跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/25 17:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:雷凱成
研究生(外文):Kazem Lakzian
論文名稱:易燃性混合物獨特閃火點行為研究
論文名稱(外文):Study on the Unique Flash Point Behaviors of ‎Ignitable Mixtures
指導教授:廖宏章廖宏章引用關係
指導教授(外文):Horng-Jang Liaw
口試委員:陳強琛蘇崇輝徐啟銘高振山
口試委員(外文):Chen, Chan-ChengSu, Chung-HweiShu, Chi-MinKao, Chen-Shan
口試日期:2024-03-11
學位類別:博士
校院名稱:國立高雄科技大學
系所名稱:工學院工程科技博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:156
中文關鍵詞:閃火點最低閃火點行為(MinFPB)最高閃火點行為(MaxFPB)維持有機水溶液易燃性的最大水量(MaxWF)‎最高閃火點(Tfp,max)傳熱流體‎
外文關鍵詞:Flash point‎Minimum flash point behavior (MinFPB)Maximum flash point behavior (MaxFPB)Maximum amount of water that maintains an aqueous-organic mixture flammable ‎‎(MaxWF)‎Maximum flash point (Tfp,max)‎Heat transfer fluid (HTF)
ORCID或ResearchGate:0000-0002-8853-8766
相關次數:
  • 被引用被引用:0
  • 點閱點閱:42
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
論文目的在研究三成份有機混合物以及雙成份有機水溶液的獨特閃火點(FP)‎行為。‎
在研究的第一部分中,專注於三成份混合物的特殊和獨特的FP行為,研究了四種三成份混合物的FP行為,分別是1-丁醇+醋酸+乙苯、2-戊醇+醋酸+乙苯、丙酸丁酯+醋酸+2-戊醇和丙酸丁酯+醋酸+1-丁醇,由最低FP行為(MinFPB)和最高FP行為(MaxFPB)的雙成份構成。研究得出結論,醋酸與醇的混合物表現出MaxFPB行為,而所有包含乙苯的雙成份混合物和2-戊醇/1-丁醇+丙酸丁酯的兩種雙成份混合物表現出MinFPB行為。研究還發現,原始UNIFAC和UNIFAC-Dortmund模型對於預測某些雙成份混合物(1-丁醇+醋酸,2-戊醇+醋酸,丙酸丁酯+醋酸)的FP和趨勢線是不可靠的,使用這些模型時應謹慎。這些發現可用於制定降低處理、儲存、運輸和處理此類混合物的成本和安全風險的方法。‎
在研究的第二部分中,研究了雙成份有機水溶液的獨特FP行為,以找出維持有機水溶液易燃性的最大水量(MaxWF)和這些混合物的最大FP(Tfp,max)。論文中引入了一個新模型來預測MaxWF和Tfp,max。該模式準確地預測了MaxWF和Tfp,max。該模式背後的基本概念是,當氣相中的蒸汽濃度超過惰化點時,FP將測不到。研究發現,‎少量水足以使低揮發性易燃液體不易燃,而高揮發性易燃液體需要更多的水才能達到惰化點。這些發現有助於制定防止燃燒過程中火焰擴散的最佳水分限制,並制定防火安全法規。‎
在論文的第三部分中,對二苯醚和二苯的雙成份混合物進行了研究。這種混合物在各個行業中都有廣泛的應用,特別是在可再生能源系統中,如集中太陽能發電(CSP)設施中被廣泛使用。這項研究的重點是該混合物的FP行為,這是一個關鍵問題,因為相關製程中的操作溫度較高,特別是在其作為傳熱流體的角色中。該研究目的在通過實驗測量和基於SLE數據的獨特數學方法來分析整個組成範圍,這與依賴VLE數據的一般方法不同。閃火點預測結果與實驗數據相比表現出令人滿意的一致性。該研究的發現可用於減少使用二苯醚+二苯雙成份混合物的製程中與火災和爆炸有關的風險。‎
總而言之,該研究的結果可用於評估有機和有機水溶液的火災與爆炸風險,‎以減少相關的危害。‎

The thesis aimed to investigate the unique flash point (FP) behavior of ternary ‎organic mixtures, as well as binary aqueous-organic solutions. ‎
In the first part of the study that focus on the special and unique FP behavior of ‎ternary mixtures, the FP behavior of four ternary mixtures was examined, namely 1-‎butanol + acetic ‎acid + ethylbenzene, 2-pentanol + acetic acid + ethylbenzene, propyl ‎butyrate + acetic ‎acid + 2-pentanol, and propyl butyrate + acetic acid + 1-butanol, ‎consisting of binary constituents with minimum FP behavior (MinFPB) and maximum FP ‎behavior (MaxFPB). The study concluded that mixtures of acetic acid with the alcohols ‎exhibit MaxFPB behavior, while ‎all binary mixtures containing ethylbenzene and two ‎binary blends of 2-pentanol/1-butanol + ‎propyl butyrate exhibit MinFPB behavior. ‎The ‎study also found that the original UNIFAC and UNIFAC-Dortmund models are unreliable ‎for predicting FPs and trend lines for certain binary mixtures (1-butanol + acetic ‎acid, 2-‎pentanol + acetic acid, propyl butyrate + acetic ‎acid), and caution should be used when ‎using these models. The findings can be used in developing approaches to reduce costs ‎and safety risks associated with handling, storing, transporting, and processing such ‎mixtures. ‎
In the second part of the research, the unique FP behavior of binary aqueous-‎organic mixture was studied to find out the maximum amount of water that maintains an ‎aqueous-organic mixture flammable (MaxWF) and the maximum FP (Tfp,max) of those ‎mixtures. A new model was introduced to forecast the MaxWF and Tfp,max. The model ‎accurately predicted MaxWF and Tfp,max. The fundamental concept behind the model is that ‎the FP will come to an end when the steam concentration in the gas phase exceeds the ‎point of inertization. It was found that a small quantity of water is sufficient to make low-‎volatile combustible liquids nonflammable, while highly volatile flammable liquids need a ‎considerably larger amount of water to reach the inertization point. The findings can aid in ‎formulating fire safety regulations and establishing optimal restrictions on the water ‎content of liquid fuels to prevent inhibiting flame propagation during combustion. ‎
In the third section of the thesis, an examination was conducted on the binary ‎combination of diphenyl ether and biphenyl. This particular blend is extensively applied ‎across various industries, notably playing a significant role in renewable energy systems ‎such as concentrated solar power (CSP) facilities. The primary focus of this investigation ‎is the FP behavior of the blend, a crucial aspect given the elevated operating temperatures ‎in related processes, particularly in its role as a heat transfer fluid (HTF). The research ‎aims to address the dearth of studies on this subject by comprehensively analyzing the ‎entire composition range through experimental measurements and a distinctive ‎mathematical approach grounded in solid-liquid equilibrium (SLE) data, in contrast to the ‎conventional method relying on vapor-liquid equilibrium (VLE) data. The predicted FP ‎results exhibited satisfactory agreement when compared to the experimental data. The ‎insights derived from this study can be applied to minimize the potential risks of fire and ‎explosions associated with processes utilizing the binary mixture of diphenyl ether + ‎biphenyl.‎
Overall, the study's results can be used to evaluate the F&E hazards of organic and ‎aqueous-organic mixtures in order to decrease the corresponding risks. ‎

Table of content
ABSTRACT iii
ACKNOWLEDGEMENTS v
Table of content viii
List of Tables xi
List of Figures xiii
List of Symbols and Abbreviations xv
Chapter 1: Introduction ‎1‎
‎1.1.‎ Flash point explanation ‎1‎
‎1.1.1.‎ Importance of Flash Point Investigation of Ignitable Liquids ‎1‎
‎1.1.2.‎ Flammability of Aqueous-Organic Mixtures ‎2‎
‎1.1.3.‎ Flash Point and Safety Evaluation of Flammable Heat Transfer Fluids ‎3‎
‎1.2.‎ Main Objectives of the Study ‎4‎
‎1.3.‎ Structure of the Dissertation ‎6‎
Chapter 2: Literature Review ‎7‎
‎2.1.‎ FP of Ternary Mixtures ‎9‎
‎2.2.‎ Non-flammability in aqueous-organic mixtures ‎14‎
‎2.3.‎ Flammability hazard investigation of diphenyl ether + biphenyl mixture ‎15‎
‎2.4.‎ Essential questions that shape the research investigation ‎16‎
Chapter 3: Equipment and apparatuses utilized in the research ‎17‎
‎3.1.‎ FP apparatuses ‎17‎
‎3.1.1.‎ HFP 362-Tag tester ‎17‎
‎3.1.2.‎ HFP 360-Pensky Martens tester ‎19‎
‎3.2.‎ Mass balance ‎20‎
‎3.3.‎ Harmony Hotplate Stirrer ‎21‎
Chapter 4: FP Investigation of Ternary Ignitable Mixtures‎ ‎23‎
‎4.1.‎ Ternary mixtures ‎23‎
‎4.1.1.‎ Significance of the research ‎23‎
‎4.1.2.‎ Experimental investigation ‎25‎
‎4.2.‎ Mathematical modeling and simulation ‎26‎
‎4.2.1.‎ Activity coefficient models ‎26‎
‎4.2.2.‎ FP prediction of ternary mixtures ‎27‎
‎4.2.3.‎ Acquisition of the parameters ‎30‎
‎4.3.‎ FP investigation ‎33‎
‎4.3.1.‎ FP of pure ignitable chemicals ‎33‎
‎4.3.2.‎ FP of 1-butanol + acetic acid + ethylbenzene mixture ‎33‎
‎4.3.3.‎ FP of 2-pentanol + acetic acid + ethylbenzene mixture ‎49‎
‎4.3.4.‎ ‎FP of propyl butyrate + acetic acid + 1-butanol mixture ‎56‎
‎4.3.5.‎ FP of propyl butyrate + acetic acid + 2-pentanol mixture ‎63‎
‎4.4.‎ Discussion on the findings of the research ‎69‎
Chapter 5: The Maximum Required Water to Maintain a Binary‎ Aqueous-‎Organic ‎Mixture to be Flammable ‎73‎
‎5.1.‎ Aqueous-organic ignitable solutions ‎73‎
‎5.1.1.‎ Significance of the research ‎73‎
‎5.1.2.‎ Experimental investigation ‎76‎
‎5.2.‎ Mathematical modeling and simulation ‎77‎
‎5.2.1.‎ Activity coefficient models and FP prediction model ‎77‎
‎5.2.2.‎ Prediction of last ignitable point and its FP ‎78‎
‎5.2.3.‎ Acquisition of the parameters ‎83‎
‎5.3.‎ FP and nonflammable composition investigation ‎89‎
‎5.3.1.‎ FP of pure chemicals ‎89‎
‎5.3.2.‎ Aqueous mixtures of DMSO and 1,2-propanediol ‎89‎
‎5.3.3.‎ Aqueousorganic mixtures of 1-heptanol, 2-butoxyethanol, 1,2-ethanediol, and 1-‎octanol ‎94‎
‎5.3.4.‎ Aqueousorganic mixtures of ε-caprolactam, 1,4-butanediol, and NMP ‎98‎
‎5.3.5.‎ Verifying the proposed model's precision through aqueous solutions containing highly ‎volatile components ‎102‎
‎5.3.6.‎ Amount of water required to prevent ignition of a low-volatile combustible substance ‎104‎
Chapter 6: Flash Point and Safety Evaluation of Binary Mixture of Diphenyl Ether + ‎Biphenyl: A Commonly Utilized Heat Transfer Fluid ‎106‎
‎6.1.‎ Binary mixture of diphenyl ether + biphenyl ‎106‎
‎6.1.1.‎ Significance of the research ‎106‎
‎6.1.2.‎ Experimental investigation ‎107‎
‎6.2.‎ Mathematical modeling and simulation ‎108‎
‎6.3.‎ Flash point behavior of binary mixture of diphenyl ether + biphenyl ‎111‎
Chapter 7: Summary and Conclusions ‎116‎
References ‎119‎
Appendix I: The information of used chemicals ‎132‎
Appendix II: The parameters used in the FP apparatuses‎ ‎134‎
Appendix III: The Author’s publications at the NKUST ‎135‎


‎[1] A. Zarringhalam Moghaddam, A. Rafiei, T. Khalili, Assessing prediction models on ‎calculating the flash point of organic acid, ketone and alcohol mixtures, Fluid Phase ‎Equilibria, 316 (2012) 117-121.‎
‎[2] D.A. Crowl, J.F. Louvar, Chemical Process Safety: Fundamentals with Applications, ‎‎4th ed., Pearson Education, 2019.‎
‎[3] H.-J. Liaw, C.-A. Yang, Maximum flash point behavior of ternary mixtures with single ‎and two maximum flash point binary constituents, Process Safety and Environmental ‎Protection, 143 (2020) 293-303.‎
‎[4] A. Di Benedetto, R. Sanchirico, V. Di Sarli, Effect of pressure on the flash point of ‎various fuels and their binary mixtures, Process Safety and Environmental Protection, 116 ‎‎(2018) 615-620.‎
‎[5] S. Balasubramonian, R.K. Srivastav, S. Kumar, D. Sivakumar, M. Sampath, U.K. ‎Mudali, R. Natarajan, Flash point prediction for the binary mixture of phosphatic solvents ‎and n-dodecane from UNIFAC group contribution model, Journal of Loss Prevention in ‎the Process Industries, 33 (2015) 183-187.‎
‎[6] X. Huo, Q. Lu, X. Sun, X. Shen, Study on flash-point measurement and reduced ‎prediction model for ternary extraction system, Process Safety and Environmental ‎Protection, 138 (2020) 99-107.‎
‎[7] M. Bagheri, M. Bagheri, F. Heidari, A. Fazeli, Nonlinear molecular based modeling of ‎the flash point for application in inherently safer design, Journal of Loss Prevention in the ‎Process Industries, 25 (2012) 40-51.‎
‎[8] E. Torabian, M.A. Sobati, New models for predicting the flash point of mixtures ‎containing different alcohols, Process Safety and Environmental Protection, 111 (2017) ‎‎439-448.‎
‎[9] H.-J. Liaw, Y.-Y. Chiu, A general model for predicting the flash point of miscible ‎mixtures, Journal of hazardous materials, 137 (2006) 38-46.‎
‎[10] N. Zhang, S.L. Shen, A.N. Zhou, J. Chen, A brief report on the March 21, 2019 ‎explosions at a chemical factory in Xiangshui, China, Process Safety Progress, 38 (2019) ‎e12060.‎
‎[11] B.R. Kumar, S. Saravanan, Use of higher alcohol biofuels in diesel engines: A review, ‎Renewable Sustainable Energy Reviews, 60 (2016) 84-115.‎
‎[12] S.M.S. Ardebili, H. Solmaz, D. İpci, A. Calam, M. Mostafaei, A review on higher ‎alcohol of fusel oil as a renewable fuel for internal combustion engines: Applications, ‎challenges, and global potential, Fuel, 279 (2020) 118516.‎
‎[13] H.-J. Liaw, Deficiencies frequently encountered in the management of process safety ‎information, Process Safety and Environmental Protection, 132 (2019) 226-230.‎
‎[14] H.J. Liaw, The maximum flammable content for binary aqueous–organic mixtures not ‎to flash and their maximum flash points, AIChE Journal, 64 (2018) 263-271.‎
‎[15] H.-J. Liaw, T.-P. Tsai, Flash points of partially miscible aqueous–organic mixtures ‎predicted by UNIFAC group contribution methods, Fluid Phase Equilibria, 345 (2013) 45-‎‎59.‎
‎[16] Y. Wada, Explosion due to sparks of an electric grinder during repairing a wastewater ‎treatment vessel with neutralization. http://www.shippai.org/fkd/en/cfen/CC1200119.html, ‎Accessed on June 13, 2022., (2022).‎
‎[17] A.A. Merrouni, H.A.L. Ouali, M.A. Moussaoui, A. Mezrhab, Analysis and ‎comparaison of different Heat Transfer Fluids for a 1MWe Parabolic Trough Collector, in: ‎‎2016 International Conference on Electrical and Information Technologies (ICEIT), IEEE, ‎‎2016, pp. 510-515.‎
‎[18] K. Vignarooban, X. Xu, A. Arvay, K. Hsu, A.M. Kannan, Heat transfer fluids for ‎concentrating solar power systems–a review, Applied Energy, 146 (2015) 383-396.‎
‎[19] C.-J. Li, P. Li, K. Wang, E.E. Molina, Survey of properties of key single and mixture ‎halide salts for potential application as high temperature heat transfer fluids for ‎concentrated solar thermal power systems, AIMS Energy, 2 (2014) 133-157.‎
‎[20] A. Mwesigye, İ.H. Yılmaz, Thermal and thermodynamic benchmarking of liquid heat ‎transfer fluids in a high concentration ratio parabolic trough solar collector system, ‎Journal of Molecular Liquids, 319 (2020) 114151.‎
‎[21] K. Lakzian, H.-J. Liaw, Flash Point and Safety Evaluation of Binary Mixture of ‎Diphenyl Ether+ Biphenyl: A Commonly Utilized Heat Transfer Fluid, Thermochimica ‎Acta, (2024) 179673.‎
‎[22] K. Lakzian, H.-J. Liaw, Flash point investigation of ternary mixtures of 1-butanol/2-‎pentanol+ Acetic acid+ Ethylbenzene, Process Safety and Environmental Protection, ‎‎(2021).‎
‎[23] K. Lakzian, S. Hosseiniallahchal, H. Jalaei Salmani, A. Sanjarifard, Flash point ‎prediction of binary totally and partially miscible water-alcohol mixtures by cubic-plus-‎association (CPA) equation of state, Thermochimica Acta, 691 (2020) 178719.‎
‎[24] L.Y. Phoon, A.A. Mustaffa, H. Hashim, R. Mat, A review of flash point prediction ‎models for flammable liquid mixtures, Industrial Engineering Chemistry Research, 53 ‎‎(2014) 12553-12565.‎
‎[25] L. Catoire, V. Naudet, A unique equation to estimate flash points of selected pure ‎liquids application to the correction of probably erroneous flash point values, Journal of ‎Physical Chemical Reference Data, 33 (2004) 1083-1111.‎
‎[26] R.W. Garland, M.O. Malcolm, Evaluating vent manifold inerting requirements: Flash ‎point modeling for organic acid‐water mixtures, Process Safety Progress, 21 (2002) 254-‎‎260.‎
‎[27] M. Hristova, D. Damgaliev, J. Hristov, Practical data correlation of flashpoints of ‎binary mixtures by a reciprocal function: the concept and numerical examples, Thermal ‎Science, 15 (2011) 905-910.‎
‎[28] J. Mejia, N. Salgado, C. Orrego, Effect of blends of Diesel and Palm-Castor ‎biodiesels on viscosity, cloud point and flash point, Industrial Crops Products, 43 (2013) ‎‎791-797.‎
‎[29] S.Y. Kim, B. Lee, A prediction model for the flash point of binary liquid mixtures, ‎Journal of Loss Prevention in the Process Industries, 23 (2010) 166-169.‎
‎[30] G. Liu, L. Wang, H. Qu, H. Shen, X. Zhang, S. Zhang, Z. Mi, Artificial neural ‎network approaches on composition–property relationships of jet fuels based on GC–MS, ‎Fuel, 86 (2007) 2551-2559.‎
‎[31] J. Kumar, A. Bansal, Selection of best neural network for estimating properties of ‎diesel-biodiesel blends, In Proceedings of the 6th WSEAS International Conference on ‎Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, ‎‎(2007) 16-19.‎
‎[32] M. Agarwal, K. Singh, S. Chaurasia, Prediction of biodiesel properties from fatty acid ‎composition using linear regression and ANN techniques, Indian Chemical Engineer, 52 ‎‎(2010) 347-361.‎
‎[33] D.A. Saldana, L. Starck, P. Mougin, B. Rousseau, L. Pidol, N. Jeuland, B. Creton, ‎Flash point and cetane number predictions for fuel compounds using quantitative structure ‎property relationship (QSPR) methods, Energy Fuels, 25 (2011) 3900-3908.‎
‎[34] Z. Jiao, H.U. Escobar-Hernandez, T. Parker, Q. Wang, Review of recent ‎developments of quantitative structure-property relationship models on fire and ‎explosion-related properties, Process Safety and Environmental Protection, 129 (2019) ‎‎280-290.‎
‎[35] Z. Jiao, C. Ji, S. Yuan, Z. Zhang, Q. Wang, Development of machine learning based ‎prediction models for hazardous properties of chemical mixtures, Journal of Loss ‎Prevention in the Process Industries, 67 (2020) 104226.‎
‎[36] D.A. Saldana, L. Starck, P. Mougin, B. Rousseau, B. Creton, Prediction of flash ‎points for fuel mixtures using machine learning and a novel equation, Energy & fuels, 27 ‎‎(2013) 3811-3820.‎
‎[37] G. Fayet, P. Rotureau, New QSPR Models to predict the flammability of binary liquid ‎mixtures, Molecular informatics, 38 (2019) 1800122.‎
‎[38] T. Gaudin, P. Rotureau, G. Fayet, Mixture descriptors toward the development of ‎quantitative structure–property relationship models for the flash points of organic ‎mixtures, Industrial Engineering Chemistry Research, 54 (2015) 6596-6604.‎
‎[39] T. Gaudin, P. Rotureau, G. Fayet, Combining mixing rules with QSPR models for ‎pure chemicals to predict the flash points of binary organic liquid mixtures, Fire Safety ‎Journal, 74 (2015) 61-70.‎
‎[40] E. Torabian, M.A. Sobati, New structure-based models for the prediction of flash ‎point of multi-component organic mixtures, Thermochimica Acta, 672 (2019) 162-172.‎
‎[41] W. Cao, Y. Pan, Y. Liu, J. Jiang, A novel method for predicting the flash points of ‎binary mixtures from molecular structures, Safety Science, 126 (2020) 104680.‎
‎[42] H. Mirshahvalad, R. Ghasemiasl, N. Raoufi, M. Malekzadeh Dirin, A neural network ‎QSPR model for accurate prediction of flash point of pure hydrocarbons, Molecular ‎informatics, 38 (2019) 1800094.‎
‎[43] H.-J. Liaw, Minimum flash point behavior of ternary solutions with three minimum ‎flash point binary constituents, Fuel, 217 (2018) 626-632.‎
‎[44] H.-J. Liaw, C.-T. Chen, V. Gerbaud, Flash-point prediction for binary partially ‎miscible aqueous–organic mixtures, Chemical engineering science, 63 (2008) 4543-4554.‎
‎[45] H.-J. Liaw, Y.-Y. Chiu, The prediction of the flash point for binary aqueous-organic ‎solutions, Journal of hazardous materials, 101 (2003) 83-106.‎
‎[46] H.-J. Liaw, H.-Y. Chen, Study of two different types of minimum flash-point ‎behavior for ternary mixtures, Industrial Engineering Chemistry Research, 52 (2013) ‎‎7579-7585.‎
‎[47] J. Gmehling, P. Rasmussen, Flash points of flammable liquid mixtures using UNIFAC, ‎Industrial Engineering Chemistry Fundamentals, 21 (1982) 186-188.‎
‎[48] J. Gmehling, U. Onken, W. Arlt, Vapor-liquid Equilibrium Data Collection: Organic ‎Hydroxy Compounds: Alcohols, Dechema, 1986.‎
‎[49] D. White, C.L. Beyler, C. Fulper, J. Leonard, Flame spread on aviation fuels, Fire ‎Safety Journal, 28 (1997) 1-31.‎
‎[50] B. Hanley, A model for the calculation and the verification of closed cup flash points ‎for multicomponent mixtures, Process Safety Progress, 17 (1998) 86-97.‎
‎[51] S. Lee, D.-M. Ha, The lower flash points of binary systems containing non-flammable ‎component, Korean Journal of Chemical Engineering, 20 (2003) 799-802.‎
‎[52] H.-J. Liaw, Y.-H. Lee, C.-L. Tang, H.-H. Hsu, J.-H. Liu, A mathematical model for ‎predicting the flash point of binary solutions, Journal of Loss Prevention in the Process ‎Industries, 15 (2002) 429-438.‎
‎[53] H. Jalaei Salmani, M.N. Lotfollahi, S.H. Mazloumi, A model for predicting flash ‎point of alkane-alkane and water-alcohol mixtures by the Cubic-Plus-Association ‎Equation of State, Process Safety and Environmental Protection, 119 (2018) 191-197.‎
‎[54] A. Di Benedetto, R. Sanchirico, V. Di Sarli, Flash point of flammable binary mixtures: ‎synergistic behavior, Journal of Loss Prevention in the Process Industries, 52 (2018) 1-6.‎
‎[55] R. Sanchirico, V. Di Sarli, A. Di Benedetto, Volatile point of dust mixtures and ‎hybrid mixtures, Journal of Loss Prevention in the Process Industries, 56 (2018) 370-377.‎
‎[56] H.-J. Liaw, T.-P. Lee, J.-S. Tsai, W.-H. Hsiao, M.-H. Chen, T.-T. Hsu, Binary liquid ‎solutions exhibiting minimum flash-point behavior, Journal of loss Prevention in the ‎Process Industries, 16 (2003) 173-186.‎
‎[57] D.-M. Ha, S. Lee, M.-H. Back, Measurement and estimation of the lower flash points ‎for the flammable binary systems using a Tag open cup tester, Korean Journal of Chemical ‎Engineering, 24 (2007) 551-555.‎
‎[58] L. Catoire, S. Paulmier, V. Naudet, Experimental determination and estimation of ‎closed cup flash points of mixtures of flammable solvents, Process safety progress, 25 ‎‎(2006) 33-39.‎
‎[59] M. Noorollahy, A.Z. Moghadam, A.A. Ghasrodashti, Calculation of mixture ‎equilibrium binary interaction parameters using closed cup flash point measurements, ‎Chemical Engineering Research Design, 88 (2010) 81-86.‎
‎[60] S. da Cunha, H.-J. Liaw, V. Gerbaud, On the relation between azeotropic behavior ‎and minimum/maximum flash point occurrences in binary mixtures of flammable ‎compounds, Fluid Phase Equilibria, 452 (2017) 113-134.‎
‎[61] M. Vidal, W. Rogers, M. Mannan, Prediction of minimum flash point behaviour for ‎binary mixtures, Process Safety and Environmental Protection, 84 (2006) 1-9.‎
‎[62] H.-J. Liaw, S.-C. Lin, Binary mixtures exhibiting maximum flash-point behavior, ‎Journal of hazardous materials, 140 (2007) 155-164.‎
‎[63] H.-J. Liaw, C.-T. Chen, C.-C. Cheng, Y.-T. Yang, Elimination of minimum flash-‎point behavior by addition of a specified third component, Journal of Loss Prevention in ‎the Process Industries, 21 (2008) 82-100.‎
‎[64] H.-Y. Chen, H.-J. Liaw, Study of minimum flash-point behavior for ternary mixtures ‎of flammable solvents, Procedia Engineering, 45 (2012) 507-511.‎
‎[65] L. Serafimov, V. Raeva, V. Stepanov, Classification of scalar property isoline ‎diagrams of homogeneous ternary mixtures, Theoretical Foundations of Chemical ‎Engineering, 46 (2012) 221-232.‎
‎[66] V. Kiva, E. Hilmen, S. Skogestad, Azeotropic phase equilibrium diagrams: a survey, ‎Chemical engineering science, 58 (2003) 1903-1953.‎
‎[67] S. da Cunha, V. Gerbaud, N. Shcherbakova, H.-J. Liaw, Classification for ternary ‎flash point mixtures diagrams regarding miscible flammable compounds, Fluid Phase ‎Equilibria, 466 (2018) 110-123.‎
‎[68] K. Lakzian, H.-J. Liaw, Flash point study of ternary mixtures comprising binary ‎constituents that exhibit maximum flash point behavior and minimum flash point behavior, ‎Thermochimica Acta, (2022) 179246.‎
‎[69] H.-J. Liaw, W.-C. Hsu, K. Lakzian, Exploration of two types of maximum–minimum ‎flash point behavior of ternary mixtures, Journal of Loss Prevention in the Process ‎Industries, 80 (2022) 104915.‎
‎[70] J. Li, F. Bu, C. Ru, H. Jiang, Y. Duan, Y. Sun, X. Pu, L. Shang, X. Li, C. Zhao, ‎Enhancing the selectivity of Nafion membrane by incorporating a novel functional ‎skeleton molecule to improve the performance of direct methanol fuel cells, Journal of ‎Materials Chemistry A, 8 (2020) 196-206.‎
‎[71] M. Li, Z. Shu, L. Yi, B. Chen, Y. Zhao, S. Geng, Combustion behavior and oscillatory ‎regime of flame spread over ethanol aqueous solution with different proportions, Fuel, 253 ‎‎(2019) 220-228.‎
‎[72] X. Ren, J. Li, G. Pei, P. Li, L. Gong, Parametric and economic analysis of high-‎temperature cascade organic Rankine cycle with a biphenyl and diphenyl oxide mixture, ‎Energy Conversion Management, 276 (2023) 116556.‎
‎[73] R. Prinsloo, C.E. Deering, E. Fitzpatrick, R.A. Marriott, Densities for Sulfur in ‎Benzene and Densities with Solubilities for a Eutectic Mixture of Biphenyl plus Diphenyl ‎Ether: A General Solubility Equation for the Treatment of Aromatic Physical Sulfur ‎Solvents, Journal of Chemical Engineering Data, 67 (2022) 994-1006.‎
‎[74] M. Jang, B.S. Shin, Y.S. Jo, J.W. Kang, S.K. Kwak, C.W. Yoon, H. Jeong, A study on ‎hydrogen uptake and release of a eutectic mixture of biphenyl and diphenyl ether, Journal ‎of energy chemistry, 42 (2020) 11-16.‎
‎[75] T. van Der Stelt, E. Casati, N. Chan, P. Colonna, Technical equation of state models ‎for heat transfer fluids made of biphenyl and diphenyl ether and their mixtures, Fluid ‎Phase Equilibria, 393 (2015) 64-77.‎
‎[76] D. Cabaleiro, M. Pastoriza-Gallego, M. Piñeiro, J. Legido, L. Lugo, Thermophysical ‎properties of (diphenyl ether+ biphenyl) mixtures for their use as heat transfer fluids, The ‎Journal of Chemical Thermodynamics, 50 (2012) 80-88.‎
‎[77] D. Cabaleiro, C. Gracia-Fernández, L. Lugo, (Solid+ liquid) phase equilibria and heat ‎capacity of (diphenyl ether+ biphenyl) mixtures used as thermal energy storage materials, ‎The Journal of Chemical Thermodynamics, 74 (2014) 43-50.‎
‎[78] R. Blanco-Moreno, L.P. Sáez, V.M. Luque-Almagro, M.D. Roldán, C. Moreno-‎Vivián, Isolation of bacterial strains able to degrade biphenyl, diphenyl ether and the heat ‎transfer fluid used in thermo-solar plants, New biotechnology, 35 (2017) 35-41.‎
‎[79] ASTM, American Society for Testing and Materials ASTM D 56: Standard Test ‎Method for Flash Point by Tag Closed Tester. ASTM, West Conshohocken, PA, in, 2005.‎
‎[80] S.M. Santos, D.C. Nascimento, M.C. Costa, A.M. Neto, L.V. Fregolente, Flash point ‎prediction: Reviewing empirical models for hydrocarbons, petroleum fraction, biodiesel, ‎and blends, Fuel, 263 (2020) 116375.‎
‎[81] C.C. Lee, M.-V. Tran, B.T. Tan, G. Scribano, C.T. Chong, A comprehensive review ‎on the effects of additives on fundamental combustion characteristics and pollutant ‎formation of biodiesel and ethanol, Fuel, (2020) 119749.‎
‎[82] N. Wei, J. Quarterman, S.R. Kim, J.H. Cate, Y.-S. Jin, Enhanced biofuel production ‎through coupled acetic acid and xylose consumption by engineered yeast, Nature ‎communications, 4 (2013) 1-8.‎
‎[83] A. Smirnov, A. Sadaeva, K. Podryadova, M. Toikka, Quaternary liquid-liquid ‎equilibrium, solubility and critical states: Acetic acid–n-butanol–n-butyl acetate–water at ‎‎318.15 K and atmospheric pressure, Fluid Phase Equilibria, 493 (2019) 102-108.‎
‎[84] T.R. Brown, R.C. Brown, A review of cellulosic biofuel commercial‐scale projects in ‎the United States, Biofuels, Bioproducts and Biorefining, 7 (2013) 235-245.‎
‎[85] K. Inui, T. Kurabayashi, S. Sato, N. Ichikawa, Effective formation of ethyl acetate ‎from ethanol over Cu-Zn-Zr-Al-O catalyst, Journal of Molecular Catalysis A: Chemical, ‎‎216 (2004) 147-156.‎
‎[86] F.J. Hernández Fernández, A. Pérez de los Ríos, J. Quesada‐Medina, S. Sánchez‐‎Segado, Ionic liquids as extractor agents and reaction media in ester synthesis, ‎ChemBioEng Reviews, 2 (2015) 44-53.‎
‎[87] D. Rutz, R. Janssen, Biofuel technology handbook, WIP Renewable energies, 2007.‎
‎[88] A. Demirbas, Biofuels sources, biofuel policy, biofuel economy and global biofuel ‎projections, Energy conversion management, 49 (2008) 2106-2116.‎
‎[89] A. Devaraj, I. Vinoth Kanna, N. Tamil Selvam, A. Prabhu, Emission analysis of ‎cashew nut biodiesel-pentanol blends in a diesel engine, International Journal of Ambient ‎Energy, (2020) 1-5.‎
‎[90] S. Thiyagarajan, A. Sonthalia, V.E. Geo, T. Prakash, V. Karthickeyan, B. Ashok, K. ‎Nanthagopal, B. Dhinesh, Effect of manifold injection of methanol/n-pentanol in ‎safflower biodiesel fuelled CI engine, Fuel, 261 (2020) 116378.‎
‎[91] N. Yilmaz, F.M. Vigil, K. Benalil, S.M. Davis, A. Calva, Effect of biodiesel–butanol ‎fuel blends on emissions and performance characteristics of a diesel engine, Fuel, 135 ‎‎(2014) 46-50.‎
‎[92] Z. Zheng, X. Wang, X. Zhong, B. Hu, H. Liu, M. Yao, Experimental study on the ‎combustion and emissions fueling biodiesel/n-butanol, biodiesel/ethanol and biodiesel/2, ‎‎5-dimethylfuran on a diesel engine, Energy, 115 (2016) 539-549.‎
‎[93] G. Goga, B.S. Chauhan, S.K. Mahla, H.M. Cho, Performance and emission ‎characteristics of diesel engine fueled with rice bran biodiesel and n-butanol, Energy ‎Reports, 5 (2019) 78-83.‎
‎[94] L. Wei, C. Cheung, Z. Ning, Effects of biodiesel-ethanol and biodiesel-butanol blends ‎on the combustion, performance and emissions of a diesel engine, Energy, 155 (2018) 957-‎‎970.‎
‎[95] N. Yilmaz, T.M. Sanchez, Analysis of operating a diesel engine on biodiesel-ethanol ‎and biodiesel-methanol blends, Energy, 46 (2012) 126-129.‎
‎[96] J. Huang, H. Xiao, X. Yang, F. Guo, X. Hu, Effects of methanol blending on ‎combustion characteristics and various emissions of a diesel engine fueled with soybean ‎biodiesel, Fuel, 282 (2020) 118734.‎
‎[97] H.-J. Liaw, C.-L. Tang, J.-S. Lai, A model for predicting the flash point of ternary ‎flammable solutions of liquid, Combustion and Flame, 138 (2004) 308-319.‎
‎[98] J. Gmehling, U. Onken, U. Weidlich, Vapor-Liquid Equilibrium Data Collection, Vol. ‎‎1. Part 2d. DECHEMA, Frankfurt, Germany., 1982.‎
‎[99] M. Baker, Available at: ‎http://www.mallbaker.com/Americas/catalog/default.asp?searchfor=msds (accessed 2008). ‎in, 2008.‎
‎[100] Univar, http://www.univarusa.com/assistmsds.html (accessed 2008). (2008).‎
‎[101] I.S. Oh, S.J. In, The Measurement and Prediction of Flash Point for Binary Mixtures ‎of Methanol, Ethanol, 2-Propanol and 1-Butanol at 101.3 kPa, Fire Science Engineering, ‎‎29 (2015) 1-6.‎
‎[102] Fisher_Scientific, Available at: ‎https://www.fishersci.com/store/msds?partNumber=A3984&productDescription=butanol-‎technical-fisher-‎chemical&vendorId=VN00033897&keyword=true&countryCode=US&language=en. ‎Accessed on May 7, 2021., (2021a).‎
‎[103] Merck, Available at: ‎https://www.merckmillipore.com/TW/zh/product/msds/MDA_CHEM-‎‎101990?Origin=PDP. Accessed on May 7, 2021., in, 2021a.‎
‎[104] Merck, Available at: ‎https://www.merckmillipore.com/TW/zh/product/msds/MDA_CHEM-‎‎807501?Origin=SERP. Accessed on May 7, 2021., in, 2021b.‎
‎[105] Fisher_Scientific, Available at: ‎https://www.fishersci.com/store/msds?partNumber=AC129980010&productDescription=dlpentanol--acros-‎organicstrade&vendorId=VN00032119&keyword=true&countryCode=US&language=en. ‎Accessed on May 7, 2021., (2021b).‎
‎[106] K. Satyanarayana, M. Kakati, Note: Correlation of flash points, Fire Materials, 15 ‎‎(1991) 97-100.‎
‎[107] D.-M. Ha, S. Lee, The Measurement and Prediction of Maximum Flash Point ‎Behavior for Binary Solution, Fire Science Engineering, 27 (2013) 70-74.‎
‎[108] A. Haghtalab, J.Y. Seyf, Y. Mansouri, Flash point prediction of the binary and ‎ternary systems using the different local composition activity coefficient models, Fluid ‎Phase Equilibria, 415 (2016) 58-63.‎
‎[109] Merck, Availabe at: ‎https://www.merckmillipore.com/TW/zh/product/msds/MDA_CHEM-‎‎100066?Origin=PDP. Accessed on May 7, 2021., (2021c).‎
‎[110] Fisher_Scientific, Available at: ‎https://www.fishersci.com/store/msds?partNumber=A465500&productDescription=acetic-‎acid-glacial-optimatrade-fisher-‎chemicaltrade&vendorId=VN00033897&keyword=true&countryCode=US&language=en. ‎Accessed on May 7, 2021., (2021c).‎
‎[111] J. Gmehling, U. Onken, P. Grenzheuser, Vapor-Liquid Equilibrium Data Collection, ‎Vol. 1. Part 5. DECHEMA, Frankfurt, Germany., 1982.‎
‎[112] I.C. Hwang, S.J. In, The Measurement of Flash Point for Binary Mixtures of 2, 2, 4-‎Trimethylpentane, Methylcyclohexane, Ethylbenzene and p-xylene at 101.3 kPa, Clean ‎Technology, 26 (2020) 279-285.‎
‎[113] Fisher_Scientific, Available at: ‎https://www.fishersci.com/store/msds?partNumber=AC118080025&productDescription=ethylbenzene--pure-acros-‎organicstrade&vendorId=VN00032119&keyword=true&countryCode=US&language=en. ‎Accessed on May 7, 2021., (2021d).‎
‎[114] D.J. Luning Prak, G.R. Simms, M. Hamilton, J.S. Cowart, Impact of low flash point ‎compounds (hydrocarbons containing eight carbon atoms) on the flash point of jet fuel and ‎n-dodecane, Fuel, 286 (2021) 119389.‎
‎[115] C.L. Yaws, The Yaws handbook of vapor pressure: Antoine coefficients, Gulf ‎Professional Publishing, 2015.‎
‎[116] TCI, Available at: https://www.tcichemicals.com/OP/en/p/B0764. Accessed on ‎September 03, 2021., (2021).‎
‎[117] Sigma-Aldrich, Available at: ‎https://www.sigmaaldrich.com/TW/en/product/aldrich/291838#. Accessed on September ‎‎03, 2021., (2021).‎
‎[118] S.A. Al-Muhtaseb, M.A. Fahim, Phase equilibria of the ternary system water/acetic ‎acid/2-pentanol, Fluid phase equilibria, 123 (1996) 189-203.‎
‎[119] J. Gmehling, P. Rasmussen, A. Fredenslund, Vapor-liquid equilibriums by UNIFAC ‎group contribution. Revision and extension. 2, Industrial Engineering Chemistry Process ‎Design Development, 21 (1982) 118-127.‎
‎[120] J. Gmehling, J. Li, M. Schiller, A modified UNIFAC model. 2. Present parameter ‎matrix and results for different thermodynamic properties, Industrial Engineering ‎Chemistry Research, 32 (1993) 178-193.‎
‎[121] NFPA, Public Comment No. 2-NFPA 497-2019 [Section No. C.2.1]. (2019).‎
‎[122] NFPA, National Fire Protection Association Flammable and Combustible Liquids ‎Code, vol. 30, NFPA, Quincy, Massachusetts, USA., in, 2021.‎
‎[123] DOT, Department of Transportation. Shippers – General Requirements for ‎Shipments and Packagings, Class3 – Assignment of Packing Group, 49CFR173.121. ‎National Archives and Records administration, USA., (2015).‎
‎[124] G. Joshi, J.K. Pandey, S. Rana, D.S. Rawat, Challenges and opportunities for the ‎application of biofuel, Renewable Sustainable Energy Reviews, 79 (2017) 850-866.‎
‎[125] V.K. Gupta, M.G. Tuohy, Biofuel technologies, Recent Developments. Editorial ‎Springer, 2013.‎
‎[126] V. Babu, M. Murthy, Butanol and pentanol: The promising biofuels for CI engines–‎A review, Renewable Sustainable Energy Reviews, 78 (2017) 1068-1088.‎
‎[127] Y. Devarajan, B.K. Nagappan, D.B. Munuswamy, Performance and emissions ‎analysis on diesel engine fuelled with cashew nut shell biodiesel and pentanol blends, ‎Korean Journal of Chemical Engineering, 34 (2017) 1021-1026.‎
‎[128] F. Goembira, K. Matsuura, S. Saka, Biodiesel production from rapeseed oil by ‎various supercritical carboxylate esters, Fuel, 97 (2012) 373-378.‎
‎[129] H.-J. Liaw, K. Lakzian, Y.-H. Wang, M.-C. Chen, Model for estimating the ‎maximum water content that would maintain the flammability of an aqueous− organic ‎mixture, Journal of Loss Prevention in the Process Industries, (2024) 105253.‎
‎[130] P. Yang, T.T. Myint, Integrating entrapped mixed microbial cell (EMMC) ‎technology for treatment of wastewater containing dimethyl sulfoxide (DMSO) for reuse ‎in semiconductor industries, Clean technologies environmental policy, 6 (2003) 43-50.‎
‎[131] S.-C.J. Hwang, J.-Y. Wu, Y.-H. Lin, I.-C. Wen, K.-Y. Hou, S.-Y. He, Optimal ‎dimethyl sulfoxide biodegradation using activated sludge from a chemical plant, Process ‎Biochemistry, 42 (2007) 1398-1405.‎
‎[132] T. MI, MI (Taiwan), Establishment Standard and ‎Safety Control Regulation for ‎Manufacturing, ‎Storing, Processing Public Hazardous ‎Substances and Flammable ‎Pressurized Gases Place, ‎Ministry of the Interior, Taiwan, ‎‎2019.‎ ‎https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=D0120025. Accessed on ‎February 03, 2023., (2019).‎
‎[133] C.-C. Wang, C.-M. Lee, Isolation of the ɛ-caprolactam denitrifying bacteria from a ‎wastewater treatment system manufactured with acrylonitrile–butadiene–styrene resin, ‎Journal of hazardous materials, 145 (2007) 136-141.‎
‎[134] M. Munoz, G. Pliego, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez, Application of ‎intensified Fenton oxidation to the treatment of sawmill wastewater, Chemosphere, 109 ‎‎(2014) 34-41.‎
‎[135] J. Zhang, F. Han, P. Zhang, G. Chen, X. Wei, Gas−Liquid Equilibrium Data for the ‎Mixture Gas of Sulfur Dioxide+ Nitrogen with Poly (ethylene glycol) Aqueous Solutions ‎at 298.15 K and 122.61 kPa, Journal of Chemical Engineering Data, 55 (2010) 959-961.‎
‎[136] J. Zhang, J. Xiao, Y. Liu, X. Wei, Solubility of carbonyl sulfide in aqueous ‎solutions of ethylene glycol at temperatures from (308.15 K to 323.15) K, Journal of ‎Chemical Engineering Data, 55 (2010) 5350-5353.‎
‎[137] D.R. Vardon, A.E. Settle, V. Vorotnikov, M.J. Menart, T.R. Eaton, K.A. Unocic, ‎K.X. Steirer, K.N. Wood, N.S. Cleveland, K.E. Moyer, Ru-Sn/AC for the aqueous-phase ‎reduction of succinic acid to 1, 4-butanediol under continuous process conditions, ACS ‎Catalysis, 7 (2017) 6207-6219.‎
‎[138] A. Ghanadzadeh, H. Ghanadzadeh, K. Bahrpaima, Experimental and theoretical ‎study of the phase equilibria in ternary aqueous mixtures of 1, 4-butanediol with alcohols ‎at 298.2 K, Journal of Chemical Engineering Data, 54 (2009) 1009-1014.‎
‎[139] F. Cheng, J. Sun, Z. Wang, X. Zhao, Y. Hu, Organosolv fractionation and ‎simultaneous conversion of lignocellulosic biomass in aqueous 1, 4-butanediol/acidic ‎ionic-liquids solution, Industrial Crops Products, 138 (2019) 111573.‎
‎[140] T. Kishimoto, Y. Sano, Delignification mechanism during high-boiling solvent ‎pulping. Part 1. Reaction of guaiacylglycerol-β-guaiacyl ether, de Gruyter, (2001).‎
‎[141] H.-J. Liaw, W.-H. Lu, V. Gerbaud, C.-C. Chen, Flash-point prediction for binary ‎partially miscible mixtures of flammable solvents, Journal of hazardous materials, 153 ‎‎(2008) 1165-1175.‎
‎[142] H.-J. Liaw, The condition for aqueous–organic mixtures not to flash, Procedia ‎Engineering, 84 (2014) 280-284.‎
‎[143] H.-J. Liaw, V. Gerbaud, Y.-H. Li, Prediction of miscible mixtures flash-point from ‎UNIFAC group contribution methods, Fluid Phase Equilibria, 300 (2011) 70-82.‎
‎[144] H.-J. Liaw, C.-C. Chen, C.-H. Chang, N.-K. Lin, C.-M. Shu, Model to estimate the ‎flammability limits of fuel–air–diluent mixtures tested in a constant pressure vessel, ‎Industrial engineering chemistry research, 51 (2012) 2747-2761.‎
‎[145] H.-J. Liaw, Z.-H. Li, Mathematical model for describing the influence of initial ‎pressure on the flammability limits of light hydrocarbons at subatmospheric pressures, ‎Journal of Loss Prevention in the Process Industries, 77 (2022) 104776.‎
‎[146] H.-J. Liaw, C.-C. Chen, N.-K. Lin, C.-M. Shu, S.-Y. Shen, Flammability limits ‎estimation for fuel–air–diluent mixtures tested in a constant volume vessel, Process Safety ‎and Environmental Protection, 100 (2016) 150-162.‎
‎[147] W. Wilding, T. Knotts, N. Giles, R. Rowley, DIPPR data compilation of pure ‎chemical properties, Design Institute for Physical Properties. New York, NY: American ‎Institute of Chemical Engineers., 2020.‎
‎[148] NIST, NIST Chemistry WebBook. National Institute of Standards and Technology. ‎Available at: https://webbook.nist.gov/chemistry/. Accessed on Novemeber 23, 2022., ‎‎(2022).‎
‎[149] B.E. Poling, J.M. Prausnitz, J.P. O’connell, The Properties of gases and liquids, ‎McGraw-Hill Education, 2001.‎
‎[150] V. Tumova, M. Prenosil, J. Pinkava, Vapor-liquid equilibrium in the 6-caprolactam ‎‎+ water system of normal and reduced pressures, Chemicky prumysl, 8, 585-7 (1958).‎
‎[151] A.M. Kiryukhin, T.M. Lesteva, N.P. Markuzin, L.S. Budantseva, Phase equilibrium ‎in hydrocarbon-alcohol-water systems. II. Liquid-vapor equilibrium in C8-alcohol-C5-7-‎hydrocarbon systems, Prom-st Sint. Kauch, 4 (1982).‎
‎[152] J. Gmehling, U. Onken, W. Arlt, Vapor-Liquid Equilibrium Data Collection, Vol. 1, ‎‎1a. DECHEMA, Frankfurt, Germany., (1981).‎
‎[153] Y. Peng, L. Ping, S. Lu, J. Mao, Vapor–liquid equilibria for water+ acetic acid+(N, ‎N-dimethylformamide or dimethyl sulfoxide) at 13.33 kPa, Fluid Phase Equilibria, 275 ‎‎(2009) 27-32.‎
‎[154] O. Chiavone-Filho, P. Proust, P. Rasmussen, Vapor-liquid equilibria for glycol ‎ether+ water systems, Journal of Chemical Engineering Data, 38 (1993) 128-131.‎
‎[155] J. Schmelzer, J. Pusch, Phase equilibria in binary systems containing N-‎monosubstituted amides and hydrocarbons, Fluid phase equilibria, 110 (1995) 183-196.‎
‎[156] J. Gmehling, U. Onken, U. Weidlich, Vapor-Liquid Equilibrium Data Collection, ‎Vol. 1. Part 2b. DECHEMA, Frankfurt, Germany., (1982).‎
‎[157] Fisher_Scientific, Available at: ‎https://www.fishersci.com/store/msds?partNumber=D1391&productDescription=DIMETHYL+SULFOXIDE+GC+HS+1L&vendorId=VN00033897&countryCode=US&language=‎en. Accessed on June 22, 2022., (2022c).‎
‎[158] Sigma-Aldrich, Available at: https://www.sigmaaldrich.com/TW/en/sds/sial/398039. ‎Accessed on June 22, 2022., (2022c).‎
‎[159] Sigma-Aldrich, Available at: https://www.sigmaaldrich.com/TW/en/sds/sial/398039. ‎Accessed on June 22, 2022., (2022d).‎
‎[160] K. Hall, F. M, D. J, Vapor Pressure and Antoine Constants for Oxygen Containing ‎Organic Compounds, Springer, 2000.‎
‎[161] Merck, Availabe at: ‎https://www.merckmillipore.com/TW/zh/product/msds/MDA_CHEM-‎‎820624?Origin=PDP. Accessed on November 23, 2022., (2022a).‎
‎[162] M.K. Yesilyurt, A detailed investigation on the performance, combustion, and ‎exhaust emission characteristics of a diesel engine running on the blend of diesel fuel, ‎biodiesel and 1-heptanol (C7 alcohol) as a next-generation higher alcohol, Fuel, 275 (2020) ‎‎117893.‎
‎[163] Fisher_Scientific, Available at: ‎https://www.fishersci.com/store/msds?partNumber=E1794&productDescription=2-‎BUTOXYETHANOL+4L&vendorId=VN00033897&countryCode=US&language=en. ‎Accessed on June 22, 2022., (2022d).‎
‎[164] Sigma-Aldrich, Available at: https://www.sigmaaldrich.com/TW/en/sds/mm/bx1715. ‎Accessed on June 22, 2022., (2022e).‎
‎[165] H. Yue, Y. Zhao, X. Ma, J. Gong, Ethylene glycol: properties, synthesis, and ‎applications, Chemical Society Reviews, 41 (2012) 4218-4244.‎
‎[166] Huber, Available at: https://www.huber-‎online.com/download/techsheets/Huber_Frostschutzmittel_safetysheet_EN.pdf. Accessed ‎on June 22, 2022., (2022).‎
‎[167] Merck, Available at: ‎https://www.merckmillipore.com/TW/zh/product/msds/MDA_CHEM-‎‎820931?Origin=PDP, (2022b).‎
‎[168] Q. Jia, Q. Wang, P. Ma, S. Xia, F. Yan, H. Tang, Prediction of the flash point ‎temperature of organic compounds with the positional distributive contribution method, ‎Journal of Chemical & Engineering Data, 57 (2012) 3357-3367.‎
‎[169] J.D. de Oliveira Henriques, F.H.B. Sosa, R.M. Dias, P.F.M. Martinez, M.C. da Costa, ‎Flash point and excess molar volumes of binary mixtures containing d-limonene and ‎alcohol compounds from propanol to dodecanol, The Journal of Chemical ‎Thermodynamics, 150 (2020) 106224.‎
‎[170] Sigma-Aldrich, Available at: ‎https://www.sigmaaldrich.com/TW/en/sds/aldrich/c2204. Accessed on June 22, 2022., ‎‎(2022a).‎
‎[171] Fisher_Scientific, Available at: ‎https://www.fishersci.com/store/msds?partNumber=AAL0699922&productDescription=EPSILON-‎CAPROLACTAM+99%25+100G&vendorId=VN00024248&countryCode=US&language=‎en. Accessed on June 22, 2022., (2022a).‎
‎[172] Sigma-Aldrich, Available at: https://www.sigmaaldrich.com/TW/en/sds/sial/493732. ‎Accessed on June 22, 2022., (2022b).‎
‎[173] Carl_Roth, Available at: https://www.carlroth.com/medias/SDB-4306-GB-‎EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyNjkxNjN8YXBwbGljYXRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oMjgvaDhhLzg5NTA3MzAyNjA1MTAucGRmfDI2ZGVlZmFjYTU1ZmYxZDNlZjBhZDI5YWYzMTc2MjExMGZjODFj‎Y2QwNzk5OTc2NTQzN2IyMGYyYTY2MjYzOTI. Accessed on June 22, 2022., (2022b).‎
‎[174] Sigma-Aldrich, Available at: ‎https://www.sigmaaldrich.com/TW/en/sds/sigald/443778. Accessed on June 22, 2022., ‎‎(2022f).‎
‎[175] Y. Tian, C.-Y. Zhao, A review of solar collectors and thermal energy storage in solar ‎thermal applications, Applied energy, 104 (2013) 538-553.‎
‎[176] L. Criado-García, R. Garrido-Delgado, L. Arce, F. López, R. Peón, M. Valcárcel, ‎Potential of ion mobility spectrometry versus FT-MIR and GC-MS to study the evolution ‎of a heat transfer fluid after its heating process in a thermosolar plant, Microchemical ‎Journal, 121 (2015) 163-171.‎
‎[177] H.-J. Liaw, V. Gerbaud, C.-Y. Chiu, Flash point for ternary partially miscible ‎mixtures of flammable solvents, Journal of Chemical Engineering Data, 55 (2010) 134-‎‎146.‎
‎[178] X. Liu, Z. Liu, Research progress on flash point prediction, Journal of Chemical ‎Engineering Data, 55 (2010) 2943-2950.‎
‎[179] Fisher_Scientific, Available at: https://www.fishersci.com/shop/products/diphenyl-‎ether-99-thermo-scientific/AAA1579130. Accessed on October 2023., (2023).‎
‎[180] S. Srihari, B. Chaitanya, S. Thirumalini, Experimental study on influence of ‎diphenyl ether and diethyl amine on exhaust emissions of diesel engine, Materials Today: ‎Proceedings, 46 (2021) 4835-4839.‎
‎[181] Thermo_Fisher, Available at: ‎https://www.thermofisher.com/order/catalog/product/A15791.0E. Accessed on October ‎‎2023., (2023a).‎
‎[182] Sigma-Aldrich, Available at: ‎https://www.sigmaaldrich.com/TW/en/sds/ALDRICH/W312908. Accessed on October ‎‎2023., (2023).‎
‎[183] Carl_Roth, Available at: https://www.carlroth.com/com/en/aromatic-building-‎blocks/biphenyl/p/3216.2. Accessed on October 2023., (2023).‎
‎[184] Thermo_Fisher, Available at: ‎https://www.thermofisher.com/order/catalog/product/A10265.0B. Accessed on October ‎‎2023., (2023b).‎
‎[185] D.W. Boyd, Systems analysis and modeling: a macro-to-micro approach with ‎multidisciplinary applications. CHAPTER 8 - Stochastic Analysis., Elsevier, 2000.‎
‎[186] M.M. Papari, M. Kiani, J. Moghadasi, Performance assessment of Tao–Mason ‎equation of state: Results for vapor–liquid equilibrium properties, Journal of Industrial ‎Engineering Chemistry, 17 (2011) 667-674.‎
‎[187] Chempoint, Available at: https://www.chempoint.com/en-‎emea/products/dow/dowtherm-synthetic-thermal-fluids/dowtherm-synthetic-thermal-‎fluids/dowtherm-a. Accessed on December 2023., (2023).‎
‎[188] Dalian_richfortune_chemicals, Available at: ‎http://www.richfortunechem.com/index.php?action=news&id=487. Accessed on ‎December 2023., (2023).‎
‎[189] ASTM, Standard test methods for flash-point by ASTM D 93 Pensky-Martens ‎closed cup tester, American Society for Testing and Materials, West Conshohocken, PA, ‎in, 2008.‎


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top