|
[1] M. Sharifzadeh, H. Lubiano-Walochik, N. Shah, Integrated renewable electricity generation considering uncertainties: The UK roadmap to 50% power generation from wind and solar energies, Renewable and Sustainable Energy Reviews, 72 (2017) 385-398. [2] Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R.B. Kaner, Design and mechanisms of asymmetric supercapacitors, Chemical Reviews, 118 (2018) 9233-9280. [3] J. Libich, J. Máca, J. Vondrák, O. Čech, M. Sedlaříková, Supercapacitors: Properties and applications, Journal of Energy Storage, 17 (2018) 224-227. [4] A. Shukla, A. Banerjee, M. Ravikumar, A. Jalajakshi, Electrochemical capacitors: Technical challenges and prognosis for future markets, Electrochimica Acta, 84 (2012) 165-173. [5] B.E. Conway, Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage, Journal of The Electrochemical Society., 138 (1991) 1539. [6] K. Mensah-Darkwa, C. Zequine, P.K. Kahol, R.K. Gupta, Supercapacitor energy storage device using biowastes: A sustainable approach to green energy, Sustainability, 11 (2019) 414. [7] W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chemical Society Reviews, 40 (2011) 1697-1721. [8] H. Jiang, C. Zhou, X. Yan, J. Miao, M. You, Y. Zhu, Y. Li, W. Zhou, X. Cheng, Effects of various electrolytes on the electrochemistry performance of Mn3O4/carbon cloth to ultra-flexible all-solid-state asymmetric supercapacitor, Journal of Energy Storage, 32 (2020) 101898. [9] S.C. Sekhar, G. Nagaraju, J.S. Yu, Ant-cave structured MnCO3/Mn3O4 microcubes by biopolymer-assisted facile synthesis for high-performance pseudocapacitors, Applied Surface Science, 435 (2018) 398-405. [10] M.A. Desai, A.S. Vedpathak, A.R. Bhapkar, G.D. Saratale, S.D. Sartale, An investigation of chemical and electrochemical conversion of SILAR grown Mn3O4 into MnO2 thin films, Journal of Environmental Management, 299 (2021) 113564. [11] A. Gigot, M. Fontana, M. Serrapede, M. Castellino, S. Bianco, M. Armandi, B. Bonelli, C.F. Pirri, E. Tresso, P. Rivolo, Mixed 1T–2H phase MoS2/reduced graphene oxide as active electrode for enhanced supercapacitive performance, ACS Applied Materials & Interfaces, 8 (2016) 32842-32852. [12] Y. Teng, E. Liu, R. Ding, K. Liu, R. Liu, L. Wang, Z. Yang, H. Jiang, Bean dregs-based activated carbon/copper ion supercapacitors, Electrochimica Acta, 194 (2016) 394-404. [13] E. Raymundo‐Piñero, F. Leroux, F. Béguin, A high‐performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer, Advanced Materials, 18 (2006) 1877-1882. [14] E.Y.L. Teo, L. Muniandy, E.-P. Ng, F. Adam, A.R. Mohamed, R. Jose, K.F. Chong, High surface area activated carbon from rice husk as a high performance supercapacitor electrode, Electrochimica Acta, 192 (2016) 110-119. [15] Z. Lin, X. Xiang, S. Peng, X. Jiang, L. Hou, Facile synthesis of chitosan-based carbon with rich porous structure for supercapacitor with enhanced electrochemical performance, Journal of Electroanalytical Chemistry, 823 (2018) 563-572. [16] H. Jia, J. Sun, J. Zhu, F. Zhang, S. Li, Y. Zhang, F. Hu, X. Xie, Heteroatoms co-doped carbon from biowaste for capacitive energy storage: Dependence of physicochemical properties and electrochemical performances on precursor grain sizes, Journal of Energy Storage, 60 (2023) 106594. [17] Y. Zheng, K. Chen, K. Jiang, F. Zhang, G. Zhu, H. Xu, Progress of synthetic strategies and properties of heteroatoms-doped (N, P, S, O) carbon materials for supercapacitors, Journal of Energy Storage, 56 (2022) 105995. [18] Y. K. Sun, S. W. Cho, S. T. Myung, K. Amine, J. Prakash, Effect of AlF3 coating amount on high voltage cycling performance of LiCoO2, Electrochimica Acta, 53 (2007) 1013-1019. [19] M. Hashemi, M.S. Rahmanifar, M.F. El-Kady, A. Noori, M.F. Mousavi, R.B. Kaner, The use of an electrocatalytic redox electrolyte for pushing the energy density boundary of a flexible polyaniline electrode to a new limit, Nano Energy, 44 (2018) 489-498. [20] M. Chen, Y. Zhang, Y. Liu, Q. Wang, J. Zheng, C. Meng, Three-dimensional network of vanadium oxyhydroxide nanowires hybridize with carbonaceous materials with enhanced electrochemical performance for supercapacitor, ACS Applied Energy Materials, 1 (2018) 5527-5538. [21] Y.-H. Wang, X.-C. Li, Z. Yu, J.-F. Zheng, X.-S. Zhou, Break junction measurements at electrochemical interface: From electron transport to molecular adsorption and reaction process, Current Opinion in Electrochemistry, (2023) 101279. [22] C. Schotten, T.P. Nicholls, R.A. Bourne, N. Kapur, B.N. Nguyen, C.E. Willans, Making electrochemistry easily accessible to the synthetic chemist, Green Chemistry, 22 (2020) 3358-3375. [23] N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A practical beginner’s guide to cyclic voltammetry, Journal of Chemical Education, 95 (2018) 197-206. [24] S. Usui, Interaction between dissimilar double layers with like signs under charge regulation on the basis of the Gouy–Chapman–Stern–Grahame model, Journal of Colloid and Interface Science, 280 (2004) 113-119. [25] D.Y. Chan, T.W. Healy, T. Supasiti, S. Usui, Electrical double layer interactions between dissimilar oxide surfaces with charge regulation and Stern–Grahame layers, Journal of Colloid and Interface Science, 296 (2006) 150-158. [26] P. Sharma, T. Bhatti, A review on electrochemical double-layer capacitors, Energy Conversion and Management, 51 (2010) 2901-2912. [27] J. Kang, J. Wen, S.H. Jayaram, A. Yu, X. Wang, Development of an equivalent circuit model for electrochemical double layer capacitors (EDLCs) with distinct electrolytes, Electrochimica Acta, 115 (2014) 587-598. [28] P. Tiwari, D. Janas, Emergent pseudocapacitive behavior of single-walled carbon nanotube hybrids: A materials perspective, Materials Chemistry Frontiers, 6 (2022) 2386-2412. [29] K. Naoi, Nanohybrid capacitor: The next generation electrochemical capacitors, Fuel Cells, 10 (2010) 825-833. [30] F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, Y. Wu, Electrode materials for aqueous asymmetric supercapacitors, Rsc Advances, 3 (2013) 13059-13084. [31] E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39 (2001) 937-950. [32] Z. Wang, Y. Yang, D.L. Olmsted, M. Asta, B.B. Laird, Evaluation of the constant potential method in simulating electric double-layer capacitors, The Journal of chemical physics, 141 (2014)184102. [33] N. Liu, R. Chen, Q. Wan, Recent advances in electric-double-layer transistors for bio-chemical sensing applications, Sensors, 19 (2019) 3425. [34] K. Takeuchi, M. Fujishige, N. Ishida, Y. Kunieda, Y. Kato, Y. Tanaka, T. Ochi, H. Shirotori, Y. Uzuhashi, S. Ito, High porous bio-nanocarbons prepared by carbonization and NaOH activation of polysaccharides for electrode material of EDLC, Journal of Physics and Chemistry of Solids, 118 (2018) 137-143. [35] N. Sanjaya, K. Vidanapathirana, K. Perera, A natural rubber based electrolyte to be used in EDLCs with Sri Lankan graphite, Materials Today: Proceedings, 23 (2020) 30-33. [36] B. Conway, W. Pell, Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices, Journal of Solid State Electrochemistry, 7 (2003) 637-644. [37] S. Feng, R. Xu, New materials in hydrothermal synthesis, Accounts of Chemical Research, 34 (2001) 239-247. [38] Y. Liu, S.P. Jiang, Z. Shao, Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development, Materials Today Advances, 7 (2020) 100072. [39] P. Bhojane, Recent advances and fundamentals of Pseudocapacitors: Materials, mechanism, and its understanding, Journal of Energy Storage, 45 (2022) 103654. [40] F. Yao, D.T. Pham, Y.H. Lee, Carbon‐based materials for lithium‐ion batteries, electrochemical capacitors, and their hybrid devices, ChemSusChem, 8 (2015) 2284-2311. [41] Y. Zhang, L. Li, S. Shi, Q. Xiong, X. Zhao, X. Wang, C. Gu, J. Tu, Synthesis of porous Co3O4 nanoflake array and its temperature behavior as pseudo-capacitor electrode, Journal of Power Sources, 256 (2014) 200-205. [42] S. Ullah, I.A. Khan, M. Choucair, A. Badshah, I. Khan, M.A. Nadeem, A novel Cr2O3-carbon composite as a high performance pseudo-capacitor electrode material, Electrochimica Acta, 171 (2015) 142-149. [43] K.S. Bhat, S. Shenoy, H. Nagaraja, K. Sridharan, Porous cobalt chalcogenide nanostructures as high performance pseudo-capacitor electrodes, Electrochimica Acta, 248 (2017) 188-196. [44] Z. Jiao, Y. Chen, M. Du, M. Demir, F. Yan, Y. Zhang, C. Wang, M. Gu, X. Zhang, J. Zou, In-situ formation of morphology-controlled cobalt vanadate on CoO urchin-like microspheres as asymmetric supercapacitor electrode, Journal of Alloys and Compounds, 958 (2023) 170489. [45] E. Erçarıkcı, E. Topçu, K.D. Kıranşan, Three-dimensional FeNiP decorated graphene sponge: A novel flexible electrode for high-performance asymmetric supercapacitor, Materials Research Bulletin, 165 (2023) 112333. [46] B. Üstün, H. Aydın, S.N. Koç, Ü. Kurtan, Amorphous ZnO@ S-doped carbon composite nanofiber for use in asymmetric supercapacitors, Diamond and Related Materials, 136 (2023) 110048. [47] J. Zhu, Q. Wu, J. Li, Review and prospect of Mn3O4‐based composite materials for supercapacitor electrodes, Chemistry Select, 5 (2020) 10407-10423. [48] P.R. Garces Goncalves Jr, H.A. De Abreu, H.l.A. Duarte, Stability, structural, and electronic properties of hausmannite (Mn3O4) surfaces and their interaction with water, The Journal of Physical Chemistry C, 122 (2018) 20841-20849. [49] S. Jamil, S.R. Khan, B. Sultana, M. Hashmi, M. Haroon, M.R.S.A. Janjua, Synthesis of saucer shaped manganese oxide nanoparticles by co-precipitation method and the application as fuel additive, Journal of Cluster Science, 29 (2018) 1099-1106. [50] R. Jiang, T. Huang, J. Liu, J. Zhuang, A. Yu, A novel method to prepare nanostructured manganese dioxide and its electrochemical properties as a supercapacitor electrode, Electrochimica Acta, 54 (2009) 3047-3052. [51] S. Nagamuthu, S. Vijayakumar, G. Muralidharan, Ag incorporated Mn3O4/AC nanocomposite based supercapacitor devices with high energy density and power density, Dalton Transactions, 43 (2014) 17528-17538. [52] H. Gao, F. Xiao, C.B. Ching, H. Duan, High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2, ACS Applied Materials & Interfaces, 4 (2012) 2801-2810. [53] X. Xiao, Y. Wang, G. Chen, L. Wang, Y. Wang, Mn3O4/activated carbon composites with enhanced electrochemical performances for electrochemical capacitors, Journal of Alloys and Compounds, 703 (2017) 163-173. [54] H.-Y. Wang, D.-G. Li, H.-L. Zhu, Y.-X. Qi, H. Li, N. Lun, Y.-J. Bai, Mn3O4/Ni (OH)2 nanocomposite as an applicable electrode material for pseudocapacitors, Electrochimica Acta, 249 (2017) 155-165. [55] Y. Li, X. Ni, The enhanced supercapacitive performance of the hybrid material integrating doped-polymer with the composite of graphene oxide and Mn3O4, Electrochimica Acta, 227 (2017) 162-169. [56] H. Zhang, Ultrathin two-dimensional nanomaterials, ACS nano, 9 (2015) 9451-9469. [57] C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, Recent advances in ultrathin two-dimensional nanomaterials, Chemical Reviews, 117 (2017) 6225-6331. [58] M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials, Chemical Reviews, 113 (2013) 3766-3798. [59] C. Tan, H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites, Chemical Society Reviews, 44 (2015) 2713-2731. [60] S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene, Small, 11 (2015) 640-652. [61] B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nature Reviews Materials, 2 (2017) 1-17. [62] D.N. Bunck, W.R. Dichtel, Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks, Journal of the American Chemical Society, 135 (2013) 14952-14955. [63] M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nature chemistry, 5 (2013) 263-275. [64] S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides, Nature Reviews Materials, 2 (2017) 1-15. [65] S. Yu, H.D. Xiong, K. Eshun, H. Yuan, Q. Li, Phase transition, effective mass and carrier mobility of MoS2 monolayer under tensile strain, Applied Surface Science, 325 (2015) 27-32. [66] M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials, Nature Nanotechnology, 10 (2015) 313-318. [67] S. Li, J. Sun, J. Guan, Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction, Chinese Journal of Catalysis, 42 (2021) 511-556. [68] F. Wypych, R. Schöllhorn, 1T-MoS2, a new metallic modification of molybdenum disulfide, Journal of the Chemical Society, Chemical Communications, 19 (1992) 1386-1388. [69] R.J. Toh, Z. Sofer, J. Luxa, D. Sedmidubský, M. Pumera, 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution, Chemical Communications, 53 (2017) 3054-3057. [70] M.S. Javed, S. Dai, M. Wang, D. Guo, L. Chen, X. Wang, C. Hu, Y. Xi, High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres, Journal of Power Sources, 285 (2015) 63-69. [71] Y. Gong, J. Wan, P. Zhou, X. Wang, J. Chen, K. Xu, Oxygen and nitrogen-enriched hierarchical MoS2 nanospheres decorated cornstalk-derived activated carbon for electrocatalytic degradation and supercapacitors, Materials Science in Semiconductor Processing, 123 (2021) 105533. [72] P. Sun, R. Wang, Q. Wang, H. Wang, X. Wang, Uniform MoS2 nanolayer with sulfur vacancy on carbon nanotube networks as binder-free electrodes for asymmetrical supercapacitor, Applied Surface Science, 475 (2019) 793-802. [73] B. Pal, S. Yang, S. Ramesh, V. Thangadurai, R. Jose, Electrolyte selection for supercapacitive devices: a critical review, Nanoscale Advances, 1 (2019) 3807-3835. [74] B. Pal, S.G. Krishnan, B.L. Vijayan, M. Harilal, C.-C. Yang, F.I. Ezema, M.M. Yusoff, R. Jose, In situ encapsulation of tin oxide and cobalt oxide composite in porous carbon for high-performance energy storage applications, Journal of Electroanalytical Chemistry, 817 (2018) 217-225. [75] S. Zhao, X. Wang, N. Kurra, Y. Gogotsi, Y. Gao, Effect of pinholes in Nb4C3 MXene sheets on its electrochemical behavior in aqueous electrolytes, Electrochemistry Communications, 142 (2022) 107380. [76] M. Galiński, A. Lewandowski, I. Stępniak, Ionic liquids as electrolytes, Electrochimica Acta, 51 (2006) 5567-5580. [77] S.G. Krishnan, M. Harilal, I.I. Misnon, M. Reddy, S. Adams, R. Jose, Effect of processing parameters on the charge storage properties of MgCo2O4 electrodes, Ceramics International, 43 (2017) 12270-12279. [78] G.W. Morey, Hydrothermal synthesis, Journal of the American Ceramic Society, 36 (1953) 279-285. [79] A.B. Djurisic, Y.Y. Xi, Y.F. Hsu, W.K. Chan, Hydrothermal synthesis of nanostructures, Recent Patents on Nanotechnology, 1 (2007) 121-128. [80] A.O. Ijaola, P.K. Farayibi, E. Asmatulu, Superhydrophobic coatings for steel pipeline protection in oil and gas industries: A comprehensive review, Journal of Natural Gas Science and Engineering, 83 (2020) 103544. [81] M. Domanski, J. Webb, A review of heat treatment research, Lithic Technology, 32 (2007) 153-194. [82] Y. Chen, C.P. Li, H. Chen, Y. Chen, One-dimensional nanomaterials synthesized using high-energy ball milling and annealing process, Science and Technology of Advanced Materials, 7 (2006) 839. [83] F. Sun, J. Guo, Y. Liu, Y. Yu, Preparation, characterizations and properties of sodium alginate grafted acrylonitrile/polyethylene glycol electrospun nanofibers, International Journal of Biological Macromolecules, 137 (2019) 420-425. [84] Q. Wang, J. Ju, Y. Tan, L. Hao, Y. Ma, Y. Wu, H. Zhang, Y. Xia, K. Sui, Controlled synthesis of sodium alginate electrospun nanofiber membranes for multi-occasion adsorption and separation of methylene blue, Carbohydrate Polymers, 205 (2019) 125-134. [85] H. Nie, A. He, J. Zheng, S. Xu, J. Li, C.C. Han, Effects of chain conformation and entanglement on the electrospinning of pure alginate, Biomacromolecules, 9 (2008) 1362-1365. [86] W. Wang, M. Liu, M. Shafiq, H. Li, R. Hashim, E.-N. Mohamed, E.-H. Hany, Y. Morsi, X. Mo, Synthesis of oxidized sodium alginate and its electrospun bio-hybrids with zinc oxide nanoparticles to promote wound healing, International Journal of Biological Macromolecules, 232 (2023) 123480. [87] Y. Hu, X. Tong, H. Zhuo, L. Zhong, X. Peng, Biomass-based porous N-self-doped carbon framework/polyaniline composite with outstanding supercapacitance, ACS Sustainable Chemistry & Engineering, 5 (2017) 8663-8674. [88] P. Hao, Z. Zhao, Y. Leng, J. Tian, Y. Sang, R.I. Boughton, C. Wong, H. Liu, B. Yang, Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors, Nano Energy, 15 (2015) 9-23. [89] J. Deng, N. Salmaso, E. Jeppesen, B. Qin, Y. Zhang, The relative importance of weather and nutrients determining phytoplankton assemblages differs between seasons in large Lake Taihu, China, Aquatic Sciences, 81 (2019) 1-14. [90] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials, 7 (2008) 845-854. [91] Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, X. Yu, D. Zou, Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage, Advanced Materials (Deerfield Beach, Fla.), 24 (2012) 5713-5718. [92] C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage, Advanced Materials, 22 (2010) E28-E62. [93] J.R. Miller, P. Simon, Electrochemical capacitors for energy management, Science, 321 (2008) 651-652. [94] T. Zhou, X. Gao, B. Dong, N. Sun, L. Zheng, Poly (ionic liquid) hydrogels exhibiting superior mechanical and electrochemical properties as flexible electrolytes, Journal of Materials Chemistry A, 4 (2016) 1112-1118. [95] J. You, S. Xie, J. Cao, H. Ge, M. Xu, L. Zhang, J. Zhou, Quaternized chitosan/poly (acrylic acid) polyelectrolyte complex hydrogels with tough, self-recovery, and tunable mechanical properties, Macromolecules, 49 (2016) 1049-1059. [96] Q. Zhao, J. Qian, Q. An, C. Gao, Z. Gui, H. Jin, Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogeneous membranes, Journal of Membrane Science, 333 (2009) 68-78. [97] J. Zhao, Y. Chen, Y. Yao, Z. R. Tong, P. W. Li, Z. M. Yang, S. H. Jin, Preparation of the polyelectrolyte complex hydrogel of biopolymers via a semi-dissolution acidification sol-gel transition method and its application in solid-state supercapacitors, Journal of Power Sources, 378 (2018) 603-609. [98] Y. H. Lee, J. J. Chang, W. F. Lai, M. C. Yang, C. T. Chien, Layered hydrogel of poly (γ-glutamic acid), sodium alginate, and chitosan: Fluorescence observation of structure and cytocompatibility, Colloids and Surfaces B: Biointerfaces, 86 (2011) 409-413. [99] N. Choudhury, S. Sampath, A. Shukla, Hydrogel-polymer electrolytes for electrochemical capacitors: an overview, Energy & Environmental Science, 2 (2009) 55-67. [100] K. Peng, W. Wang, J. Zhang, Y. Ma, L. Lin, Q. Gan, Y. Chen, C. Feng, Preparation of chitosan/sodium alginate conductive hydrogels with high salt contents and their application in flexible supercapacitors, Carbohydrate Polymers, 278 (2022) 118927. [101] X. Jiang, N. Xiang, H. Zhang, Y. Sun, Z. Lin, L. Hou, Preparation and characterization of poly(vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity, Carbohydrate Polymers, 186 (2018) 377-383. [102] A. Rafique, U. Zubair, M. Serrapede, M. Fontana, S. Bianco, P. Rivolo, C.F. Pirri, A. Lamberti, Binder free and flexible asymmetric supercapacitor exploiting Mn3O4 and MoS2 nanoflakes on carbon fibers, Nanomaterials, 10 (2020) 1084. [103] Y. M. Kang, W. D. Yang, Boosting the capacitive performance of supercapacitors by hybridizing N, P-codoped carbon polycrystalline with Mn3O4-based flexible electrodes, Nanomaterials, 13 (2023) 2060. [104] J. Ye, Z. Yu, W. Chen, Q. Chen, S. Xu, R. Liu, Facile synthesis of molybdenum disulfide/nitrogen-doped graphene composites for enhanced electrocatalytic hydrogen evolution and electrochemical lithium storage, Carbon, 107 (2016) 711-722. [105] K. Liang, R. Chianelli, F. Chien, S. Moss, Structure of poorly crystalline MoS2 a modeling study, Journal of Non-Crystalline Solids, 79 (1986) 251-273. [106] M.G. Fayed, S.Y. Attia, Y.F. Barakat, E.E. El-Shereafy, M.M. Rashad, S.G. Mohamed, Carbon and nitrogen co-doped MoS2 nanoflakes as an electrode material for lithium-ion batteries and supercapacitors, Sustainable Materials and Technologies, 29 (2021) e00306. [107] S. Xiao, Y. Yang, M. Zhong, H. Chen, Y. Zhang, J. Yang, J. Zheng, Salt-responsive bilayer hydrogels with pseudo-double-network structure actuated by polyelectrolyte and antipolyelectrolyte effects, ACS Applied Materials & Interfaces, 9 (2017) 20843-20851. [108] T. Cerchiara, A. Abruzzo, C. Parolin, B. Vitali, F. Bigucci, M. Gallucci, F.P. Nicoletta, B. Luppi, Microparticles based on chitosan/carboxymethylcellulose polyelectrolyte complexes for colon delivery of vancomycin, Carbohydrate Polymers, 143 (2016) 124-130. [109] A.M. Youssef, S.M. El-Sayed, H.S. El-Sayed, H.H. Salama, A. Dufresne, Enhancement of Egyptian soft white cheese shelf life using a novel chitosan/carboxymethyl cellulose/zinc oxide bionanocomposite film, Carbohydrate Polymers, 151 (2016) 9-19. [110] J. Ostrowska-Czubenko, M. Gierszewska-Drużyńska, Effect of ionic crosslinking on the water state in hydrogel chitosan membranes, Carbohydrate Polymers, 77 (2009) 590-598. [111] 候冰娜, 倪凯, 沈慧玲, 李征征, 自修復氧化海藻酸鈉-羧甲基殼聚醣水凝膠的製備及藥物緩釋性能, - 複合材料學報, - 39 (2022) - 250. [112] F. Morshedloo, A.B. Khoshfetrat, D. Kazemi, M. Ahmadian, Gelatin improves peroxidase‐mediated alginate hydrogel characteristics as a potential injectable hydrogel for soft tissue engineering applications, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108 (2020) 2950-2960. [113] A.M. Khan, O.U.R. Abid, S. Mir, Assessment of biological activities of chitosan Schiff base tagged with medicinal plants, Biopolymers, 111 (2020) e23338. [114] J.R. Oliveira, M.C.L. Martins, L. Mafra, P. Gomes, Synthesis of an O-alkynyl-chitosan and its chemoselective conjugation with a PEG-like amino-azide through click chemistry, Carbohydrate Polymers, 87 (2012) 240-249. [115] J. Liu, X. Ying, H. Wang, X. Li, W. Zhang, BSA imprinted polyethylene glycol grafted calcium alginate hydrogel microspheres, Journal of Applied Polymer Science, 133 (2016). [116] M. Chhatbar, R. Meena, K. Prasad, A. Siddhanta, Microwave assisted rapid method for hydrolysis of sodium alginate for M/G ratio determination, Carbohydrate Polymers, 76 (2009) 650-656. [117] K. Wang, X. Zhang, C. Li, X. Sun, Q. Meng, Y. Ma, Z. Wei, Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance, Advanced Materials, 45 (2015) 7451-7457.
|