跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 06:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳冠賢
研究生(外文):WU, KUAN-HSIEN
論文名稱:以半溶解酸化溶膠-凝膠轉變法製備固態電解質 應用於Mn3O4//MoS2非對稱超級電容之研究
論文名稱(外文):Solid-state electrolytes prepared by semi-dissolved acidified sol-gel transition method and applied to the study of Mn3O4//MoS2 asymmetric supercapacitors
指導教授:楊文都楊文都引用關係
指導教授(外文):YANG, WEIN-DUO
口試委員:何詠碩林文崇楊文都
口試委員(外文):HE, YONG-SHUOLIN, WEN-CHONGYANG, WEIN-DUO
口試日期:2024-06-11
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:202
中文關鍵詞:四氧化三錳硫化鉬殼聚醣氧化海藻酸鈉碳纖維布超級電容器聚電解質複合水凝膠
外文關鍵詞:Manganese(II,III) oxidemolybdenum sulfidechitosansodium alginate oxidecarbon fiber clothsupercapacitorspolyelectrolyte composite hydrogel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:11
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目錄
中文摘要 I
Abstract III
致謝 V
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 5
第二章 文獻回顧 7
2.1 電化學原理 7
2.1.1電化學反應機制 7
2.2 超級電容器 9
2.2.1超級電容器的類別與原理 9
2.3四氧化三錳、二硫化鉬材料的性質、製備及應用 19
2.3.1 Mn3O4材料的結構 19
2.3.2 Mn3O4文獻回顧 20
2.3.3 MoS2材料的結構 22
2.3.4 MoS2文獻回顧 24
2.3.5碳纖維布(Carbon fiber cloth, CC) 25
2.3.6電解液 26
2.3.7 水熱法與熱處理技術製備金屬氧化物電極材料 29
2.4氧化海藻酸鈉-殼聚醣複合水凝膠的性質、製備及應用 33
2.4.1氧化海藻酸鈉 33
2.4.2殼聚醣 35
2.4.3氧化海藻酸鈉-殼聚醣複合水凝膠 36
2.4.4氧化海藻酸鈉-殼聚醣複合水凝膠文獻回顧 38
第三章 實驗方法與步驟 40
3.1實驗藥品 40
3.2實驗儀器 42
3.3實驗步驟與流程 43
3.3.1碳纖維布前處理 44
3.3.2製備Mn3O4@NPC/CC正極 45
3.3.3製備MoS2@NC/CC負極 46
3.3.4製備PECH 48
3.3.5 組裝PECH Mn3O4//MoS2超級電容器 49
3.4儀器分析 50
3.4.1分析型場發掃描式電子顯微鏡(Analytical field emission scanning electron microscope, AFE-SEM) 50
3.4.2掃描穿透式電子顯微鏡(Field emission scanning transmission electron microscope, FE-S/TEM) 51
3.4.3 X-ray繞射分析儀(X-ray diffractometer, XRD) 52
3.4.4 傅立葉紅外光譜儀(Fourier transform infrared spectroscopy, FTIR) 54
3.4.5 核磁共振儀(Nuclear Magnetic Resonance, NMR) 56
3.4.5 BET比表面積分析儀(Brunauer-Emmett-Teller specific surface area and porosity analyzer, BET) 59
3.4.6 萬能試驗機(Universal testing machine) 60
3.4.7 流變儀(rheometer) 62
3.7電化學測試 63
3.7.1循環伏安法(cyclic voltammetry, CV) 65
3.7.2恆電流充放電測試(galvanostatic charge-discharge, GCD) 66
3.7.3電化學交流阻抗分析(Electrochemistry Impedance Spectroscopy, EIS) 67

第四章 結果與討論 70
4.1 材料之物性分析 70
4.2 添加殼聚醣對製備MN3O4與MOS2材料的影響 71
4.2.1 添加殼聚醣/磷酸製得Mn3O4材料與添加殼聚醣製得MoS2材料之物性分析 71
4.2.2 添加殼聚醣/磷酸製得Mn3O4@NPC/CC電極與添加殼聚醣製得MoS2@NC/CC電極之電性分析 104
4.3 殼聚醣與氧化海藻酸鈉複合水凝膠材料 108
4.3.1 添加不同比例NaCl、KCl以及Na2SO4無機鹽之複合水凝膠物性分析 108
4.3.2 添加不同比例NaCl、KCl以及Na2SO4無機鹽之複合水凝膠電性分析 145
4.3.3 添加不同比例NaCl、KCl及Na2SO4無機鹽之PECH抗菌試驗 163
第五章 結論 168
第六章 參考文獻 170


[1] M. Sharifzadeh, H. Lubiano-Walochik, N. Shah, Integrated renewable electricity generation considering uncertainties: The UK roadmap to 50% power generation from wind and solar energies, Renewable and Sustainable Energy Reviews, 72 (2017) 385-398.
[2] Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R.B. Kaner, Design and mechanisms of asymmetric supercapacitors, Chemical Reviews, 118 (2018) 9233-9280.
[3] J. Libich, J. Máca, J. Vondrák, O. Čech, M. Sedlaříková, Supercapacitors: Properties and applications, Journal of Energy Storage, 17 (2018) 224-227.
[4] A. Shukla, A. Banerjee, M. Ravikumar, A. Jalajakshi, Electrochemical capacitors: Technical challenges and prognosis for future markets, Electrochimica Acta, 84 (2012) 165-173.
[5] B.E. Conway, Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage, Journal of The Electrochemical Society., 138 (1991) 1539.
[6] K. Mensah-Darkwa, C. Zequine, P.K. Kahol, R.K. Gupta, Supercapacitor energy storage device using biowastes: A sustainable approach to green energy, Sustainability, 11 (2019) 414.
[7] W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chemical Society Reviews, 40 (2011) 1697-1721.
[8] H. Jiang, C. Zhou, X. Yan, J. Miao, M. You, Y. Zhu, Y. Li, W. Zhou, X. Cheng, Effects of various electrolytes on the electrochemistry performance of Mn3O4/carbon cloth to ultra-flexible all-solid-state asymmetric supercapacitor, Journal of Energy Storage, 32 (2020) 101898.
[9] S.C. Sekhar, G. Nagaraju, J.S. Yu, Ant-cave structured MnCO3/Mn3O4 microcubes by biopolymer-assisted facile synthesis for high-performance pseudocapacitors, Applied Surface Science, 435 (2018) 398-405.

[10] M.A. Desai, A.S. Vedpathak, A.R. Bhapkar, G.D. Saratale, S.D. Sartale, An investigation of chemical and electrochemical conversion of SILAR grown Mn3O4 into MnO2 thin films, Journal of Environmental Management, 299 (2021) 113564.
[11] A. Gigot, M. Fontana, M. Serrapede, M. Castellino, S. Bianco, M. Armandi, B. Bonelli, C.F. Pirri, E. Tresso, P. Rivolo, Mixed 1T–2H phase MoS2/reduced graphene oxide as active electrode for enhanced supercapacitive performance, ACS Applied Materials & Interfaces, 8 (2016) 32842-32852.
[12] Y. Teng, E. Liu, R. Ding, K. Liu, R. Liu, L. Wang, Z. Yang, H. Jiang, Bean dregs-based activated carbon/copper ion supercapacitors, Electrochimica Acta, 194 (2016) 394-404.
[13] E. Raymundo‐Piñero, F. Leroux, F. Béguin, A high‐performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer, Advanced Materials, 18 (2006) 1877-1882.
[14] E.Y.L. Teo, L. Muniandy, E.-P. Ng, F. Adam, A.R. Mohamed, R. Jose, K.F. Chong, High surface area activated carbon from rice husk as a high performance supercapacitor electrode, Electrochimica Acta, 192 (2016) 110-119.
[15] Z. Lin, X. Xiang, S. Peng, X. Jiang, L. Hou, Facile synthesis of chitosan-based carbon with rich porous structure for supercapacitor with enhanced electrochemical performance, Journal of Electroanalytical Chemistry, 823 (2018) 563-572.
[16] H. Jia, J. Sun, J. Zhu, F. Zhang, S. Li, Y. Zhang, F. Hu, X. Xie, Heteroatoms co-doped carbon from biowaste for capacitive energy storage: Dependence of physicochemical properties and electrochemical performances on precursor grain sizes, Journal of Energy Storage, 60 (2023) 106594.
[17] Y. Zheng, K. Chen, K. Jiang, F. Zhang, G. Zhu, H. Xu, Progress of synthetic strategies and properties of heteroatoms-doped (N, P, S, O) carbon materials for supercapacitors, Journal of Energy Storage, 56 (2022) 105995.
[18] Y. K. Sun, S. W. Cho, S. T. Myung, K. Amine, J. Prakash, Effect of AlF3 coating amount on high voltage cycling performance of LiCoO2, Electrochimica Acta, 53 (2007) 1013-1019.

[19] M. Hashemi, M.S. Rahmanifar, M.F. El-Kady, A. Noori, M.F. Mousavi, R.B. Kaner, The use of an electrocatalytic redox electrolyte for pushing the energy density boundary of a flexible polyaniline electrode to a new limit, Nano Energy, 44 (2018) 489-498.
[20] M. Chen, Y. Zhang, Y. Liu, Q. Wang, J. Zheng, C. Meng, Three-dimensional network of vanadium oxyhydroxide nanowires hybridize with carbonaceous materials with enhanced electrochemical performance for supercapacitor, ACS Applied Energy Materials, 1 (2018) 5527-5538.
[21] Y.-H. Wang, X.-C. Li, Z. Yu, J.-F. Zheng, X.-S. Zhou, Break junction measurements at electrochemical interface: From electron transport to molecular adsorption and reaction process, Current Opinion in Electrochemistry, (2023) 101279.
[22] C. Schotten, T.P. Nicholls, R.A. Bourne, N. Kapur, B.N. Nguyen, C.E. Willans, Making electrochemistry easily accessible to the synthetic chemist, Green Chemistry, 22 (2020) 3358-3375.
[23] N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A practical beginner’s guide to cyclic voltammetry, Journal of Chemical Education, 95 (2018) 197-206.
[24] S. Usui, Interaction between dissimilar double layers with like signs under charge regulation on the basis of the Gouy–Chapman–Stern–Grahame model, Journal of Colloid and Interface Science, 280 (2004) 113-119.
[25] D.Y. Chan, T.W. Healy, T. Supasiti, S. Usui, Electrical double layer interactions between dissimilar oxide surfaces with charge regulation and Stern–Grahame layers, Journal of Colloid and Interface Science, 296 (2006) 150-158.
[26] P. Sharma, T. Bhatti, A review on electrochemical double-layer capacitors, Energy Conversion and Management, 51 (2010) 2901-2912.
[27] J. Kang, J. Wen, S.H. Jayaram, A. Yu, X. Wang, Development of an equivalent circuit model for electrochemical double layer capacitors (EDLCs) with distinct electrolytes, Electrochimica Acta, 115 (2014) 587-598.
[28] P. Tiwari, D. Janas, Emergent pseudocapacitive behavior of single-walled carbon nanotube hybrids: A materials perspective, Materials Chemistry Frontiers, 6 (2022) 2386-2412.

[29] K. Naoi, Nanohybrid capacitor: The next generation electrochemical capacitors, Fuel Cells, 10 (2010) 825-833.
[30] F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, Y. Wu, Electrode materials for aqueous asymmetric supercapacitors, Rsc Advances, 3 (2013) 13059-13084.
[31] E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39 (2001) 937-950.
[32] Z. Wang, Y. Yang, D.L. Olmsted, M. Asta, B.B. Laird, Evaluation of the constant potential method in simulating electric double-layer capacitors, The Journal of chemical physics, 141 (2014)184102.
[33] N. Liu, R. Chen, Q. Wan, Recent advances in electric-double-layer transistors for bio-chemical sensing applications, Sensors, 19 (2019) 3425.
[34] K. Takeuchi, M. Fujishige, N. Ishida, Y. Kunieda, Y. Kato, Y. Tanaka, T. Ochi, H. Shirotori, Y. Uzuhashi, S. Ito, High porous bio-nanocarbons prepared by carbonization and NaOH activation of polysaccharides for electrode material of EDLC, Journal of Physics and Chemistry of Solids, 118 (2018) 137-143.
[35] N. Sanjaya, K. Vidanapathirana, K. Perera, A natural rubber based electrolyte to be used in EDLCs with Sri Lankan graphite, Materials Today: Proceedings, 23 (2020) 30-33.
[36] B. Conway, W. Pell, Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices, Journal of Solid State Electrochemistry, 7 (2003) 637-644.
[37] S. Feng, R. Xu, New materials in hydrothermal synthesis, Accounts of Chemical Research, 34 (2001) 239-247.
[38] Y. Liu, S.P. Jiang, Z. Shao, Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development, Materials Today Advances, 7 (2020) 100072.
[39] P. Bhojane, Recent advances and fundamentals of Pseudocapacitors: Materials, mechanism, and its understanding, Journal of Energy Storage, 45 (2022) 103654.
[40] F. Yao, D.T. Pham, Y.H. Lee, Carbon‐based materials for lithium‐ion batteries, electrochemical capacitors, and their hybrid devices, ChemSusChem, 8 (2015) 2284-2311.

[41] Y. Zhang, L. Li, S. Shi, Q. Xiong, X. Zhao, X. Wang, C. Gu, J. Tu, Synthesis of porous Co3O4 nanoflake array and its temperature behavior as pseudo-capacitor electrode, Journal of Power Sources, 256 (2014) 200-205.
[42] S. Ullah, I.A. Khan, M. Choucair, A. Badshah, I. Khan, M.A. Nadeem, A novel Cr2O3-carbon composite as a high performance pseudo-capacitor electrode material, Electrochimica Acta, 171 (2015) 142-149.
[43] K.S. Bhat, S. Shenoy, H. Nagaraja, K. Sridharan, Porous cobalt chalcogenide nanostructures as high performance pseudo-capacitor electrodes, Electrochimica Acta, 248 (2017) 188-196.
[44] Z. Jiao, Y. Chen, M. Du, M. Demir, F. Yan, Y. Zhang, C. Wang, M. Gu, X. Zhang, J. Zou, In-situ formation of morphology-controlled cobalt vanadate on CoO urchin-like microspheres as asymmetric supercapacitor electrode, Journal of Alloys and Compounds, 958 (2023) 170489.
[45] E. Erçarıkcı, E. Topçu, K.D. Kıranşan, Three-dimensional FeNiP decorated graphene sponge: A novel flexible electrode for high-performance asymmetric supercapacitor, Materials Research Bulletin, 165 (2023) 112333.
[46] B. Üstün, H. Aydın, S.N. Koç, Ü. Kurtan, Amorphous ZnO@ S-doped carbon composite nanofiber for use in asymmetric supercapacitors, Diamond and Related Materials, 136 (2023) 110048.
[47] J. Zhu, Q. Wu, J. Li, Review and prospect of Mn3O4‐based composite materials for supercapacitor electrodes, Chemistry Select, 5 (2020) 10407-10423.
[48] P.R. Garces Goncalves Jr, H.A. De Abreu, H.l.A. Duarte, Stability, structural, and electronic properties of hausmannite (Mn3O4) surfaces and their interaction with water, The Journal of Physical Chemistry C, 122 (2018) 20841-20849.
[49] S. Jamil, S.R. Khan, B. Sultana, M. Hashmi, M. Haroon, M.R.S.A. Janjua, Synthesis of saucer shaped manganese oxide nanoparticles by co-precipitation method and the application as fuel additive, Journal of Cluster Science, 29 (2018) 1099-1106.

[50] R. Jiang, T. Huang, J. Liu, J. Zhuang, A. Yu, A novel method to prepare nanostructured manganese dioxide and its electrochemical properties as a supercapacitor electrode, Electrochimica Acta, 54 (2009) 3047-3052.
[51] S. Nagamuthu, S. Vijayakumar, G. Muralidharan, Ag incorporated Mn3O4/AC nanocomposite based supercapacitor devices with high energy density and power density, Dalton Transactions, 43 (2014) 17528-17538.
[52] H. Gao, F. Xiao, C.B. Ching, H. Duan, High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2, ACS Applied Materials & Interfaces, 4 (2012) 2801-2810.
[53] X. Xiao, Y. Wang, G. Chen, L. Wang, Y. Wang, Mn3O4/activated carbon composites with enhanced electrochemical performances for electrochemical capacitors, Journal of Alloys and Compounds, 703 (2017) 163-173.
[54] H.-Y. Wang, D.-G. Li, H.-L. Zhu, Y.-X. Qi, H. Li, N. Lun, Y.-J. Bai, Mn3O4/Ni (OH)2 nanocomposite as an applicable electrode material for pseudocapacitors, Electrochimica Acta, 249 (2017) 155-165.
[55] Y. Li, X. Ni, The enhanced supercapacitive performance of the hybrid material integrating doped-polymer with the composite of graphene oxide and Mn3O4, Electrochimica Acta, 227 (2017) 162-169.
[56] H. Zhang, Ultrathin two-dimensional nanomaterials, ACS nano, 9 (2015) 9451-9469.
[57] C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, Recent advances in ultrathin two-dimensional nanomaterials, Chemical Reviews, 117 (2017) 6225-6331.
[58] M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials, Chemical Reviews, 113 (2013) 3766-3798.
[59] C. Tan, H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites, Chemical Society Reviews, 44 (2015) 2713-2731.
[60] S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene, Small, 11 (2015) 640-652.

[61] B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nature Reviews Materials, 2 (2017) 1-17.
[62] D.N. Bunck, W.R. Dichtel, Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks, Journal of the American Chemical Society, 135 (2013) 14952-14955.
[63] M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nature chemistry, 5 (2013) 263-275.
[64] S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides, Nature Reviews Materials, 2 (2017) 1-15.
[65] S. Yu, H.D. Xiong, K. Eshun, H. Yuan, Q. Li, Phase transition, effective mass and carrier mobility of MoS2 monolayer under tensile strain, Applied Surface Science, 325 (2015) 27-32.
[66] M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials, Nature Nanotechnology, 10 (2015) 313-318.
[67] S. Li, J. Sun, J. Guan, Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction, Chinese Journal of Catalysis, 42 (2021) 511-556.
[68] F. Wypych, R. Schöllhorn, 1T-MoS2, a new metallic modification of molybdenum disulfide, Journal of the Chemical Society, Chemical Communications, 19 (1992) 1386-1388.
[69] R.J. Toh, Z. Sofer, J. Luxa, D. Sedmidubský, M. Pumera, 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution, Chemical Communications, 53 (2017) 3054-3057.
[70] M.S. Javed, S. Dai, M. Wang, D. Guo, L. Chen, X. Wang, C. Hu, Y. Xi, High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres, Journal of Power Sources, 285 (2015) 63-69.

[71] Y. Gong, J. Wan, P. Zhou, X. Wang, J. Chen, K. Xu, Oxygen and nitrogen-enriched hierarchical MoS2 nanospheres decorated cornstalk-derived activated carbon for electrocatalytic degradation and supercapacitors, Materials Science in Semiconductor Processing, 123 (2021) 105533.
[72] P. Sun, R. Wang, Q. Wang, H. Wang, X. Wang, Uniform MoS2 nanolayer with sulfur vacancy on carbon nanotube networks as binder-free electrodes for asymmetrical supercapacitor, Applied Surface Science, 475 (2019) 793-802.
[73] B. Pal, S. Yang, S. Ramesh, V. Thangadurai, R. Jose, Electrolyte selection for supercapacitive devices: a critical review, Nanoscale Advances, 1 (2019) 3807-3835.
[74] B. Pal, S.G. Krishnan, B.L. Vijayan, M. Harilal, C.-C. Yang, F.I. Ezema, M.M. Yusoff, R. Jose, In situ encapsulation of tin oxide and cobalt oxide composite in porous carbon for high-performance energy storage applications, Journal of Electroanalytical Chemistry, 817 (2018) 217-225.
[75] S. Zhao, X. Wang, N. Kurra, Y. Gogotsi, Y. Gao, Effect of pinholes in Nb4C3 MXene sheets on its electrochemical behavior in aqueous electrolytes, Electrochemistry Communications, 142 (2022) 107380.
[76] M. Galiński, A. Lewandowski, I. Stępniak, Ionic liquids as electrolytes, Electrochimica Acta, 51 (2006) 5567-5580.
[77] S.G. Krishnan, M. Harilal, I.I. Misnon, M. Reddy, S. Adams, R. Jose, Effect of processing parameters on the charge storage properties of MgCo2O4 electrodes, Ceramics International, 43 (2017) 12270-12279.
[78] G.W. Morey, Hydrothermal synthesis, Journal of the American Ceramic Society, 36 (1953) 279-285.
[79] A.B. Djurisic, Y.Y. Xi, Y.F. Hsu, W.K. Chan, Hydrothermal synthesis of nanostructures, Recent Patents on Nanotechnology, 1 (2007) 121-128.
[80] A.O. Ijaola, P.K. Farayibi, E. Asmatulu, Superhydrophobic coatings for steel pipeline protection in oil and gas industries: A comprehensive review, Journal of Natural Gas Science and Engineering, 83 (2020) 103544.
[81] M. Domanski, J. Webb, A review of heat treatment research, Lithic Technology, 32 (2007) 153-194.

[82] Y. Chen, C.P. Li, H. Chen, Y. Chen, One-dimensional nanomaterials synthesized using high-energy ball milling and annealing process, Science and Technology of Advanced Materials, 7 (2006) 839.
[83] F. Sun, J. Guo, Y. Liu, Y. Yu, Preparation, characterizations and properties of sodium alginate grafted acrylonitrile/polyethylene glycol electrospun nanofibers, International Journal of Biological Macromolecules, 137 (2019) 420-425.
[84] Q. Wang, J. Ju, Y. Tan, L. Hao, Y. Ma, Y. Wu, H. Zhang, Y. Xia, K. Sui, Controlled synthesis of sodium alginate electrospun nanofiber membranes for multi-occasion adsorption and separation of methylene blue, Carbohydrate Polymers, 205 (2019) 125-134.
[85] H. Nie, A. He, J. Zheng, S. Xu, J. Li, C.C. Han, Effects of chain conformation and entanglement on the electrospinning of pure alginate, Biomacromolecules, 9 (2008) 1362-1365.
[86] W. Wang, M. Liu, M. Shafiq, H. Li, R. Hashim, E.-N. Mohamed, E.-H. Hany, Y. Morsi, X. Mo, Synthesis of oxidized sodium alginate and its electrospun bio-hybrids with zinc oxide nanoparticles to promote wound healing, International Journal of Biological Macromolecules, 232 (2023) 123480.
[87] Y. Hu, X. Tong, H. Zhuo, L. Zhong, X. Peng, Biomass-based porous N-self-doped carbon framework/polyaniline composite with outstanding supercapacitance, ACS Sustainable Chemistry & Engineering, 5 (2017) 8663-8674.
[88] P. Hao, Z. Zhao, Y. Leng, J. Tian, Y. Sang, R.I. Boughton, C. Wong, H. Liu, B. Yang, Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors, Nano Energy, 15 (2015) 9-23.
[89] J. Deng, N. Salmaso, E. Jeppesen, B. Qin, Y. Zhang, The relative importance of weather and nutrients determining phytoplankton assemblages differs between seasons in large Lake Taihu, China, Aquatic Sciences, 81 (2019) 1-14.
[90] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials, 7 (2008) 845-854.
[91] Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, X. Yu, D. Zou, Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage, Advanced Materials (Deerfield Beach, Fla.), 24 (2012) 5713-5718.

[92] C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage, Advanced Materials, 22 (2010) E28-E62.
[93] J.R. Miller, P. Simon, Electrochemical capacitors for energy management, Science, 321 (2008) 651-652.
[94] T. Zhou, X. Gao, B. Dong, N. Sun, L. Zheng, Poly (ionic liquid) hydrogels exhibiting superior mechanical and electrochemical properties as flexible electrolytes, Journal of Materials Chemistry A, 4 (2016) 1112-1118.
[95] J. You, S. Xie, J. Cao, H. Ge, M. Xu, L. Zhang, J. Zhou, Quaternized chitosan/poly (acrylic acid) polyelectrolyte complex hydrogels with tough, self-recovery, and tunable mechanical properties, Macromolecules, 49 (2016) 1049-1059.
[96] Q. Zhao, J. Qian, Q. An, C. Gao, Z. Gui, H. Jin, Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogeneous membranes, Journal of Membrane Science, 333 (2009) 68-78.
[97] J. Zhao, Y. Chen, Y. Yao, Z. R. Tong, P. W. Li, Z. M. Yang, S. H. Jin, Preparation of the polyelectrolyte complex hydrogel of biopolymers via a semi-dissolution acidification sol-gel transition method and its application in solid-state supercapacitors, Journal of Power Sources, 378 (2018) 603-609.
[98] Y. H. Lee, J. J. Chang, W. F. Lai, M. C. Yang, C. T. Chien, Layered hydrogel of poly (γ-glutamic acid), sodium alginate, and chitosan: Fluorescence observation of structure and cytocompatibility, Colloids and Surfaces B: Biointerfaces, 86 (2011) 409-413.
[99] N. Choudhury, S. Sampath, A. Shukla, Hydrogel-polymer electrolytes for electrochemical capacitors: an overview, Energy & Environmental Science, 2 (2009) 55-67.
[100] K. Peng, W. Wang, J. Zhang, Y. Ma, L. Lin, Q. Gan, Y. Chen, C. Feng, Preparation of chitosan/sodium alginate conductive hydrogels with high salt contents and their application in flexible supercapacitors, Carbohydrate Polymers, 278 (2022) 118927.
[101] X. Jiang, N. Xiang, H. Zhang, Y. Sun, Z. Lin, L. Hou, Preparation and characterization of poly(vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity, Carbohydrate Polymers, 186 (2018) 377-383.

[102] A. Rafique, U. Zubair, M. Serrapede, M. Fontana, S. Bianco, P. Rivolo, C.F. Pirri, A. Lamberti, Binder free and flexible asymmetric supercapacitor exploiting Mn3O4 and MoS2 nanoflakes on carbon fibers, Nanomaterials, 10 (2020) 1084.
[103] Y. M. Kang, W. D. Yang, Boosting the capacitive performance of supercapacitors by hybridizing N, P-codoped carbon polycrystalline with Mn3O4-based flexible electrodes, Nanomaterials, 13 (2023) 2060.
[104] J. Ye, Z. Yu, W. Chen, Q. Chen, S. Xu, R. Liu, Facile synthesis of molybdenum disulfide/nitrogen-doped graphene composites for enhanced electrocatalytic hydrogen evolution and electrochemical lithium storage, Carbon, 107 (2016) 711-722.
[105] K. Liang, R. Chianelli, F. Chien, S. Moss, Structure of poorly crystalline MoS2 a modeling study, Journal of Non-Crystalline Solids, 79 (1986) 251-273.
[106] M.G. Fayed, S.Y. Attia, Y.F. Barakat, E.E. El-Shereafy, M.M. Rashad, S.G. Mohamed, Carbon and nitrogen co-doped MoS2 nanoflakes as an electrode material for lithium-ion batteries and supercapacitors, Sustainable Materials and Technologies, 29 (2021) e00306.
[107] S. Xiao, Y. Yang, M. Zhong, H. Chen, Y. Zhang, J. Yang, J. Zheng, Salt-responsive bilayer hydrogels with pseudo-double-network structure actuated by polyelectrolyte and antipolyelectrolyte effects, ACS Applied Materials & Interfaces, 9 (2017) 20843-20851.
[108] T. Cerchiara, A. Abruzzo, C. Parolin, B. Vitali, F. Bigucci, M. Gallucci, F.P. Nicoletta, B. Luppi, Microparticles based on chitosan/carboxymethylcellulose polyelectrolyte complexes for colon delivery of vancomycin, Carbohydrate Polymers, 143 (2016) 124-130.
[109] A.M. Youssef, S.M. El-Sayed, H.S. El-Sayed, H.H. Salama, A. Dufresne, Enhancement of Egyptian soft white cheese shelf life using a novel chitosan/carboxymethyl cellulose/zinc oxide bionanocomposite film, Carbohydrate Polymers, 151 (2016) 9-19.
[110] J. Ostrowska-Czubenko, M. Gierszewska-Drużyńska, Effect of ionic crosslinking on the water state in hydrogel chitosan membranes, Carbohydrate Polymers, 77 (2009) 590-598.

[111] 候冰娜, 倪凯, 沈慧玲, 李征征, 自修復氧化海藻酸鈉-羧甲基殼聚醣水凝膠的製備及藥物緩釋性能, - 複合材料學報, - 39 (2022) - 250.
[112] F. Morshedloo, A.B. Khoshfetrat, D. Kazemi, M. Ahmadian, Gelatin improves peroxidase‐mediated alginate hydrogel characteristics as a potential injectable hydrogel for soft tissue engineering applications, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108 (2020) 2950-2960.
[113] A.M. Khan, O.U.R. Abid, S. Mir, Assessment of biological activities of chitosan Schiff base tagged with medicinal plants, Biopolymers, 111 (2020) e23338.
[114] J.R. Oliveira, M.C.L. Martins, L. Mafra, P. Gomes, Synthesis of an O-alkynyl-chitosan and its chemoselective conjugation with a PEG-like amino-azide through click chemistry, Carbohydrate Polymers, 87 (2012) 240-249.
[115] J. Liu, X. Ying, H. Wang, X. Li, W. Zhang, BSA imprinted polyethylene glycol grafted calcium alginate hydrogel microspheres, Journal of Applied Polymer Science, 133 (2016).
[116] M. Chhatbar, R. Meena, K. Prasad, A. Siddhanta, Microwave assisted rapid method for hydrolysis of sodium alginate for M/G ratio determination, Carbohydrate Polymers, 76 (2009) 650-656.
[117] K. Wang, X. Zhang, C. Li, X. Sun, Q. Meng, Y. Ma, Z. Wei, Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance, Advanced Materials, 45 (2015) 7451-7457.


電子全文 電子全文(網際網路公開日期:20290628)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊