跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/22 19:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何佳鎮
研究生(外文):He, Jia-Zhen
論文名稱:添加牛磺酸於飼料中對珍珠龍膽 成長和免疫影響之研究
論文名稱(外文):Study on Effects of Adding Taurine to Feeds on the Growth and Immunity of Hybrid Grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂)
指導教授:林子詠
指導教授(外文):Lin, Tzu- Yung
口試委員:潘婕玉洪明昌吳宗孟劉獻岳林子詠
口試委員(外文):Pan, Chieh-YuHong, Ming-ChangWu, Tsung-MengLiu, Hsien-YuehLin, Tzu- Yung
口試日期:2024-01-26
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:水產養殖系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:49
中文關鍵詞:牛磺酸替代蛋白原植物性蛋白珍珠龍膽石斑 (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂)
外文關鍵詞:TaurineAlternative Protein SourcePlant ProteinPearl Grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:41
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
水產養殖業中最主要成本因素不外乎為飼料,飼料中最為昂貴且佔比最重主要為蛋白質,亦是影響魚隻成長最為主要之因素。近年來隨著魚粉日漸上漲,目前水產飼料中以植物性原料取代魚粉已被認為是水產養殖業永續發展之關鍵。而大豆衍生物原料被認為是魚類蛋白質主要重要來源之一,時常用來取代水產飼料中魚粉之替代蛋白源。然而水產飼料中含有高含量植物性原料時,植物性原料中之抗營養因子會使其攝食率、成長率及飼料利用效率皆會大幅降低,若添加某些氨基酸,例如:甲硫胺酸、離胺酸或牛磺酸,則可增進植物性原料營養價值及誘引效果。珍珠龍膽之特點為成長快速、耐運輸、高抗病力、換肉率佳等優點,無疑對台灣石斑產業帶來一線希望。故本研究嘗試在不同比例之大豆蛋白取代量下添加牛磺酸,測試其添加後對珍珠龍膽之成長、攝食量、體組成及免疫反應之影響,並獲得珍珠龍膽之最適添加條件,增加其飼料商業生產競爭力。在臺灣石斑魚屬於高經濟價值之魚種,而臺灣早期石斑魚之養殖優勢為產業分工精細、地理環境氣候適宜及政府政策配合等,然而近年來中華人民共和國投入大量科學研究經費及人力成本,極力發展石斑魚之產業,除了養殖石斑魚種種類繁多之外,亦以珍珠龍膽為主力魚種,且邁向串連養殖之生產模式,目前人工養殖之產能已超過十萬公噸,遠遠超過臺灣的產能2萬5千公噸,臺灣石斑魚產業看似已失去國際競爭力,但事實並非如此,藉由增進飼料原料中植物性蛋白原之利用性,發展高育成率、低成本之珍珠龍膽養殖技術,儼然已成為延續臺灣石斑魚產業之重要議題。
In the field of aquaculture, feed represents the primary cost factor, with proteins being the most expensive and critical component. Proteins play a vital role in the growth of fish. Recently, the rising costs of fishmeal have led to a shift towards using plant-based materials as an alternative in aquaculture feeds, a move considered essential for the sustainable development of the industry. Soy-derived materials, in particular, have emerged as a significant source of protein for fish, frequently replacing fishmeal in feeds. However, feeds with a high content of plant-based materials can suffer from reduced intake, growth rates, and feed efficiency due to anti-nutritional factors present in these plant materials. The addition of certain amino acids, such as methionine, lysine, or taurine, can enhance the nutritional value and appeal of plant-based feeds.The Hybrid Grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus) is notable for its rapid growth, high disease resistance, transport resilience, and efficient meat conversion rates, offering promising prospects for Taiwan's grouper industry. This study investigates the effects of adding varying proportions of taurine to soy protein-based feeds on the growth, feed intake, body composition, and immune response of the Pearl Grouper. The objective is to determine the optimal conditions for taurine supplementation, thereby enhancing the competitiveness of commercial feed production.In Taiwan, grouper species are highly valued for their economic significance. The early advantages of Taiwan's grouper farming included detailed industrial division, favorable geographic and climatic conditions, and supportive government policies. However, recent extensive investments in scientific research and human resources by the People's Republic of China have significantly advanced its grouper industry. With a variety of cultured species and a focus on the Pearl Grouper, China has adopted an integrated farming approach, surpassing Taiwan's production capacity, which stands at 25,000 tons compared to China's 100,000 tons. Despite this, Taiwan can still maintain its competitiveness in the global market by improving the utilization of plant-based proteins in feed and developing high-yield, low-cost farming techniques for the Pearl Grouper, which have become crucial for the sustainability of Taiwan's grouper industry.
摘要....................................i
Abstract................................iii
致謝....................................v
目錄....................................vi
表目錄.................................viii
圖目錄...................................ix
1. 前言……………………………………………………………….....…....1
1.1珍珠龍膽介紹………………………………………………………………..1
1.2珍珠龍膽其市場價值………………………………………………...2
1.3養殖漁業及飼料產業………………………………………………………..2
1.4水產配合飼料………………………………………………………………..3
1.5魚粉之價值……………………………………………………………….….3
1.6魚粉之節約…………………………………………………………………..4
1.7植物性蛋白之挑戰…………………………………………………………..5
1.8牛磺酸之性質………………………………………………………………..5
1.9甲硫胺酸之性質……………………………………………………………..7
1.10牛磺酸對於魚類生長之重要性……………………………………………7
1.11魚類呼吸爆活性(respiratory burst activity)意義........................8
1.12魚類溶菌酶活性(lysozyme activity)意義.................................9
1.13魚類超氧化物歧化酶(SOD)意義...........................................9
1.14魚類吞噬活性(phagocytic activity)意義.................................9
1.15實驗目的……………………………………………………………………10
2. 材料方法………………………………………………………………....11
2.1實驗之魚種…………………………………………………………………..11
2.2成長投餵實驗………………………………………………………………..11
2.3飼料組成及配製……………………………………………………………..13
2.4一般成份分析………………………………………………………………..16
2.4.1灰分(Ash)及水份(Moisture)之分析……………………………………….16
2.4.2粗脂肪(ether extract)分析………………………………………………….18
2.4.3粗蛋白(ether extract)分析………………………………………………….18
2.5血液免疫生化分析………………………………………………………...…19
2.5.1血液免疫生化分析之超氧化物岐化酶(SOD)活性測定……………….…19
2.5.2血液免疫生化分析之溶菌酶含量測定…………………………………....20
2.5.3血清蛋白質濃度定量……………………………………………………....21
2.5.4魚隻免疫分析之吞噬細胞活性(PA)…………………………………........21
2.5.5免疫分析之呼吸爆(O2-)…………………………………....……………...22
2.6創傷弧菌(Vibrio vulnificus)攻毒實驗…………………………………….....23
3. 結果………………………………………………………………………........24
3.1成長表現…………………………………………………………………...…24
3.2創傷弧菌(Vibrio vulnificus)攻毒實驗之表現.................25
4.討論................................................39
5.結論.............................................…......40
6.參考文獻...................................41

1. 行政院農業部漁產品全球資訊網,111年12月。https://m.coa.gov.tw/?status=fish
2. 沈士新、鄭安倉、劉秉忠、林正輝、冉繁華,2014。水產養殖生技,農業生技產業季刊,NO.38。
3. 周瑞良,科學發展, 2012年5月,473期p38-43。
4. 吳春榮、王志強、劉德軍,2013。中國飼料科學p63-67。
5.Alexis, M. N., & Nengas, I. (2001). Current state of knowledge concerning the use of soy products in diets for feeding sea bass and sea bream needs for future research (p. 32). Luxembourg, Brussels: American Soybean Association.
6. Anderson JL. The future of aquaculture and its role in the global food system. In: Evers SJ, Shriver AL, editors. Proceedings of the Eighteenth Biennial Conference of the International Institute Fisheries Economics Trade; 2016 July 11–15; Aberdeen, Scotland, UK. 2016.
7. Adeshina, I., & Abdel-Tawwab, M. (2020). Dietary taurine incorporation to high plant protein-based diets improved growth, biochemical, immunity, and antioxidants biomarkers of African catfish, Clarias gariepinus (B.). Fish physiology and biochemistry, 46, 1323-1335.
8. Al‐Feky, S. S. A., El‐Sayed, A. F., & Ezzat, A. A. (2016). Dietary taurine enhances growth and feed utilization in larval N ile tilapia (O reochromis niloticus) fed soybean meal‐based diets. Aquaculture Nutrition, 22(2), 457-464.
9. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.
10. Carr, W. E., Netherton, III, J. C., Gleeson, R. A., & Derby, C. D. (1996). Stimulants of feeding behavior in fish: analyses of tissues of diverse marine organisms. The biological bulletin, 190(2), 149-160.
11. Cunnane, S. C., & Brosnan, J. T. (2002). Taurine: a multifunctional amine. Nutrition Reviews, 60, 249-266.
12. Chu, Z. J., Gong, Y., Lin, Y. C., Yuan, Y. C., Cai, W. J., Gong, S. Y., & Luo, Z. (2014). Optimal dietary methionine requirement of juvenile C hinese sucker, M yxocyprinus asiaticus. Aquaculture Nutrition, 20(3), 253-264.
13. Di Mauro, S., & Bonetti, A. (2007). Taurine: from basic research to clinical applications. Neuroscience, 150, 77-100.
14. Elango, R. (2020). Methionine nutrition and metabolism: insights from animal studies to inform human nutrition. The Journal of Nutrition, 150(Supplement_1), 2518S-2523S.
15. FAO. The State of World Fisheries and Aquaculture.(SOFIA), 2022.Part 1, p3-5.
16. Food and Agriculture Organization of the United Nations. The state of world fisheries and aquaculture 2016. 2016. Available from: http://www.fao.org/3/a-i5555e.pdf.
17. Francis, G., Makkar, H. P., & Becker, K. (2001). Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199(3-4), 197-227.
18. Francis, G., Makkar, H. P., & Becker, K. (2001). Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199(3-4), 197-227.
19. Floreto, E. A., Bayer, R. C., & Brown, P. B. (2000). The effects of soybean-based diets, with and without amino acid supplementation, on growth and biochemical composition of juvenile American lobster, Homarus americanus. Aquaculture, 189(3-4), 211-235.
20. Gatlin III, D. M., Barrows, F. T., Brown, P., Dabrowski, K., Gaylord, T. G., Hardy, R. W., & Wurtele, E. 2007. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture research, 38(6), 551-579.
21. García-Ortega, A., Kissinger, K. R., & Trushenski, J. T. (2016). Evaluation of fish meal and fish oil replacement by soybean protein and algal meal from Schizochytrium limacinum in diets for giant grouper Epinephelus lanceolatus. Aquaculture, 452, 1-8.
22. Gaylord, T. G., Teague, A. M., & Barrows, F. T. (2006). Taurine supplementation of all‐plant protein diets for rainbow trout (Oncorhynchus mykiss). Journal of the World Aquaculture Society, 37(4), 509-517.
23. Gaon, A., Nixon, O., Tandler, A., Falcon, J., Besseau, L., Escande, M.,& Koven, W. (2021). Dietary taurine improves vision in different age gilthead sea bream (Sparus aurata) larvae potentially contributing to increased prey hunting success and growth. Aquaculture, 533, 736129.
24. Hossain, M. S., Small, B. C., Kumar, V., & Hardy, R. (2023). Utilization of functional feed additives to produce cost‐effective, ecofriendly aquafeeds high in plant‐based ingredients. Reviews i
25. Hossain, M. S., & Koshio, S. (2017). Dietary substitution of fishmeal by alternative protein with guanosine monophosphate supplementation influences growth, digestibility, blood chemistry profile, immunity, and stress resistance of red sea bream, Pagrus major. Fish physiology and biochemistry, 43, 1629-1644.
26. Hua, K., Cobcroft, J. M., Cole, A., Condon, K., Jerry, D. R., Mangott, A., & Strugnell, J. M. (2019). The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth, 1(3), 316-329.
27. Huang, M., Yang, X., Zhou, Y., Ge, J., Davis, D. A., Dong, Y.,& Dong, S. (2021). Growth, serum biochemical parameters, salinity tolerance and antioxidant enzyme activity of rainbow trout (Oncorhynchus mykiss) in response to dietary taurine levels. Marine Life Science & Technology, 1-14.
28. Horwitz, W. (1975). Official methods of analysis (Vol. 222). Washington, DC: Association of Official Analytical Chemists.
29. Hua, K., Cobcroft, J. M., Cole, A., Condon, K., Jerry, D. R., Mangott, A.,& Strugnell, J. M. (2019). The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth, 1(3), 316-329.
30. Jacobsen, J. G., & Smith, L. H. (1968). Biochemistry and physiology of taurine and taurine derivatives. Physiological reviews, 48(2), 424-511.
31.Kissil, G. W., Lupatsch, I., Higgs, D. A., & Hardy, R. W. (2000). Dietary substitution of soy and rapeseed protein concentrates for fish meal, and their effects on growth and nutrient utilization in gilthead seabream Sparus aurata L. Aquaculture research, 31(7), 595-601.
32. Kousoulaki, K., Sæther, B. S., Albrektsen, S., & Noble, C. (2015). Review on European sea bass (Dicentrarchus labrax, Linnaeus, 1758) nutrition and feed management: a practical guide for optimizing feed formulation and farming protocols. Aquaculture Nutrition, 21(2), 129-151.
33. Krogdahl, Å., Penn, M., Thorsen, J., Refstie, S., & Bakke, A. M. (2010). Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquaculture research, 41(3), 333-344.
El-Sayed, A. F. M. (1999). Alternative dietary protein sources for farmed tilapia,
34. Kuzmina, V. V., Gavrovskaya, L. K., & Ryzhova, O. V. (2010). Taurine. Effect on exotrophia and metabolism in mammals and fish. Journal of Evolutionary Biochemistry and Physiology, 46, 19-27.
32. Koven, W., et al., Taurine improves the performance of white grouper juveniles (Epinephelus Aeneus) fed a reduced fish meal diet. Aquaculture, 2016. 460: p. 8-14.
35.Li, P., Mai, K., Trushenski, J., & Wu, G. (2009). New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino acids, 37, 43-53.
36. Li, Y., Wang, X., & Zhang, Y. (2020). Effect of heavy metal content in fishmeal on growth performance and nutrient utilization of broiler chickens. Animal Feed Science and Technology, 267, 1-9.
37. Lambert, I. H., Kristensen, D. M., Holm, J. B., & Mortensen, O. H. (2015). Physiological role of taurine–from organism to organelle. Acta Physiologica, 213(1), 191-212.
38. Nunes, A. J., Sá, M. V., Browdy, C. L., & Vazquez-Anon, M. (2014). Practical supplementation of shrimp and fish feeds with crystalline amino acids. Aquaculture, 431, 20-27.
39. Park, G. S., Takeuchi, T., Yokoyama, M., & Seikai, T. (2002). Optimal dietary taurine level for growth of juvenile Japanese flounder Paralichthys olivaceus. Fisheries science, 68(4), 824-829.
40. Qian, J., et al., Effects of taurine supplementation in a high-carbohydrate diet on growth performance, plasma biochemical, digestive and glucose metabolism enzymes in hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatus). Aquaculture Reports, 2021. 21: p. 100820.
41. Storebakken, T., Shearer, K. D., Baeverfjord, G., Nielsen, B. G., Åsgård, T., Scott, T., & De Laporte, A. (2000). Digestibility of macronutrients, energy and amino acids, absorption of elements and absence of intestinal enteritis in Atlantic salmon, Salmo salar, fed diets with wheat gluten. Aquaculture, 184(1-2), 115-132.
42. Schuller‐Levis, G., & Park, E. (2006). Is taurine a biomarker?. Advances in Clinical Chemistry, 41, 1-21.
43. Spitze, A. R., Wong, D. L., Rogers, Q. R., & Fascetti, A. J. (2003). Taurine concentrations in animal feed ingredients; cooking influences taurine content. Journal of Animal Physiology and Animal Nutrition, 87(7‐8), 251-262.
44.Sampath, W. W. H. A., Rathnayake, R. M. D. S., Yang, M., Zhang, W., & Mai, K. (2020). Roles of dietary taurine in fish nutrition. Marine Life Science & Technology, 2(4), 360-375.
45. Teves J F C, Ragaza J A. The quest for indigenous aquafeed ingredients: a review. Reviews in Aquaculture, 2016, 8(2):154–171.
View ArticleGoogle Scholar
46. Tacon AGL, Hasan MR, Metian M. Use of fishery resources as feed inputs for aquaculture development: trends and policy implications. Rome: FAO Fisheries Circular; 2006.
47. Tacon AGL, Hasan MR, Metian M. Demand and supply of feed ingredients for farmed fish and crustaceans: Trends and prospects. Rome: FAO Fisheries and Aquaculture Technical Paper; 2011. Issue: 564, pp. I,III,IV,VIII,IX,X,XI,XII,1–69,71–87.
48. Tacon AGJ, Metian M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture. 2008;285(1–4):146–58.
View ArticleGoogle Scholar
49. Wu, C., Wang, Z., & Liu, D. (2016). Effect of fishmeal digestibility on protein utilization in broiler chickens. Journal of Animal Science, 94, 2485-2492.
50. Wang, Z., Liu, D., & Wu, C. (2018). Effect of fishmeal fat content on storage stability of fishmeal. Journal of the Science of Food and Agriculture, 98, 562-567.
51. Wright, C. E., & Gaull, G. E. (1988). Role of taurine in brain development and vision. In Amino Acid Availability and Brain Function in Health and Disease (pp. 457-464). Berlin, Heidelberg: Springer Berlin Heidelberg.
52. Wang, L., Liu, Y., & Lu, Y. (2017). Taurine and its neuroprotective effects. Nutritional Neuroscience, 20, 241-251.
53. Wang, W., Yang, P., He, C., Chi, S., Li, S., Mai, K., & Song, F. (2021). Effects of dietary methionine on growth performance and metabolism through modulating nutrient-related pathways in largemouth bass (Micropterus salmoides). Aquaculture Reports, 20, 100642.
54. Wang, L., Gao, C., Wang, B., Wang, C., Sagada, G., & Yan, Y. (2023). Methionine in fish health and nutrition: Potential mechanisms, affecting factors, and future perspectives. Aquaculture, 739310.
55. Wu, G. (2020). Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino acids, 52(3), 329-360.
56. Wang, X., He, G., Mai, K., Xu, W., & Zhou, H. (2016). Differential regulation of taurine biosynthesis in rainbow trout and Japanese flounder. Scientific reports, 6(1), 21231.
57. Wang, Q., He, G., Wang, X., Mai, K., Xu, W., & Zhou, H. (2014). Dietary sulfur amino acid modulations of taurine biosynthesis in juvenile turbot (Psetta maxima). Aquaculture, 422, 141-145.
58.Yamamoto, T., Akimoto, A., Kishi, S., Unuma, T., & Akiyama, T. (1998). Apparent and true availabilities of amino acids from several protein sources for fingerling rainbow trout, common carp, and red sea bream. Fisheries science, 64(3), 448-458.
59. Yokoyama, M., Takeuchi, T., Park, G. S., & Nakazoe, J. (2001). Hepatic cysteinesulphinate decarboxylase activity in fish. Aquaculture Research, 32, 216-220.
60. Yan, L. C., Feng, L., Jiang, W. D., Wu, P., Liu, Y., Jiang, J., & Kuang, S. Y. (2019). Dietary taurine supplementation to a plant protein source‐based diet improved the growth and intestinal immune function of young grass carp (Ctenopharyngodon idella). Aquaculture Nutrition, 25(4), 873-896.
61. Zhang, X., Zhang, Y., & Wang, Y. (2019). Effect of fishmeal ash content on growth performance and nutrient utilization of broiler chickens. Animal Feed Science and Technology, 255, 1-9.
Oreochromis spp. Aquaculture, 179(1-4), 149-168.
62. Zheng, H., Zheng, Y., Zhao, L., Chen, M., Bai, G., Hu, Y.,& Gao, H. (2017). Cognitive decline in type 2 diabetic db/db mice may be associated with brain region-specific metabolic disorders. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1863(1), 266-273.

電子全文 電子全文(網際網路公開日期:20290216)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top