跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/11 04:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪祥瑀
研究生(外文):HUNG, HSIANG-YU
論文名稱:探討金目鱸魚魚排的熟成條件 與對其品質之影響
論文名稱(外文):The effect of different factors to quality characteristics of barramundi (Lates calcarifer) fillets during ripening
指導教授:林家民林家民引用關係
指導教授(外文):LIN, CHIA-MIN
口試委員:許淑真蔡永祥
口試委員(外文):HSU, SHU-CHENTSAI, YUNG-HSIANG
口試日期:2024-07-10
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:水產食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:86
中文關鍵詞:金目鱸魚熟成時間溫度濕度
外文關鍵詞:barramundi, , , ,ripeningtimetemperaturehumidity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:13
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
金目鱸魚 (Lates calcarifer) 為台灣大宗主要養殖魚種之一,但目前對金目鱸魚的加工方式較少。因此本研究利用熟成機,探討不同的溫濕度與時間後,對熟成鱸魚排品質之影響,以及各種物理化學品質的變化,以獲得最佳熟成條件。冷凍鱸魚魚排解凍後進行熟成,條件為溫度:+0.8°C (positive, P)、-0.8°C (negative, N),相對濕度 (R.H.) :70%、85%,時間:1、2、3天,對照組為未處理鱸魚排,共13組樣品。熟成後測定水分、粗脂肪、粗蛋白、灰分、保水力、物性 (硬度、彈性、內聚力、膠著力、咀嚼力)、色差值 (L*、a*、b*)、pH值、揮發性鹽基態氮 (volatile basic nitrogen, VBN)、K值、微生物品質 (總生菌數、大腸桿菌群與大腸桿菌),感官品評與游離胺基酸。低濕度長時間熟成的樣品,失重率較高、保水力較低、硬度與咀嚼力高、顏色偏紅、感官品評的接受較低。相反的,高濕度短時間熟成的樣品,失重率較低、保水力較高、硬度與咀嚼力低、亮度較高、感官品評的接受較高。K值、VBN 值與總生菌數皆低於標準,而大腸桿菌及大腸桿菌群皆未檢出。感官品評整體接受度得分最低為P70-3,最高為P85-1,此兩者的游離胺基酸量均顯著高於未熟成樣品,顯示熟成過程中,蛋白質有被分解。綜合以上結果,P85-1組為最佳熟成條件,本研究結果可供產業應用,並了解熟成條件對於整體品質之影響。
Barramundi (Lates calcarifer) is one of the major farmed fish species in Taiwan but processed products are not common. Ripen barramundi is a suitable processing and new to Taiwanese. Fillets were ripened at +0.8°C (positive, P) or -0.8°C (negative, N), relative humidity (RH) 70% or 85%, for 1, 2, or 3 days. Totally, 12 combinations were tested and samples were coded as temperature (P, N), RH (70, 85) and days (1, 2, 3). General ingredients (water content, protein, fat), water retention capacity, physical properties (hardness, elasticity, cohesion, adhesive force, chewing power), colorimeter values (L*, a*, b*), pH value, and volatile basic nitrogen (VBN), K values, microbial quality (total aerobic count, coliforms and Escherichia coli), sensory characteristics and free amino acids content were measured. Fillets ripened at RH 70% and long ripen days showed low water retention capacity, higher hardness, darker and reddish color, and low reception grades. In contrast, fillets ripened at RH 85% and short ripen days showed high water retention capacity, lower hardness, lighter color, and high reception grades. The K and VBN values and microbial indexes of all samples were lower than the official standards. P70-3 and P85-1 possessed the lowest and highest acceptance grade, respectively, but both treatments possessed significantly higher concentrations of free amino acids that unripen fillets. Conclusively, P85-1 was the optimal treatment. These results provide a foundation for industrial application.
中文摘要………………………………………………………………….Ⅰ
Abstract………………………………………………….……………......Ⅱ
誌謝……………………………………………………………………….Ⅲ
目錄………………………………………………………………………Ⅳ
表目錄…………………………………………………………………….Ⅷ
圖目錄………………………………………………………………….…Ⅸ
壹、 前言…………………………………………………………………..1
貮、 文獻回顧…………………………………………………………..…4
2.1、金目鱸魚的介紹…………………………………………………..…4
2.1.1 魚種分類………………………………………………………4
2.1.2 特徵介紹………………………………………………………4
2.1.3 金目鱸魚營養成分……………………………………………5
2.1.4 金目鱸魚產量……………………………………....................7
2.2、魚貝類的生理組成分………………………………………………..7
2.3、魚貝類之蛋白質種類…………………………………………….….8
2.3.1 肌漿蛋白質 (sarcoplasmic protein) ………………………..….9
2.3.2 肌原纖維蛋白質 (myofibrillar protein) ………………………9
2.3.3 基質蛋白質 (stroma protein) ………………………….……10
2.4、魚類死後之生理變化………………………………………..……..10
2.4.1 魚體死後僵直作用機制……………………………………..10
2.4.2 熟成的生化機制……………………………………………..12
2.5、魚肉主要風味成分…………………………………………………13
2.5.1 雙胜肽類……………………………………………………..14
2.5.2 游離胺基酸…………………………………………………..15
2.5.3 核苷酸及其相關化合物……………………………………..18
2.6、魚貝類鮮度品質之指標……………………………………………19
2.6.1 K值……………………………………………………….…..19
2.6.2 pH值………………………………………………………….20
2.6.3 揮發性鹽基態氮 (volatile basic nitrogen,VBN) ……….….21
2.7、水產品之微生物指標………………………………………...……22
2.7.1 總生菌數……………………………………………………..22
2.7.2 大腸桿菌群…………………………………………………..23
2.7.3 大腸桿菌……………………………………………………..23
參、 材料與方法……………………………………………….………..24
3.1、實驗材料……………………………………………………………24
3.1.1 金目鱸魚排之來源…………………………………..………24
3.1.2 實驗藥品…..…………………………………………..……..24
3.1.3 實驗儀器………………………………………….…….……25
3.2、實驗架構圖……………………………………………………..….27
3.3、實驗方法……………………………………………….……….…..28
3.3.1 熟成鱸魚製備………………………………………………..28
3.3.2 一般組成分分析………………………………….………….29
3.3.3 失重率分析…………………………………………………..32
3.3.4 pH值分析……………………………………………………32
3.3.5 物性分析 (TPA)………………………………………….…..33
3.3.6 色差值分析…………………………………………….…….34
3.3.7 K值分析……………………………………………….…….34
3.3.8 揮發性鹽基態氮 (volatile basic nitrogen,VBN)分析….….36
3.3.9 微生物分析………………………………………….……….37
3.3.10 保水力分析…………………….……………………..…….38
3.3.11 感官品評分析………………………………………………38
3.3.12 游離胺基酸分析……………………………………...…….39
3.3.13統計分析…………………………………………………....40
肆、 結果與討論……………………………………………...…………41
伍、 結論……………………………………………………………..….68
陸、 參考文獻……………………...……………………………………69
柒、 附錄…………………………………………………………….…..86

參考文獻
行政院農業委員會水產試驗所。(2020)。金目鱸寒害至災溫度。 [https://www.tfrin.gov.tw/News_Content.aspx?n=4087&s=238920] (2024/06)
行政院農業委員會 : 漁業統計年報。(2021)。[https://www.fa.gov.tw/view.php?theme=FS_AR&subtheme=&id=20](2024/06)。
行政院農業委員會漁業署。(2021)。養殖漁業放養查詢平台。[https://fadopen.fa.gov.tw/fadopen/service/qrySpeciesSummaryYearlyReport.htmx]。(2024/06)
吳清熊、邱思魁。(1996)。水產食品學。國立編譯館,台北,1-428。
李棟梁、何碧月、鄭世榮、廖一久。(1989)。東港沿岸草蝦 (Penaeus monodon) 筋肉中可溶性抽出物的季節變化。臺灣水產學會刊,16(4),281–291。
沈世傑。(1993)。臺灣魚類誌。國立臺灣大學動物學系。
王貞懿。(1995)。食品微生物檢驗訓練。衛生報導,5,37–40。
邱思魁。(2018)。魚貝類的化學組成與其死後變化。海大漁推,48,1–48。
邱思魁。(2020a)。魚貝類肌肉死後及貯藏中的變化。海大漁推。50,1–25。
邱思魁。(2020b)。魚類肌肉的構造及組成與其死後蛋白質水解引起的變化。海大漁推,50,27–79。
邱思魁、游昭玲、蕭泉源。(1995)。虱目魚貯藏中鮮度及呈味成分之變化。食品科學,22: 46-58。
邱思魁、林君霏、蕭泉源。(1996)。養殖文蛤貯藏中的鮮度品質變化。中華民國營養學會雜誌,21(1),95–109。
海洋委員會海洋保育署。(2020)。臺灣百種海洋動物圖鑑。[https://www.oca.gov.tw/ch/home.jsp?id=289&parentpath=0,5&mcustomize=ocamaritime_view.jsp&dataserno=202104140002]。(2024/06)
農業部知識入口網。(2008)。農業小百科。[https://kmweb.moa.gov.tw/theme_data.php?theme=pedia&sub_theme=km&id=1143] (2024/06)。
豐原治彥、安藤正史 。(1991)。筋肉の物性變化。魚類の死後硬直,山中英明編,恆星社厚生閣,東京,42-49。
鄭崇明。(1989)。大腸桿菌群與大腸桿菌之檢驗-不同食品中之大腸桿菌群與大腸桿菌檢出率之比較,七十八年度食品衛生檢驗科技研討會研討報告彙編,pp. 98-99。
鄭聰旭。(1993)。食品衛生標準之訂定,食品工業,25(5): 28-35。
衛生福利部。(2013)。食品微生物之檢驗方法-生菌數之檢驗。部授食字第 1021950329 號。
衛生福利部食品藥物管理署。(2017)。食品營養成分資料庫。[https://consumer.fda.gov.tw/Food/tfndDetail.aspx?nodeID=178&f=0&id=1013] (2024/06)。
衛生福利部。(2018)。揮發性鹽基態氮衛生(限量)標準。衛授食字第1071300778 號。
衛生福利部。(2019)。冷凍食品類微生物衛生標準。衛授食字第 1071303671 號。
衛生福利部。(2021)。水產品中揮發性鹽基態氮之檢驗方法。衛授食字第 1101902415 號。
衛生福利部。(2021)。食品中微生物衛生標準。衛授食字第 1091302247 號。
龐玉珍。(1995)。影響虱目魚游離組胺酸及其他含氮抽出物含量因素之探討。國立臺灣海洋大學水產食品科學系碩士學位論文,基隆。
Ando, M., Toyohara, H., Shimizu, Y., & Sakaguchi, M. (1991). Post-Mortem Tenderization of Fish Muscle Proceeds Independently of Resolution of Rigor Mortis. Nippon Suisan Gakkaishi, 57 (6), 1165–1169.
Amano, H., Fujiyoshi, T., & Noda, H. (1989). Changes of free L-histidine and anserine levels in the muscle of starved whitefish Coregonus muksun. Nippon Suisan Gakkaishi, 55 (2). 373
A.O.A.C. (1998). Official Methods of Analysis of the Association of Official Analytical Chemists. 16th ed. Ed. by Sidney, W., Washington D. C., USA.
Aoki, T., Takada, K., & Kunisaki, N. (1991). On the study of proximate composition, mineral, fatty acid, free amino acid, muscle hardness, and color difference of six species of wild and cultured fishes. Nippon Suisan Gakkaishi, 57, 1927–1934.
Asghar, A., & Henrickson, R. L. (1982). Post-mortem electrical stimulation of carcasses: Effects on biochemistry, biophysics, microbiology and quality of meat. Technical Bulletin T-Oklahoma, Agricultural Experiment Station (USA), 156.
Ashie, I. N. A., Smith, J. P., Simpson, B. K., & Haard, N. F. (1996). Spoilage and shelf‐life extension of fresh fish and shellfish. Critical Reviews in Food Science & Nutrition, 36 (1–2), 87–121.
Ayala, M. D., Abdel, I., Santaella, M., Martínez, C., Periago, M. J., Gil, F., Blanco, A., & Albors, O. L. (2010). Muscle tissue structural changes and texture development in sea bream, Sparus aurata L., during post-mortem storage. LWT-Food Science and Technology, 43 (3), 465–475.
Bailey, A. J. (1972). The basis of meat texture. Journal of the Science of Food and Agriculture, 23 (8), 995–1007.
Bate-Smith, E. C., & Bendall, J. R. (1947). Rigor mortis and adenosine-triphosphate. The Journal of Physiology, 106 (2), 177.
Bott, T. L., Deffner, J. S., Mccoy, E., & Foster, E. M. (1966). Clostridium botulinum type E in fish from the Great Lakes. Journal of Bacteriology, 91 (3), 919–924.
Castro, P., Millán, R., Penedo, J. C., Sanjuán, E., Santana, A., & Caballero, M. J. (2012). Effect of storage conditions on total volatile base nitrogen determinations in fish muscle extracts. Journal of Aquatic Food Product Technology, 21 (5), 519–523.
Chiou, T.K., Lai, M.M., Lan, H.L., & Shiau, C.Y. (2002). Extractive component changes in the foot muscle of live small abalone during storage. Fisheries Science, 68 (2), 380–387.
Church, N. (1998). MAP fish and crustaceans- sensory enhancement. Food Science and Technology Today, 12 (2), 73–83.
Conn, H. (1992). “Umami”: the fifth basic taste. Nutrition & Food Science, 92 (2), 21–23.
Coppes-Petricorena, Z., Pavlisko, A., & Vecchi, S. De. (2002). Texture measurements in fish and fish products. Journal of Aquatic Food Product Technology, 11 (1), 89–105.
Coppes‐Petricorena, Z. (2010). Texture measurements in fish and fish products. Handbook of Seafood Quality, Safety and Health Applications, 130–138.
Delbarre-Ladrat, C., Chéret, R., Taylor, R., & Verrez-Bagnis, V. (2006). Trends in postmortem aging in fish: understanding of proteolysis and disorganization of the myofibrillar structure. Critical Reviews in Food Science and Nutrition, 46 (5), 409–421.
Dutson, T. R. (1983). Relationship of pH and temperature to disruption of specific muscle proteins and activity of lysosomal proteases. Journal of Food Biochemistry, 7 (4), 223–245.
Duun, A. S., & Rustad, T. (2007). Quality changes during superchilled storage of cod (Gadus morhua) fillets. Food Chemistry, 105 (3), 1067–1075.
Duun, A. S., & Rustad, T. (2008). Quality of superchilled vacuum packed Atlantic salmon (Salmo salar) fillets stored at−1.4°C and−3.6°C. Food Chemistry, 106 (1), 122–131.
Ehira, S., & Uchiyama, H. (1973). Formation of inosine and hypoxanthine in fish muscle during ice storage. Bulletin of Tokai Regional Fisheries Research Laboratory, 75, 63–73.
Etherington, D. J. (1987). Collagen and meat quality: effects of conditioning and growth rate. Advances in Meat Research, 4, 351–360.
Fantasia, L. D., & Duran, A. P. (1969). Incidence of Clostridium botulinum type E in commercially and laboratory dressed whitefish chubs. In Food Technology (Vol. 23, Issue 6, p. 793).
F.A.O. (2022).The state of world fisheries and aquaculture, [https://openknowledge.fao.org/server/api/core/bitstreams/a2090042-8cda-4f35-9881-16f6302ce757/content].
Fuentes, A., Barat, J. M., Fernández-Segovia, I., & Serra, J. A. (2008). Study of sea bass (Dicentrarchus labrax L.) salting process: Kinetic and thermodynamic control. Food Control, 19 (8), 757–763.
Fuke, S. (1994). Taste-active components of seafoods with special reference to umami substances. In Seafoods: Chemistry, processing technology and quality (pp. 115–139). Springer.
Fuke, S., & Konosu, S. (1991). Taste-active components in some foods: A review of Japanese research. Physiology & Behavior, 49 (5), 863–868.
Goll, D. E., Otsuka, Y., Nagainis, P. A., Shannon, J. D., Sathe, S. K., & Muguruma, M. (1983). Role of muscle proteinases in maintenance of muscle integrity and mass. Journal of Food Biochemistry, 7 (3), 137–177.
Harper, G. S. (1999). Trends in skeletal muscle biology and the understanding of toughness in beef. Australian Journal of Agricultural Research, 50 (7), 1105–1129.
Hebard, C. E., Flick, G. J., & Martin, R. E. (1982). Occurrence and significance of trimethylamine oxide and its derivatives in fish and shellfish. Chemistry and Biochemistry of Marine Food Products, 149–304.
Hernández-Herrero, M. M., Duflos, G., Malle, P., & Bouquelet, S. (2003). Collagenase activity and protein hydrolysis as related to spoilage of iced cod (Gadus morhua). Food Research International, 36 (2), 141–147.
Hiltz, D. F., Dyer, W. J., Nowlan, S., & Dingle, J. R. (1971). Variation of biochemical quality indices by biological and technological factors. Fish Inspection and Quality Control, 191–195.
Hirano, T., Nakamura, H., & Suyama, M. (1980). Quality of wild and cultured ayu. 2. Seasonal variation of proximate composition. Bulletin of the Japanese Society of Scientific Fisheries, 46 (1), 75–78.
Hitchins, A. D., Feng, P., Watkins, W. D., Rippey, S. R., & Chandler, L. A. (1995). Escherichia coli and the coliform bacteria, p. 4.01–4.29. Bacteriological Analytical Manual, 8th Ed. AOAC International, Gaithersburg, MD.
Hocquette, J. F., Ortigues-Marty, I., Pethick, D., Herpin, P., & Fernandez, X. (1998). Nutritional and hormonal regulation of energy metabolism in skeletal muscles of meat-producing animals. Livestock Production Science, 56 (2), 115–143.
Ioka, H., & Yamanaka, H. (1997). Quality evaluation of the muscle of cultured plaice fed with three different diets. Nippon Suisan Gakkaishi, 63 (3), 370–377.
Irurueta, M., Cadoppi, A., Langman, L., Grigioni, G., & Carduza, F. (2008). Effect of aging on the characteristics of meat from water buffalo grown in the Delta del Paraná region of Argentina. Meat Science, 79 (3), 529–533.
Iwamoto, M., Yamanaka, H., Abe, H., Ushio, H., Watabe, S., & Hashimoto, K. (1988). ATP and creatine phosphate breakdown in spiked plaice muscle during storage, and activities of some enzymes involved. Journal of Food Science, 53 (6), 1662–1665.
Jayasooriya, S. D., Torley, P. J., D’arcy, B. R., & Bhandari, B. R. (2007). Effect of high power ultrasound and ageing on the physical properties of bovine Semitendinosus and Longissimus muscles. Meat Science, 75 (4), 628–639.
Jeacocke, R. E. (1984). The kinetics of rigor onset in beef muscle fibres. Meat Science, 11 (4), 237–251.
Jeyasekaran, G., Ganesan, P., Anandaraj, R., Shakila, R. J., & Sukumar, D. (2006). Quantitative and qualitative studies on the bacteriological quality of Indian white shrimp (Penaeus indicus) stored in dry ice. Food Microbiology, 23 (6), 526–533.
Judge, M. D., & Aberle, E. D. (1982). Effects of chronological age and postmortem aging on thermal shrinkage temperature of bovine intramuscular collagen. Journal of Animal Science, 54 (1), 68–71.
Kamal, M. (1989). Rigor-mortis progress of sardine and mackerel in association with ATP degradation and lactate accumulation. Nippon Suisan Gakkaishi, 55 (10), 1833–1839.
Ke, P. J., Smith-Lall, B., & Yang, C.-K. (1990). Evaluation and improvement of the quality of fresh atlantic queen crab (Chinoecetes opilio). LWT, 23 (1), 41–44.
Komata, Y. (1990). Umami taste of seafoods. Food Reviews International, 6 (4), 457–487.
Konosu, S. (1974). Distribution of nitrogenous constituents in the muscle extracts of eight species of fish. Nippon Suisan Gakkaishi, 40, 909–915.
Konosu, S., & Yamaguchi K. (1982). The flavor components in fish and shellfish. In: Chemistry and biochemistry of marine food products, edited by R.E. Martin et al., AVI Publishing Co., Westport, Connecticut, 367-404.
Konosu, S., Yamaguchi, K., & Hayashi, T. (1987). Role of extractive components of boiled crab in producing the characteristic flavor. Journal of Food Science, 9, 235-253.
Koohmaraie, M. (1996). Biochemical factors regulating the toughening and tenderization processes of meat. Meat Science, 43, 193–201.
Koohmaraie, M., Kent, M. P., Shackelford, S. D., Veiseth, E., & Wheeler, T. L. (2002). Meat tenderness and muscle growth: is there any relationship? Meat Science, 62 (3), 345–352.
Korhonen, R. W., Lanier, T. C., & Giesbrecht, F. (1990). An evaluation of simple methods for following rigor development in fish. Journal of Food Science, 55 (2), 346–348.
Lee, Y.C., Lin, C.S., Zeng, W.H., Hwang, C.C., Chiu, K., Ou, T.Y., Chang, T.H., & Tsai, Y.H. (2021). Effect of a novel microwave-assisted induction heating (MAIH) technology on the quality of prepackaged Asian hard clam (Meretrix lusoria). Foods, 10 (10), 2299.
Liu, D., Liang, L., Xia, W., Regenstein, J. M., & Zhou, P. (2013). Biochemical and physical changes of grass carp (Ctenopharyngodon idella) fillets stored at−3 and 0°C. Food Chemistry, 140 (1–2), 105–114.
Matoba, T., Kuchiba, M., Kimura, M., & Hasegawa, K. (1988). Thermal degradation of flavor enhancers, inosine 5′‐monophosphate, and guanosine 5′‐monophosphate in aqueous solution. Journal of Food Science, 53 (4), 1156–1159.
Matsumoto, M., & Yamanaka, H. (1990). Post-mortem biochemical changes in the muscle of kuruma prawn during storage and evaluation of the freshness. Nippon Suisan Gakkaishi, 56 (7), 1145–1149.
Mestre Prates, J. A. (2002). Factors and mechanisms responsible for meat ageing. Re Vue de Mé de Ci Ne Vé Té Ri Nai Re, 153 (7), 499–506.
Morioka, K., Moriki, T., Itoh, Y., & Obatake, A. (1998). Comparison of chemical components in the muscle of red sea bream [Pagrus major] fed different diets. Bulletin of the Japanese Society of Scientific Fisheries (Japan), 64 (5).867-877
Morishita, T., Uno, K., Imura, N., & Takahashi, T. (1987). Variation with growth in the proximate compositions of cultured red sea bream [Chrysophrys major]. Bulletin of the Japanese Society of Scientific Fisheries (Japan), 53 (9).1601-1607
Murata, Y., Henmi, H., & Nishioka, F. (1994). Extractive components in the skeletal muscle from ten different species of scombroid fishes. Fisheries Science, 60 (4), 473–478.
Nakajima, N., Ichikawa, K., Kamada, M., & Fujit, E. (1961). Food chemical studies on 5’-ribonucleotides. Part II. On the 5’-ribonucleotides in foods.(2) 5’-Ribonucleotides in fishes, shellfishes and meats. Nippon Nogeikagaku Kaishi, 35, 803–808.
Nazir, D. J., & Magar, N. G. (1963). Biochemical changes in fish muscle during rigor mortis. Journal of Food Science, 28 (1), 1–7.
Nieva-Echevarría, B., Manzanos, M. J., Goicoechea, E., & Guillén, M. D. (2017). Changes provoked by boiling, steaming and sous-vide cooking in the lipid and volatile profile of European sea bass. Food Research International, 99, 630–640.
Nishimura, T., Liu, A., Hattori, A., & Takahashi, K. (1998). Changes in mechanical strength of intramuscular connective tissue during postmortem aging of beef. Journal of Animal Science, 76 (2), 528–532.
Ólafsdóttir, G., Martinsdóttir, E., Oehlenschläger, J., Dalgaard, P., Jensen, B., Undeland, I., Mackie, I. M., Henehan, G., Nielsen, J., & Nilsen, H. (1997). Methods to evaluate fish freshness in research and industry. Trends in Food Science & Technology, 8 (8), 258–266.
Olatunde, O. O., Benjakul, S., & Vongkamjan, K. (2020). Cold plasma combined with liposomal ethanolic coconut husk extract: A potential hurdle technology for shelf-life extension of Asian sea bass slices packaged under modified atmosphere. Innovative Food Science & Emerging Technologies, 65, 102448.
Oliveira, J., Cunha, A., Castilho, F., Romalde, J. L., & Pereira, M. J. (2011). Microbial contamination and purification of bivalve shellfish: Crucial aspects in monitoring and future perspectives–A mini-review. Food Control, 22 (6), 805–816.
Ortiz, J., Lemus-Mondaca, R., Vega-Gálvez, A., Ah-Hen, K., Puente-Diaz, L., Zura-Bravo, L., & Aubourg, S. (2013). Influence of air-drying temperature on drying kinetics, colour, firmness and biochemical characteristics of Atlantic salmon (Salmo salar L.) fillets. Food Chemistry, 139 (1–4), 162–169.
Oz, F., & Kotan, G. (2016). Effects of different cooking methods and fat levels on the formation of heterocyclic aromatic amines in various fishes. Food Control, 67, 216–224.
Perez‐Villarreal, B., & Pozo, R. (1990). Chemical composition and ice spoilage of albacore (Thunnus alalunga). Journal of Food Science, 55 (3), 678–682.
Pivarnik, L. F., Thiam, M., & Christopher Ellis, P. (1998). Rapid determination of volatile bases in fish by using an ammonia ion-selective electrode. Journal of AOAC International, 81 (5), 1011–1022.
Post, L. S., Lee, D. A., Solberg, M., Furgang, D., Specchio, J., & Graham, C. (1985). Development of botulinal toxin and sensory deterioration during storage of vacuum and modified atmosphere packaged fish fillets. Journal of Food Science, 50 (4), 990–996.
Price, R. J., Melvin, E. F., & Bell, J. W. (1991). Postmortem changes in chilled round, bled and dressed albacore. Journal of Food Science, 56 (2), 318–321.
Reedy, M. K., Holmes, K. C., & Tregear, R. T. (1965). Induced changes in orientation of the cross-bridges of glycerinated insect flight muscle. Nature, 207 (5003), 1276–1280.
Saeki, K. (1982). The variations with growth in nutritive components and several nutritive elements for wild and cultured puffers. Nippon Suisan Gakkaishi, 48, 967–970.
Saito, T., Aarai, K. & Matsuyoshi, M. (1959). A new method for estimating the freshness of fish. Bulletin of the Japanese Society of Scientific Fisheries, 24 (9), 749.
Saito, M., & Kunisaki, N. (1998). Proximate composition, fatty acid composition, free amino acid contents, mineral contents, and hardness of muscle from wild and cultured puffer fish Takifugu rubripes. Nippon Suisan Gakkaishi, 64 (1), 116–120.
Sathivel, S. (2005). Chitosan and protein coatings affect yield, moisture loss, and lipid oxidation of pink salmon (Oncorhynchus gorbuscha) fillets during frozen storage. Journal of Food Science, 70 (8), e455–e459.
Sawyer, F. M., Cardello, A.V, & Prell, P. A. (1988). Consumer evaluation of the sensory properties of fish. Journal of Food Science, 53(1), 12–18.
Shiau, C.-Y., Pong, Y.-J., Chiou, T.-K., & Chai, T. (1997). Effect of growth on the levels of free histidine and amino acids in white muscle of milkfish (Chanos chanos). Journal of Agricultural and Food Chemistry, 45 (6), 2103–2106.
Shirai, T., Hirakawa, Y., Koshikawa, Y., Toraishi, H., Terayama, M., Suzuki, T., & Hirano, T. (1996). Taste components of Japanese spiny and shovel-nosed lobsters. Fisheries Science, 62 (2), 283–287.
Steen, D., Claeys, E., Uytterhaegen, L., DeSmet, S., & Demeyer, D. (1997). Early post-mortem conditions and the calpain/calpastatin system in relation to tenderness of double-muscled beef. Meat Science, 45 (3), 307–319.
Sumner, J. L., Ross, T., & Ababouch, L. (2004). Application of risk assessment in the fish industry (Vol. 442). Food & Agriculture Org.
Suyama, M. (1982). Buffering capacity and taste of carnosine and its methylated compounds. Nippon Suisan Gakkaishi, 48, 89–95.
Suzuki, T. (1981). Characteristics of fish meat and fish protein. Fish and Krill Protein: Processing Technology, 1–61.
Suzuki, T., Hirano, T., & Shirai, T. (1990). Distribution of extractive nitrogenous constituents in white and dark muscles of fresh-water fish. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 96 (1), 107–111.
Tachibana, K. (1993). Changes of ultrastructure and cytochemical Mg2+-ATPase activity in ordinary muscle of cultured and wild red sea bream during storage in ice. Nippon Suisan Gakkaishi, 59, 721–727.
Taylor, R. G., Fjaera, S. O., & Skjervold, P. O. (2002). Salmon fillet texture is determined by myofiber‐myofiber and myofiber‐myocommata attachment. Journal of Food Science, 67 (6), 2067–2071.
Taylor, R. G., Geesink, G. H., Thompson, V. F., Koohmaraie, M., & Goll, D. E. (1995). Is Z-disk degradation responsible for postmortem tenderization? Journal of Animal Science, 73 (5), 1351–1367.
Tsai, M. J., & Pan, B. S. (1988). Biochemical changes of grass shrimp (Penaeus monodon) during chilled storage. Journal of the Fisheries Society of Taiwan, 15 (1), 49–58.
VanWaarde, A. (1988). Biochemistry of non-protein nitrogenous compounds in fish including the use of amino acids for anaerobic energy production. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 91 (2), 207–228.
Vareltzis, K. (2000). Fish proteins from unexploited and underdeveloped sources. In Developments in Food Science (Vol. 41, pp. 133–159). Elsevier.
Vasanthi, C., Venkataramanujam, V., & Dushyanthan, K. (2007). Effect of cooking temperature and time on the physico-chemical, histological and sensory properties of female carabeef (buffalo) meat. Meat Science, 76 (2), 274–280.
Vega-Gálvez, A., Miranda, M., Clavería, R., Quispe, I., Vergara, J., Uribe, E., Paez, H., & DiScala, K. (2011). Effect of air temperature on drying kinetics and quality characteristics of osmo-treated jumbo squid (Dosidicus gigas). LWT-Food Science and Technology, 44 (1), 16–23.
Wang, D., Tang, J., Correia, L. R., & Gill, T. A. (1998). Postmortem changes of cultivated Atlantic salmon and their effects on salt uptake. Journal of Food Science, 63 (4), 634–637.
Wang, Q., Liu, B., Cao, J., Li, C., & Duan, Z. (2019). The impacts of vacuum microwave drying on osmosis dehydration of tilapia fillets. Journal of Food Process Engineering, 42 (1), e12956.
Watabe, S., Ushio, H., Iwamoto, M., Yamanaka, H., & Hashimoto, K. (1989). Temperature‐dependency of rigor‐mortis of fish muscle: myofibrillar Mg2+‐ATPase activity and Ca2+ uptake by sarcoplasmic reticulum. Journal of Food Science, 54 (5), 1107.
Watabe, S., Kamal, M., & Hashimoto, K. (1991). Postmortem changes in ATP, creatine phosphate, and lactate in sardine muscle. Journal of Food Science, 56 (1), 151–153.
Watanabe, K., Maezawa, H., Nakamura, H., & Konosu, S. (1983). Seasonal variation of extractive nitrogen and free amino acids in the muscle of the ascidian Halocynthia roretzi. Nippon Suisan Gakkaishi, 49, 1755–1758.
Watanabe, K., Uehara, H., Sato, M., & Konosu, S. (1985). Seasonal variation of extractive nitrogeneous constituents in the muscle of the ascidian, Halocynthia roretzi. Bull Japan Soc Sci Fish, 51, 1293–1298.
Watanabe, H., Yamanaka, H., & Yamakawa, H. (1992). Post-mortem Biochemical Changes in the Muscle of Disk Abalone during Storage. Nippon Suisan Gakkaishi, 58 (11), 2081–2088.
Watanabe, E., & Turner, A. P. F. (1993). Biosensors for the quality control of fish meat. Agro-Food-Ind. Hi-Tech, March/April:1-16.
Wierbicki, E., & Deatherage, F. E. (1958). Water content of meats, determination of water-holding capacity of fresh meats. Journal of Agricultural and Food Chemistry, 6 (5), 387–392.
Wright, C. E., Tallan, H. H., Lin, Y. Y., & Gaull, G. E. (1986). Taurine: biological update. Annual Review of Biochemistry, 55 (1), 427–453.
Xiao, H., Yu, J., Song, L., Hu, M., Guo, H., Xue, Y., & Xue, C. (2022). Characterization of flesh firmness and ease of separation in the fermentation of sea bass in terms of protein structure, texture, and muscle tissue structural changes. Food Research International, 162, 111965. https://doi.org/10.1016/j.foodres.2022.111965
Yamanaka, H., & Shimada, R. (1996). Post-mortem biochemical changes in the muscle of Japanese spiny lobster during storage. Fisheries Science, 62 (5), 821–824.

電子全文 電子全文(網際網路公開日期:20290728)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊