ‎33‎
‎4.3.2.‎ FP of 1-butanol + acetic acid + ethylbenzene mixture ‎33‎
‎4.3.3.‎ FP of 2-pentanol + acetic acid + ethylbenzene mixture ‎49‎
‎4.3.4.‎ ‎FP of propyl butyrate + acetic acid + 1-butanol mixture ‎56‎
‎4.3.5.‎ FP of propyl butyrate + acetic acid + 2-pentanol mixture ‎63‎
‎4.4.‎ Discussion on the findings of the research ‎69‎
Chapter 5: The Maximum Required Water to Maintain a Binary‎ Aqueous-‎Organic ‎Mixture to be Flammable ‎73‎
‎5.1.‎ Aqueous-organic ignitable solutions ‎73‎
‎5.1.1.‎ Significance of the research ‎73‎
‎5.1.2.‎ Experimental investigation ‎76‎
‎5.2.‎ Mathematical modeling and simulation ‎77‎
‎5.2.1.‎ Activity coefficient models and FP prediction model ‎77‎
‎5.2.2.‎ Prediction of last ignitable point and its FP ‎78‎
‎5.2.3.‎ Acquisition of the parameters ‎83‎
‎5.3.‎ FP and nonflammable composition investigation ‎89‎
‎5.3.1.‎ FP of pure chemicals ‎89‎
‎5.3.2.‎ Aqueous mixtures of DMSO and 1,2-propanediol ‎89‎
‎5.3.3.‎ Aqueousorganic mixtures of 1-heptanol, 2-butoxyethanol, 1,2-ethanediol, and 1-‎octanol ‎94‎
‎5.3.4.‎ Aqueousorganic mixtures of ε-caprolactam, 1,4-butanediol, and NMP ‎98‎
‎5.3.5.‎ Verifying the proposed model's precision through aqueous solutions containing highly ‎volatile components ‎102‎
‎5.3.6.‎ Amount of water required to prevent ignition of a low-volatile combustible substance ‎104‎
Chapter 6: Flash Point and Safety Evaluation of Binary Mixture of Diphenyl Ether + ‎Biphenyl: A Commonly Utilized Heat Transfer Fluid ‎106‎
‎6.1.‎ Binary mixture of diphenyl ether + biphenyl ‎106‎
‎6.1.1.‎ Significance of the research ‎106‎
‎6.1.2.‎ Experimental investigation ‎107‎
‎6.2.‎ Mathematical modeling and simulation ‎108‎
‎6.3.‎ Flash point behavior of binary mixture of diphenyl ether + biphenyl ‎111‎
Chapter 7: Summary and Conclusions ‎116‎
References ‎119‎
Appendix I: The information of used chemicals ‎132‎
Appendix II: The parameters used in the FP apparatuses‎ ‎134‎
Appendix III: The Author’s publications at the NKUST ‎135‎

‎[1] A. Zarringhalam Moghaddam, A. Rafiei, T. Khalili, Assessing prediction models on ‎calculating the flash point of organic acid, ketone and alcohol mixtures, Fluid Phase ‎Equilibria, 316 (2012) 117-121.‎
‎[2] D.A. Crowl, J.F. Louvar, Chemical Process Safety: Fundamentals with Applications, ‎‎4th ed., Pearson Education, 2019.‎
‎[3] H.-J. Liaw, C.-A. Yang, Maximum flash point behavior of ternary mixtures with single ‎and two maximum flash point binary constituents, Process Safety and Environmental ‎Protection, 143 (2020) 293-303.‎
‎[4] A. Di Benedetto, R. Sanchirico, V. Di Sarli, Effect of pressure on the flash point of ‎various fuels and their binary mixtures, Process Safety and Environmental Protection, 116 ‎‎(2018) 615-620.‎
‎[5] S. Balasubramonian, R.K. Srivastav, S. Kumar, D. Sivakumar, M. Sampath, U.K. ‎Mudali, R. Natarajan, Flash point prediction for the binary mixture of phosphatic solvents ‎and n-dodecane from UNIFAC group contribution model, Journal of Loss Prevention in ‎the Process Industries, 33 (2015) 183-187.‎
‎[6] X. Huo, Q. Lu, X. Sun, X. Shen, Study on flash-point measurement and reduced ‎prediction model for ternary extraction system, Process Safety and Environmental ‎Protection, 138 (2020) 99-107.‎
‎[7] M. Bagheri, M. Bagheri, F. Heidari, A. Fazeli, Nonlinear molecular based modeling of ‎the flash point for application in inherently safer design, Journal of Loss Prevention in the ‎Process Industries, 25 (2012) 40-51.‎
‎[8] E. Torabian, M.A. Sobati, New models for predicting the flash point of mixtures ‎containing different alcohols, Process Safety and Environmental Protection, 111 (2017) ‎‎439-448.‎
‎[9] H.-J. Liaw, Y.-Y. Chiu, A general model for predicting the flash point of miscible ‎mixtures, Journal of hazardous materials, 137 (2006) 38-46.‎
‎[10] N. Zhang, S.L. Shen, A.N. Zhou, J. Chen, A brief report on the March 21, 2019 ‎explosions at a chemical factory in Xiangshui, China, Process Safety Progress, 38 (2019) ‎e12060.‎
‎[11] B.R. Kumar, S. Saravanan, Use of higher alcohol biofuels in diesel engines: A review, ‎Renewable Sustainable Energy Reviews, 60 (2016) 84-115.‎
‎[12] S.M.S. Ardebili, H. Solmaz, D. İpci, A. Calam, M. Mostafaei, A review on higher ‎alcohol of fusel oil as a renewable fuel for internal combustion engines: Applications, ‎challenges, and global potential, Fuel, 279 (2020) 118516.‎
‎[13] H.-J. Liaw, Deficiencies frequently encountered in the management of process safety ‎information, Process Safety and Environmental Protection, 132 (2019) 226-230.‎
‎[14] H.J. Liaw, The maximum flammable content for binary aqueous–organic mixtures not ‎to flash and their maximum flash points, AIChE Journal, 64 (2018) 263-271.‎
‎[15] H.-J. Liaw, T.-P. Tsai, Flash points of partially miscible aqueous–organic mixtures ‎predicted by UNIFAC group contribution methods, Fluid Phase Equilibria, 345 (2013) 45-‎‎59.‎
‎[16] Y. Wada, Explosion due to sparks of an electric grinder during repairing a wastewater ‎treatment vessel with neutralization. http://www.shippai.org/fkd/en/cfen/CC1200119.html, ‎Accessed on June 13, 2022., (2022).‎
‎[17] A.A. Merrouni, H.A.L. Ouali, M.A. Moussaoui, A. Mezrhab, Analysis and ‎comparaison of different Heat Transfer Fluids for a 1MWe Parabolic Trough Collector, in: ‎‎2016 International Conference on Electrical and Information Technologies (ICEIT), IEEE, ‎‎2016, pp. 510-515.‎
‎[18] K. Vignarooban, X. Xu, A. Arvay, K. Hsu, A.M. Kannan, Heat transfer fluids for ‎concentrating solar power systems–a review, Applied Energy, 146 (2015) 383-396.‎
‎[19] C.-J. Li, P. Li, K. Wang, E.E. Molina, Survey of properties of key single and mixture ‎halide salts for potential application as high temperature heat transfer fluids for ‎concentrated solar thermal power systems, AIMS Energy, 2 (2014) 133-157.‎
‎[20] A. Mwesigye, İ.H. Yılmaz, Thermal and thermodynamic benchmarking of liquid heat ‎transfer fluids in a high concentration ratio parabolic trough solar collector system, ‎Journal of Molecular Liquids, 319 (2020) 114151.‎
‎[21] K. Lakzian, H.-J. Liaw, Flash Point and Safety Evaluation of Binary Mixture of ‎Diphenyl Ether+ Biphenyl: A Commonly Utilized Heat Transfer Fluid, Thermochimica ‎Acta, (2024) 179673.‎
‎[22] K. Lakzian, H.-J. Liaw, Flash point investigation of ternary mixtures of 1-butanol/2-‎pentanol+ Acetic acid+ Ethylbenzene, Process Safety and Environmental Protection, ‎‎(2021).‎
‎[23] K. Lakzian, S. Hosseiniallahchal, H. Jalaei Salmani, A. Sanjarifard, Flash point ‎prediction of binary totally and partially miscible water-alcohol mixtures by cubic-plus-‎association (CPA) equation of state, Thermochimica Acta, 691 (2020) 178719.‎
‎[24] L.Y. Phoon, A.A. Mustaffa, H. Hashim, R. Mat, A review of flash point prediction ‎models for flammable liquid mixtures, Industrial Engineering Chemistry Research, 53 ‎‎(2014) 12553-12565.‎
‎[25] L. Catoire, V. Naudet, A unique equation to estimate flash points of selected pure ‎liquids application to the correction of probably erroneous flash point values, Journal of ‎Physical Chemical Reference Data, 33 (2004) 1083-1111.‎
‎[26] R.W. Garland, M.O. Malcolm, Evaluating vent manifold inerting requirements: Flash ‎point modeling for organic acid‐water mixtures, Process Safety Progress, 21 (2002) 254-‎‎260.‎
‎[27] M. Hristova, D. Damgaliev, J. Hristov, Practical data correlation of flashpoints of ‎binary mixtures by a reciprocal function: the concept and numerical examples, Thermal ‎Science, 15 (2011) 905-910.‎
‎[28] J. Mejia, N. Salgado, C. Orrego, Effect of blends of Diesel and Palm-Castor ‎biodiesels on viscosity, cloud point and flash point, Industrial Crops Products, 43 (2013) ‎‎791-797.‎
‎[29] S.Y. Kim, B. Lee, A prediction model for the flash point of binary liquid mixtures, ‎Journal of Loss Prevention in the Process Industries, 23 (2010) 166-169.‎
‎[30] G. Liu, L. Wang, H. Qu, H. Shen, X. Zhang, S. Zhang, Z. Mi, Artificial neural ‎network approaches on composition–property relationships of jet fuels based on GC–MS, ‎Fuel, 86 (2007) 2551-2559.‎
‎[31] J. Kumar, A. Bansal, Selection of best neural network for estimating properties of ‎diesel-biodiesel blends, In Proceedings of the 6th WSEAS International Conference on ‎Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, ‎‎(2007) 16-19.‎
‎[32] M. Agarwal, K. Singh, S. Chaurasia, Prediction of biodiesel properties from fatty acid ‎composition using linear regression and ANN techniques, Indian Chemical Engineer, 52 ‎‎(2010) 347-361.‎
‎[33] D.A. Saldana, L. Starck, P. Mougin, B. Rousseau, L. Pidol, N. Jeuland, B. Creton, ‎Flash point and cetane number predictions for fuel compounds using quantitative structure ‎property relationship (QSPR) methods, Energy Fuels, 25 (2011) 3900-3908.‎
‎[34] Z. Jiao, H.U. Escobar-Hernandez, T. Parker, Q. Wang, Review of recent ‎developments of quantitative structure-property relationship models on fire and ‎explosion-related properties, Process Safety and Environmental Protection, 129 (2019) ‎‎280-290.‎
‎[35] Z. Jiao, C. Ji, S. Yuan, Z. Zhang, Q. Wang, Development of machine learning based ‎prediction models for hazardous properties of chemical mixtures, Journal of Loss ‎Prevention in the Process Industries, 67 (2020) 104226.‎
‎[36] D.A. Saldana, L. Starck, P. Mougin, B. Rousseau, B. Creton, Prediction of flash ‎points for fuel mixtures using machine learning and a novel equation, Energy & fuels, 27 ‎‎(2013) 3811-3820.‎
‎[37] G. Fayet, P. Rotureau, New QSPR Models to predict the flammability of binary liquid ‎mixtures, Molecular informatics, 38 (2019) 1800122.‎
‎[38] T. Gaudin, P. Rotureau, G. Fayet, Mixture descriptors toward the development of ‎quantitative structure–property relationship models for the flash points of organic ‎mixtures, Industrial Engineering Chemistry Research, 54 (2015) 6596-6604.‎
‎[39] T. Gaudin, P. Rotureau, G. Fayet, Combining mixing rules with QSPR models for ‎pure chemicals to predict the flash points of binary organic liquid mixtures, Fire Safety ‎Journal, 74 (2015) 61-70.‎
‎[40] E. Torabian, M.A. Sobati, New structure-based models for the prediction of flash ‎point of multi-component organic mixtures, Thermochimica Acta, 672 (2019) 162-172.‎
‎[41] W. Cao, Y. Pan, Y. Liu, J. Jiang, A novel method for predicting the flash points of ‎binary mixtures from molecular structures, Safety Science, 126 (2020) 104680.‎
‎[42] H. Mirshahvalad, R. Ghasemiasl, N. Raoufi, M. Malekzadeh Dirin, A neural network ‎QSPR model for accurate prediction of flash point of pure hydrocarbons, Molecular ‎informatics, 38 (2019) 1800094.‎
‎[43] H.-J. Liaw, Minimum flash point behavior of ternary solutions with three minimum ‎flash point binary constituents, Fuel, 217 (2018) 626-632.‎
‎[44] H.-J. Liaw, C.-T. Chen, V. Gerbaud, Flash-point prediction for binary partially ‎miscible aqueous–organic mixtures, Chemical engineering science, 63 (2008) 4543-4554.‎
‎[45] H.-J. Liaw, Y.-Y. Chiu, The prediction of the flash point for binary aqueous-organic ‎solutions, Journal of hazardous materials, 101 (2003) 83-106.‎
‎[46] H.-J. Liaw, H.-Y. Chen, Study of two different types of minimum flash-point ‎behavior for ternary mixtures, Industrial Engineering Chemistry Research, 52 (2013) ‎‎7579-7585.‎
‎[47] J. Gmehling, P. Rasmussen, Flash points of flammable liquid mixtures using UNIFAC, ‎Industrial Engineering Chemistry Fundamentals, 21 (1982) 186-188.‎
‎[48] J. Gmehling, U. Onken, W. Arlt, Vapor-liquid Equilibrium Data Collection: Organic ‎Hydroxy Compounds: Alcohols, Dechema, 1986.‎
‎[49] D. White, C.L. Beyler, C. Fulper, J. Leonard, Flame spread on aviation fuels, Fire ‎Safety Journal, 28 (1997) 1-31.‎
‎[50] B. Hanley, A model for the calculation and the verification of closed cup flash points ‎for multicomponent mixtures, Process Safety Progress, 17 (1998) 86-97.‎
‎[51] S. Lee, D.-M. Ha, The lower flash points of binary systems containing non-flammable ‎component, Korean Journal of Chemical Engineering, 20 (2003) 799-802.‎
‎[52] H.-J. Liaw, Y.-H. Lee, C.-L. Tang, H.-H. Hsu, J.-H. Liu, A mathematical model for ‎predicting the flash point of binary solutions, Journal of Loss Prevention in the Process ‎Industries, 15 (2002) 429-438.‎
‎[53] H. Jalaei Salmani, M.N. Lotfollahi, S.H. Mazloumi, A model for predicting flash ‎point of alkane-alkane and water-alcohol mixtures by the Cubic-Plus-Association ‎Equation of State, Process Safety and Environmental Protection, 119 (2018) 191-197.‎
‎[54] A. Di Benedetto, R. Sanchirico, V. Di Sarli, Flash point of flammable binary mixtures: ‎synergistic behavior, Journal of Loss Prevention in the Process Industries, 52 (2018) 1-6.‎
‎[55] R. Sanchirico, V. Di Sarli, A. Di Benedetto, Volatile point of dust mixtures and ‎hybrid mixtures, Journal of Loss Prevention in the Process Industries, 56 (2018) 370-377.‎
‎[56] H.-J. Liaw, T.-P. Lee, J.-S. Tsai, W.-H. Hsiao, M.-H. Chen, T.-T. Hsu, Binary liquid ‎solutions exhibiting minimum flash-point behavior, Journal of loss Prevention in the ‎Process Industries, 16 (2003) 173-186.‎
‎[57] D.-M. Ha, S. Lee, M.-H. Back, Measurement and estimation of the lower flash points ‎for the flammable binary systems using a Tag open cup tester, Korean Journal of Chemical ‎Engineering, 24 (2007) 551-555.‎
‎[58] L. Catoire, S. Paulmier, V. Naudet, Experimental determination and estimation of ‎closed cup flash points of mixtures of flammable solvents, Process safety progress, 25 ‎‎(2006) 33-39.‎
‎[59] M. Noorollahy, A.Z. Moghadam, A.A. Ghasrodashti, Calculation of mixture ‎equilibrium binary interaction parameters using closed cup flash point measurements, ‎Chemical Engineering Research Design, 88 (2010) 81-86.‎
‎[60] S. da Cunha, H.-J. Liaw, V. Gerbaud, On the relation between azeotropic behavior ‎and minimum/maximum flash point occurrences in binary mixtures of flammable ‎compounds, Fluid Phase Equilibria, 452 (2017) 113-134.‎
‎[61] M. Vidal, W. Rogers, M. Mannan, Prediction of minimum flash point behaviour for ‎binary mixtures, Process Safety and Environmental Protection, 84 (2006) 1-9.‎
‎[62] H.-J. Liaw, S.-C. Lin, Binary mixtures exhibiting maximum flash-point behavior, ‎Journal of hazardous materials, 140 (2007) 155-164.‎
‎[63] H.-J. Liaw, C.-T. Chen, C.-C. Cheng, Y.-T. Yang, Elimination of minimum flash-‎point behavior by addition of a specified third component, Journal of Loss Prevention in ‎the Process Industries, 21 (2008) 82-100.‎
‎[64] H.-Y. Chen, H.-J. Liaw, Study of minimum flash-point behavior for ternary mixtures ‎of flammable solvents, Procedia Engineering, 45 (2012) 507-511.‎
‎[65] L. Serafimov, V. Raeva, V. Stepanov, Classification of scalar property isoline ‎diagrams of homogeneous ternary mixtures, Theoretical Foundations of Chemical ‎Engineering, 46 (2012) 221-232.‎
‎[66] V. Kiva, E. Hilmen, S. Skogestad, Azeotropic phase equilibrium diagrams: a survey, ‎Chemical engineering science, 58 (2003) 1903-1953.‎
‎[67] S. da Cunha, V. Gerbaud, N. Shcherbakova, H.-J. Liaw, Classification for ternary ‎flash point mixtures diagrams regarding miscible flammable compounds, Fluid Phase ‎Equilibria, 466 (2018) 110-123.‎
‎[68] K. Lakzian, H.-J. Liaw, Flash point study of ternary mixtures comprising binary ‎constituents that exhibit maximum flash point behavior and minimum flash point behavior, ‎Thermochimica Acta, (2022) 179246.‎
‎[69] H.-J. Liaw, W.-C. Hsu, K. Lakzian, Exploration of two types of maximum–minimum ‎flash point behavior of ternary mixtures, Journal of Loss Prevention in the Process ‎Industries, 80 (2022) 104915.‎
‎[70] J. Li, F. Bu, C. Ru, H. Jiang, Y. Duan, Y. Sun, X. Pu, L. Shang, X. Li, C. Zhao, ‎Enhancing the selectivity of Nafion membrane by incorporating a novel functional ‎skeleton molecule to improve the performance of direct methanol fuel cells, Journal of ‎Materials Chemistry A, 8 (2020) 196-206.‎
‎[71] M. Li, Z. Shu, L. Yi, B. Chen, Y. Zhao, S. Geng, Combustion behavior and oscillatory ‎regime of flame spread over ethanol aqueous solution with different proportions, Fuel, 253 ‎‎(2019) 220-228.‎
‎[72] X. Ren, J. Li, G. Pei, P. Li, L. Gong, Parametric and economic analysis of high-‎temperature cascade organic Rankine cycle with a biphenyl and diphenyl oxide mixture, ‎Energy Conversion Management, 276 (2023) 116556.‎
‎[73] R. Prinsloo, C.E. Deering, E. Fitzpatrick, R.A. Marriott, Densities for Sulfur in ‎Benzene and Densities with Solubilities for a Eutectic Mixture of Biphenyl plus Diphenyl ‎Ether: A General Solubility Equation for the Treatment of Aromatic Physical Sulfur ‎Solvents, Journal of Chemical Engineering Data, 67 (2022) 994-1006.‎
‎[74] M. Jang, B.S. Shin, Y.S. Jo, J.W. Kang, S.K. Kwak, C.W. Yoon, H. Jeong, A study on ‎hydrogen uptake and release of a eutectic mixture of biphenyl and diphenyl ether, Journal ‎of energy chemistry, 42 (2020) 11-16.‎
‎[75] T. van Der Stelt, E. Casati, N. Chan, P. Colonna, Technical equation of state models ‎for heat transfer fluids made of biphenyl and diphenyl ether and their mixtures, Fluid ‎Phase Equilibria, 393 (2015) 64-77.‎
‎[76] D. Cabaleiro, M. Pastoriza-Gallego, M. Piñeiro, J. Legido, L. Lugo, Thermophysical ‎properties of (diphenyl ether+ biphenyl) mixtures for their use as heat transfer fluids, The ‎Journal of Chemical Thermodynamics, 50 (2012) 80-88.‎
‎[77] D. Cabaleiro, C. Gracia-Fernández, L. Lugo, (Solid+ liquid) phase equilibria and heat ‎capacity of (diphenyl ether+ biphenyl) mixtures used as thermal energy storage materials, ‎The Journal of Chemical Thermodynamics, 74 (2014) 43-50.‎
‎[78] R. Blanco-Moreno, L.P. Sáez, V.M. Luque-Almagro, M.D. Roldán, C. Moreno-‎Vivián, Isolation of bacterial strains able to degrade biphenyl, diphenyl ether and the heat ‎transfer fluid used in thermo-solar plants, New biotechnology, 35 (2017) 35-41.‎
‎[79] ASTM, American Society for Testing and Materials ASTM D 56: Standard Test ‎Method for Flash Point by Tag Closed Tester. ASTM, West Conshohocken, PA, in, 2005.‎
‎[80] S.M. Santos, D.C. Nascimento, M.C. Costa, A.M. Neto, L.V. Fregolente, Flash point ‎prediction: Reviewing empirical models for hydrocarbons, petroleum fraction, biodiesel, ‎and blends, Fuel, 263 (2020) 116375.‎
‎[81] C.C. Lee, M.-V. Tran, B.T. Tan, G. Scribano, C.T. Chong, A comprehensive review ‎on the effects of additives on fundamental combustion characteristics and pollutant ‎formation of biodiesel and ethanol, Fuel, (2020) 119749.‎
‎[82] N. Wei, J. Quarterman, S.R. Kim, J.H. Cate, Y.-S. Jin, Enhanced biofuel production ‎through coupled acetic acid and xylose consumption by engineered yeast, Nature ‎communications, 4 (2013) 1-8.‎
‎[83] A. Smirnov, A. Sadaeva, K. Podryadova, M. Toikka, Quaternary liquid-liquid ‎equilibrium, solubility and critical states: Acetic acid–n-butanol–n-butyl acetate–water at ‎‎318.15 K and atmospheric pressure, Fluid Phase Equilibria, 493 (2019) 102-108.‎
‎[84] T.R. Brown, R.C. Brown, A review of cellulosic biofuel commercial‐scale projects in ‎the United States, Biofuels, Bioproducts and Biorefining, 7 (2013) 235-245.‎
‎[85] K. Inui, T. Kurabayashi, S. Sato, N. Ichikawa, Effective formation of ethyl acetate ‎from ethanol over Cu-Zn-Zr-Al-O catalyst, Journal of Molecular Catalysis A: Chemical, ‎‎216 (2004) 147-156.‎
‎[86] F.J. Hernández Fernández, A. Pérez de los Ríos, J. Quesada‐Medina, S. Sánchez‐‎Segado, Ionic liquids as extractor agents and reaction media in ester synthesis, ‎ChemBioEng Reviews, 2 (2015) 44-53.‎
‎[87] D. Rutz, R. Janssen, Biofuel technology handbook, WIP Renewable energies, 2007.‎
‎[88] A. Demirbas, Biofuels sources, biofuel policy, biofuel economy and global biofuel ‎projections, Energy conversion management, 49 (2008) 2106-2116.‎
‎[89] A. Devaraj, I. Vinoth Kanna, N. Tamil Selvam, A. Prabhu, Emission analysis of ‎cashew nut biodiesel-pentanol blends in a diesel engine, International Journal of Ambient ‎Energy, (2020) 1-5.‎
‎[90] S. Thiyagarajan, A. Sonthalia, V.E. Geo, T. Prakash, V. Karthickeyan, B. Ashok, K. ‎Nanthagopal, B. Dhinesh, Effect of manifold injection of methanol/n-pentanol in ‎safflower biodiesel fuelled CI engine, Fuel, 261 (2020) 116378.‎
‎[91] N. Yilmaz, F.M. Vigil, K. Benalil, S.M. Davis, A. Calva, Effect of biodiesel–butanol ‎fuel blends on emissions and performance characteristics of a diesel engine, Fuel, 135 ‎‎(2014) 46-50.‎
‎[92] Z. Zheng, X. Wang, X. Zhong, B. Hu, H. Liu, M. Yao, Experimental study on the ‎combustion and emissions fueling biodiesel/n-butanol, biodiesel/ethanol and biodiesel/2, ‎‎5-dimethylfuran on a diesel engine, Energy, 115 (2016) 539-549.‎
‎[93] G. Goga, B.S. Chauhan, S.K. Mahla, H.M. Cho, Performance and emission ‎characteristics of diesel engine fueled with rice bran biodiesel and n-butanol, Energy ‎Reports, 5 (2019) 78-83.‎
‎[94] L. Wei, C. Cheung, Z. Ning, Effects of biodiesel-ethanol and biodiesel-butanol blends ‎on the combustion, performance and emissions of a diesel engine, Energy, 155 (2018) 957-‎‎970.‎
‎[95] N. Yilmaz, T.M. Sanchez, Analysis of operating a diesel engine on biodiesel-ethanol ‎and biodiesel-methanol blends, Energy, 46 (2012) 126-129.‎
‎[96] J. Huang, H. Xiao, X. Yang, F. Guo, X. Hu, Effects of methanol blending on ‎combustion characteristics and various emissions of a diesel engine fueled with soybean ‎biodiesel, Fuel, 282 (2020) 118734.‎
‎[97] H.-J. Liaw, C.-L. Tang, J.-S. Lai, A model for predicting the flash point of ternary ‎flammable solutions of liquid, Combustion and Flame, 138 (2004) 308-319.‎
‎[98] J. Gmehling, U. Onken, U. Weidlich, Vapor-Liquid Equilibrium Data Collection, Vol. ‎‎1. Part 2d. DECHEMA, Frankfurt, Germany., 1982.‎
‎[99] M. Baker, Available at: ‎http://www.mallbaker.com/Americas/catalog/default.asp?searchfor=msds (accessed 2008). ‎in, 2008.‎
‎[100] Univar, http://www.univarusa.com/assistmsds.html (accessed 2008). (2008).‎
‎[101] I.S. Oh, S.J. In, The Measurement and Prediction of Flash Point for Binary Mixtures ‎of Methanol, Ethanol, 2-Propanol and 1-Butanol at 101.3 kPa, Fire Science Engineering, ‎‎29 (2015) 1-6.‎
‎[102] Fisher_Scientific, Available at: ‎https://www.fishersci.com/store/msds?partNumber=A3984&productDescription=butanol-‎technical-fisher-‎chemical&vendorId=VN00033897&keyword=true&countryCode=US&language=en. ‎Accessed on May 7, 2021., (2021a).‎
‎[103] Merck, Available at: ‎https://www.merckmillipore.com/TW/zh/product/msds/MDA_CHEM-‎‎101990?Origin=PDP. Accessed on May 7, 2021., in, 2021a.‎
‎[104] Merck, Available at: ‎https://www.merckmillipore.com/TW/zh/product/msds/MDA_CHEM-‎‎807501?Origin=SERP. Accessed on May 7, 2021., in, 2021b.‎
‎[105] Fisher_Scientific, Available at: ‎https://www.fishersci.com/store/msds?partNumber=AC129980010&productDescription=dlpentanol--acros-‎organicstrade&vendorId=VN00032119&keyword=true&countryCode=US&language=en. ‎Accessed on May 7, 2021., (2021b).‎
‎[106] K. Satyanarayana, M. Kakati, Note: Correlation of flash points, Fire Materials, 15 ‎‎(1991) 97-100.‎
‎[107] D.-M. Ha, S. Lee, The Measurement and Prediction of Maximum Flash Point ‎Behavior for Binary Solution, Fire Science Engineering, 27 (2013) 70-74.‎
‎[108] A. Haghtalab, J.Y. Seyf, Y. Mansouri, Flash point prediction of the binary and ‎ternary systems using the different local composition activity coefficient models, Fluid ‎Phase Equilibria, 415 (2016) 58-63.‎
‎[109] Merck, Availabe at: ‎https://www.merckmillipore.com/TW/zh/product/msds/MDA_CHEM-‎‎100066?Origin=PDP. Accessed on May 7, 2021., (2021c).‎
‎[110] Fisher_Scientific, Available at: ‎https://www.fishersci.com/store/msds?partNumber=A465500&productDescription=acetic-‎acid-glacial-optimatrade-fisher-‎chemicaltrade&vendorId=VN00033897&keyword=true&countryCode=US&language=en. ‎Accessed on May 7, 2021., (2021c).‎
‎[111] J. Gmehling, U. Onken, P. Grenzheuser, Vapor-Liquid Equilibrium Data Collection, ‎Vol. 1. Part 5. DECHEMA, Frankfurt, Germany., 1982.‎
‎[112] I.C. Hwang, S.J. In, The Measurement of Flash Point for Binary Mixtures of 2, 2, 4-‎Trimethylpentane, Methylcyclohexane, Ethylbenzene and p-xylene at 101.3 kPa, Clean ‎Technology, 26 (2020) 279-285.‎
‎[113] Fisher_Scientific, Available at: ‎https://www.fishersci.com/store/msds?partNumber=AC118080025&productDescription=ethylbenzene--pure-acros-‎organicstrade&vendorId=VN00032119&keyword=true&countryCode=US&language=en. ‎Accessed on May 7, 2021., (2021d).‎
‎[114] D.J. Luning Prak, G.R. Simms, M. Hamilton, J.S. Cowart, Impact of low flash point ‎compounds (hydrocarbons containing eight carbon atoms) on the flash point of jet fuel and ‎n-dodecane, Fuel, 286 (2021) 119389.‎
‎[115] C.L. Yaws, The Yaws handbook of vapor pressure: Antoine coefficients, Gulf ‎Professional Publishing, 2015.‎
‎[116] TCI, Available at: https://www.tcichemicals.com/OP/en/p/B0764. Accessed on ‎September 03, 2021., (2021).‎
‎[117] Sigma-Aldrich, Available at: ‎https://www.sigmaaldrich.com/TW/en/product/aldrich/291838#. Accessed on September ‎‎03, 2021., (2021).‎
‎[118] S.A. Al-Muhtaseb, M.A. Fahim, Phase equilibria of the ternary system water/acetic ‎acid/2-pentanol, Fluid phase equilibria, 123 (1996) 189-203.‎
‎[119] J. Gmehling, P. Rasmussen, A. Fredenslund, Vapor-liquid equilibriums by UNIFAC ‎group contribution. Revision and extension. 2, Industrial Engineering Chemistry Process ‎Design Development, 21 (1982) 118-127.‎
‎[120] J. Gmehling, J. Li, M. Schiller, A modified UNIFAC model. 2. Present parameter ‎matrix and results for different thermodynamic properties, Industrial Engineering ‎Chemistry Research, 32 (1993) 178-193.‎
‎[121] NFPA, Public Comment No. 2-NFPA 497-2019 [Section No. C.2.1]. (2019).‎
‎[122] NFPA, National Fire Protection Association Flammable and Combustible Liquids ‎Code, vol. 30, NFPA, Quincy, Massachusetts, USA., in, 2021.‎
‎[123] DOT, Department of Transportation. Shippers – General Requirements for ‎Shipments and Packagings, Class3 – Assignment of Packing Group, 49CFR173.121. ‎National Archives and Records administration, USA., (2015).‎
‎[124] G. Joshi, J.K. Pandey, S. Rana, D.S. Rawat, Challenges and opportunities for the ‎application of biofuel, Renewable Sustainable Energy Reviews, 79 (2017) 850-866.‎
‎[125] V.K. Gupta, M.G. Tuohy, Biofuel technologies, Recent Developments. Editorial ‎Springer, 2013.‎
‎[126] V. Babu, M. Murthy, Butanol and pentanol: The promising biofuels for CI engines–‎A review, Renewable Sustainable Energy Reviews, 78 (2017) 1068-1088.‎
‎[127] Y. Devarajan, B.K. Nagappan, D.B. Munuswamy, Performance and emissions ‎analysis on diesel engine fuelled with cashew nut shell biodiesel and pentanol blends, ‎Korean Journal of Chemical Engineering, 34 (2017) 1021-1026.‎
‎[128] F. Goembira, K. Matsuura, S. Saka, Biodiesel production from rapeseed oil by ‎various supercritical carboxylate esters, Fuel, 97 (2012) 373-378.‎
‎[129] H.-J. Liaw, K. Lakzian, Y.-H. Wang, M.-C. Chen, Model for estimating the ‎maximum water content that would maintain the flammability of an aqueous− organic ‎mixture, Journal of Loss Prevention in the Process Industries, (2024) 105253.‎
‎[130] P. Yang, T.T. Myint, Integrating entrapped mixed microbial cell (EMMC) ‎technology for treatment of wastewater containing dimethyl sulfoxide (DMSO) for reuse ‎in semiconductor industries, Clean technologies environmental policy, 6 (2003) 43-50.‎
‎[131] S.-C.J. Hwang, J.-Y. Wu, Y.-H. Lin, I.-C. Wen, K.-Y. Hou, S.-Y. He, Optimal ‎dimethyl sulfoxide biodegradation using activated sludge from a chemical plant, Process ‎Biochemistry, 42 (2007) 1398-1405.‎
‎[132] T. MI, MI (Taiwan), Establishment Standard and ‎Safety Control Regulation for ‎Manufacturing, ‎Storing, Processing Public Hazardous ‎Substances and Flammable ‎Pressurized Gases Place, ‎Ministry of the Interior, Taiwan, ‎‎2019.‎ ‎https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=D0120025. Accessed on ‎February 03, 2023., (2019).‎
‎[133] C.-C. Wang, C.-M. Lee, Isolation of the ɛ-caprolactam denitrifying bacteria from a ‎wastewater treatment system manufactured with acrylonitrile–butadiene–styrene resin, ‎Journal of hazardous materials, 145 (2007) 136-141.‎
‎[134] M. Munoz, G. Pliego, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez, Application of ‎intensified Fenton oxidation to the treatment of sawmill wastewater, Chemosphere, 109 ‎‎(2014) 34-41.‎
‎[135] J. Zhang, F. Han, P. Zhang, G. Chen, X. Wei, Gas−Liquid Equilibrium Data for the ‎Mixture Gas of Sulfur Dioxide+ Nitrogen with Poly (ethylene glycol) Aqueous Solutions ‎at 298.15 K and 122.61 kPa, Journal of Chemical Engineering Data, 55 (2010) 959-961.‎
‎[136] J. Zhang, J. Xiao, Y. Liu, X. Wei, Solubility of carbonyl sulfide in aqueous ‎solutions of ethylene glycol at temperatures from (308.15 K to 323.15) K, Journal of ‎Chemical Engineering Data, 55 (2010) 5350-5353.‎
‎[137] D.R. Vardon, A.E. Settle, V. Vorotnikov, M.J. Menart, T.R. Eaton, K.A. Unocic, ‎K.X. Steirer, K.N. Wood, N.S. Cleveland, K.E. Moyer, Ru-Sn/AC for the aqueous-phase ‎reduction of succinic acid to 1, 4-butanediol under continuous process conditions, ACS ‎Catalysis, 7 (2017) 6207-6219.‎
‎[138] A. Ghanadzadeh, H. Ghanadzadeh, K. Bahrpaima, Experimental and theoretical ‎study of the phase equilibria in ternary aqueous mixtures of 1, 4-butanediol with alcohols ‎at 298.2 K, Journal of Chemical Engineering Data, 54 (2009) 1009-1014.‎
‎[139] F. Cheng, J. Sun, Z. Wang, X. Zhao, Y. Hu, Organosolv fractionation and ‎simultaneous conversion of lignocellulosic biomass in aqueous 1, 4-butanediol/acidic ‎ionic-liquids solution, Industrial Crops Products, 138 (2019) 111573.‎
‎[140] T. Kishimoto, Y. Sano, Delignification mechanism during high-boiling solvent ‎pulping. Part 1. Reaction of guaiacylglycerol-β-guaiacyl ether, de Gruyter, (2001).‎
‎[141] H.-J. Liaw, W.-H. Lu, V. Gerbaud, C.-C. Chen, Flash-point prediction for binary ‎partially miscible mixtures of flammable solvents, Journal of hazardous materials, 153 ‎‎(2008) 1165-1175.‎
‎[142] H.-J. Liaw, The condition for aqueous–organic mixtures not to flash, Procedia ‎Engineering, 84 (2014) 280-284.‎
‎[143] H.-J. Liaw, V. Gerbaud, Y.-H. Li, Prediction of miscible mixtures flash-point from ‎UNIFAC group contribution methods, Fluid Phase Equilibria, 300 (2011) 70-82.‎
‎[144] H.-J. Liaw, C.-C. Chen, C.-H. Chang, N.-K. Lin, C.-M. Shu, Model to estimate the ‎flammability limits of fuel–air–diluent mixtures tested in a constant pressure vessel, ‎Industrial engineering chemistry research, 51 (2012) 2747-2761.‎
‎[145] H.-J. Liaw, Z.-H. Li, Mathematical model for describing the influence of initial ‎pressure on the flammability limits of light hydrocarbons at subatmospheric pressures, ‎Journal of Loss Prevention in the Process Industries, 77 (2022) 104776.‎
‎[146] H.-J. Liaw, C.-C. Chen, N.-K. Lin, C.-M. Shu, S.-Y. Shen, Flammability limits ‎estimation for fuel–air–diluent mixtures tested in a constant volume vessel, Process Safety ‎and Environmental Protection, 100 (2016) 150-162.‎
‎[147] W. Wilding, T. Knotts, N. Giles, R. Rowley, DIPPR data compilation of pure ‎chemical properties, Design Institute for Physical Properties. New York, NY: American ‎Institute of Chemical Engineers., 2020.‎
‎[148] NIST, NIST Chemistry WebBook. National Institute of Standards and Technology. ‎Available at: https://webbook.nist.gov/chemistry/. Accessed on Novemeber 23, 2022., ‎‎(2022).‎
‎[149] B.E. Poling, J.M. Prausnitz, J.P. O’connell, The Properties of gases and liquids, ‎McGraw-Hill Education, 2001.‎
‎[150] V. Tumova, M. Prenosil, J. Pinkava, Vapor-liquid equilibrium in the 6-caprolactam ‎‎+ water system of normal and reduced pressures, Chemicky prumysl, 8, 585-7 (1958).‎
‎[151] A.M. Kiryukhin, T.M. Lesteva, N.P. Markuzin, L.S. Budantseva, Phase equilibrium ‎in hydrocarbon-alcohol-water systems. II. Liquid-vapor equilibrium in C8-alcohol-C5-7-‎hydrocarbon systems, Prom-st Sint. Kauch, 4 (1982).‎
‎[152] J. Gmehling, U. Onken, W. Arlt, Vapor-Liquid Equilibrium Data Collection, Vol. 1, ‎‎1a. DECHEMA, Frankfurt, Germany., (1981).‎
‎[153] Y. Peng, L. Ping, S. Lu, J. Mao, Vapor–liquid equilibria for water+ acetic acid+(N, ‎N-dimethylformamide or dimethyl sulfoxide) at 13.33 kPa, Fluid Phase Equilibria, 275 ‎‎(2009) 27-32.‎
‎[154] O. Chiavone-Filho, P. Proust, P. Rasmussen, Vapor-liquid equilibria for glycol ‎ether+ water systems, Journal of Chemical Engineering Data, 38 (1993) 128-131.‎
‎[155] J. Schmelzer, J. Pusch, Phase equilibria in binary systems containing N-‎monosubstituted amides and hydrocarbons, Fluid phase equilibria, 110 (1995) 183-196.‎
‎[156] J. Gmehling, U. Onken, U. Weidlich, Vapor-Liquid Equilibrium Data Collection, ‎Vol. 1. Part 2b. DECHEMA, Frankfurt, Germany., (1982).‎
‎[157] Fisher_Scientific, Available at: ‎https://www.fishersci.com/store/msds?partNumber=D1391&productDescription=DIMETHYL+SULFOXIDE+GC+HS+1L&vendorId=VN00033897&countryCode=US&language=‎en. Accessed on June 22, 2022., (2022c).‎
‎[158] Sigma-Aldrich, Available at: https://www.sigmaaldrich.com/TW/en/sds/sial/398039. ‎Accessed on June 22, 2022., (2022c).‎
‎[159] Sigma-Aldrich, Available at: https://www.sigmaaldrich.com/TW/en/sds/sial/398039. ‎Accessed on June 22, 2022., (2022d).‎
‎[160] K. Hall, F. M, D. J, Vapor Pressure and Antoine Constants for Oxygen Containing ‎Organic Compounds, Springer, 2000.‎
‎[161] Merck, Availabe at: ‎https://www.merckmillipore.com/TW/zh/product/msds/MDA_CHEM-‎‎820624?Origin=PDP. Accessed on November 23, 2022., (2022a).‎
‎[162] M.K. Yesilyurt, A detailed investigation on the performance, combustion, and ‎exhaust emission characteristics of a diesel engine running on the blend of diesel fuel, ‎biodiesel and 1-heptanol (C7 alcohol) as a next-generation higher alcohol, Fuel, 275 (2020) ‎‎117893.‎
‎[163] Fisher_Scientific, Available at: ‎https://www.fishersci.com/store/msds?partNumber=E1794&productDescription=2-‎BUTOXYETHANOL+4L&vendorId=VN00033897&countryCode=US&language=en. ‎Accessed on June 22, 2022., (2022d).‎
‎[164] Sigma-Aldrich, Available at: https://www.sigmaaldrich.com/TW/en/sds/mm/bx1715. ‎Accessed on June 22, 2022., (2022e).‎
‎[165] H. Yue, Y. Zhao, X. Ma, J. Gong, Ethylene glycol: properties, synthesis, and ‎applications, Chemical Society Reviews, 41 (2012) 4218-4244.‎
‎[166] Huber, Available at: https://www.huber-‎online.com/download/techsheets/Huber_Frostschutzmittel_safetysheet_EN.pdf. Accessed ‎on June 22, 2022., (2022).‎
‎[167] Merck, Available at: ‎https://www.merckmillipore.com/TW/zh/product/msds/MDA_CHEM-‎‎820931?Origin=PDP, (2022b).‎
‎[168] Q. Jia, Q. Wang, P. Ma, S. Xia, F. Yan, H. Tang, Prediction of the flash point ‎temperature of organic compounds with the positional distributive contribution method, ‎Journal of Chemical & Engineering Data, 57 (2012) 3357-3367.‎
‎[169] J.D. de Oliveira Henriques, F.H.B. Sosa, R.M. Dias, P.F.M. Martinez, M.C. da Costa, ‎Flash point and excess molar volumes of binary mixtures containing d-limonene and ‎alcohol compounds from propanol to dodecanol, The Journal of Chemical ‎Thermodynamics, 150 (2020) 106224.‎
‎[170] Sigma-Aldrich, Available at: ‎https://www.sigmaaldrich.com/TW/en/sds/aldrich/c2204. Accessed on June 22, 2022., ‎‎(2022a).‎
‎[171] Fisher_Scientific, Available at: ‎https://www.fishersci.com/store/msds?partNumber=AAL0699922&productDescription=EPSILON-‎CAPROLACTAM+99%25+100G&vendorId=VN00024248&countryCode=US&language=‎en. Accessed on June 22, 2022., (2022a).‎
‎[172] Sigma-Aldrich, Available at: https://www.sigmaaldrich.com/TW/en/sds/sial/493732. ‎Accessed on June 22, 2022., (2022b).‎
‎[173] Carl_Roth, Available at: https://www.carlroth.com/medias/SDB-4306-GB-‎EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyNjkxNjN8YXBwbGljYXRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oMjgvaDhhLzg5NTA3MzAyNjA1MTAucGRmfDI2ZGVlZmFjYTU1ZmYxZDNlZjBhZDI5YWYzMTc2MjExMGZjODFj‎Y2QwNzk5OTc2NTQzN2IyMGYyYTY2MjYzOTI. Accessed on June 22, 2022., (2022b).‎
‎[174] Sigma-Aldrich, Available at: ‎https://www.sigmaaldrich.com/TW/en/sds/sigald/443778. Accessed on June 22, 2022., ‎‎(2022f).‎
‎[175] Y. Tian, C.-Y. Zhao, A review of solar collectors and thermal energy storage in solar ‎thermal applications, Applied energy, 104 (2013) 538-553.‎
‎[176] L. Criado-García, R. Garrido-Delgado, L. Arce, F. López, R. Peón, M. Valcárcel, ‎Potential of ion mobility spectrometry versus FT-MIR and GC-MS to study the evolution ‎of a heat transfer fluid after its heating process in a thermosolar plant, Microchemical ‎Journal, 121 (2015) 163-171.‎
‎[177] H.-J. Liaw, V. Gerbaud, C.-Y. Chiu, Flash point for ternary partially miscible ‎mixtures of flammable solvents, Journal of Chemical Engineering Data, 55 (2010) 134-‎‎146.‎
‎[178] X. Liu, Z. Liu, Research progress on flash point prediction, Journal of Chemical ‎Engineering Data, 55 (2010) 2943-2950.‎
‎[179] Fisher_Scientific, Available at: https://www.fishersci.com/shop/products/diphenyl-‎ether-99-thermo-scientific/AAA1579130. Accessed on October 2023., (2023).‎
‎[180] S. Srihari, B. Chaitanya, S. Thirumalini, Experimental study on influence of ‎diphenyl ether and diethyl amine on exhaust emissions of diesel engine, Materials Today: ‎Proceedings, 46 (2021) 4835-4839.‎
‎[181] Thermo_Fisher, Available at: ‎https://www.thermofisher.com/order/catalog/product/A15791.0E. Accessed on October ‎‎2023., (2023a).‎
‎[182] Sigma-Aldrich, Available at: ‎https://www.sigmaaldrich.com/TW/en/sds/ALDRICH/W312908. Accessed on October ‎‎2023., (2023).‎
‎[183] Carl_Roth, Available at: https://www.carlroth.com/com/en/aromatic-building-‎blocks/biphenyl/p/3216.2. Accessed on October 2023., (2023).‎
‎[184] Thermo_Fisher, Available at: ‎https://www.thermofisher.com/order/catalog/product/A10265.0B. Accessed on October ‎‎2023., (2023b).‎
‎[185] D.W. Boyd, Systems analysis and modeling: a macro-to-micro approach with ‎multidisciplinary applications. CHAPTER 8 - Stochastic Analysis., Elsevier, 2000.‎
‎[186] M.M. Papari, M. Kiani, J. Moghadasi, Performance assessment of Tao–Mason ‎equation of state: Results for vapor–liquid equilibrium properties, Journal of Industrial ‎Engineering Chemistry, 17 (2011) 667-674.‎
‎[187] Chempoint, Available at: https://www.chempoint.com/en-‎emea/products/dow/dowtherm-synthetic-thermal-fluids/dowtherm-synthetic-thermal-‎fluids/dowtherm-a. Accessed on December 2023., (2023).‎
‎[188] Dalian_richfortune_chemicals, Available at: ‎http://www.richfortunechem.com/index.php?action=news&id=487. Accessed on ‎December 2023., (2023).‎
‎[189] ASTM, Standard test methods for flash-point by ASTM D 93 Pensky-Martens ‎closed cup tester, American Society for Testing and Materials, West Conshohocken, PA, ‎in, 2008.‎

第一頁 上一頁 下一頁 最後一頁 top