跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/12 20:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡承洋
研究生(外文):TSAI,CHENG-YANG
論文名稱:應用於第五代行動通訊之穿戴裝置天線與具梯形導波器準八木毫米波相位陣列天線設計
論文名稱(外文):Design of Wearable Antennas and Quasi-Yagi Millimeter-Wave Phased Array Antennas with Trapezoidal Directors for Fifth-Generation Mobile Communication
指導教授:陳華明陳華明引用關係林憶芳林憶芳引用關係
指導教授(外文):CHEN,HUA-MINGLIN,YI-FANG
口試委員:陳宏圖林淑芸陳華明林憶芳
口試委員(外文):CHEN,HONG-TULIN,SHU-YUNCHEN,HUA-MINGLIN,YI-FANG
口試日期:2024-07-26
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:107
中文關鍵詞:穿戴式裝置天線縮小化雙頻孔徑天線平面式準八木天線解隔離結構整合式平面巴倫毫米波相位陣列天線波束成型
外文關鍵詞:Wearable Device AntennaSize Reduced Dual-band Aperture AntennaPlanar Quasi-Yagi antennaIsolation StructureIntegrated Planar BalunMillimeter Wave Phased Array AntennaBeamforming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:11
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究應用於第五代行動通訊之「具雙頻GPS(Global Positioning System )頻段集成式天線整合穿戴式裝置與具梯形導波器準八木毫米波相位陣列天線」之設計,操作頻段分別為5G Frequency Range 1及Frequency Range 2。
第一款為5G雙頻GPS(Global Positioning System )頻段集成式天線整合穿戴式裝置,應用頻段涵蓋GPS L1/L5、5G FR1 n1/n2/n3/n7/n25/n77/n78/n79、WLAN 2.4GHz/5GHz、Bluetooth。天線設計於金屬錶殼內側四面,以晶片電感、電容與傳輸線理論最佳化整體阻抗匹配,透過高頻電磁模擬軟體Ansys HFSS計算電磁波人體吸收比(SAR)的數值分佈,並以cSAR3D量測系統實測驗證。
第二款為具梯形導波器之準八木線性陣列天線,應用於5G FR2 n261頻段。單天線部分,將準八木天線結構拆解並探討提高增益之設計,其包含:整合式平面巴倫(bulun)、反射器錐形結構與導波器排列,雙天線單元部分,則是探討天線間的解隔離機制。另於四天線單元部分,利用相位陣列天線理論,藉由高頻電磁模擬軟體Ansys HFSS計算在各個相位差下,探討主波束(以半功率波束寬為基準)所涵蓋的角度,此亦為波束成形(Beamforming)技術,並結合波束成形器(Beamforming Box),以此驗證該款天線實際應用之可行性。

This thesis mainly studies the design of "Dual-band GPS (Global Positioning System) integrated antenna integrated wearable device and trapezoidal waveguide quasi-Yagi millimeter wave phased array antenna" for application in the fifth-generation mobile communication, with operating frequency bands being 5G Frequency Range 1 and Frequency Range 2.
The first one is a 5G dual-band GPS (Global Positioning System) integrated antenna integrated wearable device, with application frequency bands covering GPS L1/L5, 5G FR1 n1/n2/n3/n7/n25/n77/n78/n79, WLAN 2.4GHz/5GHz, Bluetooth. The antenna is designed on the inner four sides of the metal watch case, and the overall impedance matching is optimized with chip inductors, capacitors, and transmission line theory. The distribution of Specific Absorption Rate (SAR) values of electromagnetic waves is calculated through the high-frequency electromagnetic simulation software Ansys HFSS, and verified by the cSAR3D measurement system.
The second one is a quasi-Yagi linear array antenna with trapezoidal waveguide, applied to the 5G FR2 n261 frequency band. For the single antenna part, the quasi-Yagi antenna structure is deconstructed and a design to increase gain is explored, which includes: integrated planar balun,cone-shaped reflector structure,and waveguide arrangement. The double antenna unit part examines the isolation mechanism between antennas. In the four antenna unit part, by using phased array antenna theory and by calculating at different phase differences through high-frequency electromagnetic simulation software Ansys HFSS, the coverage angle of the main beam (based on half-power beam width), which is also Beamforming technology, is explored. This is combined with a Beamforming Box to verify the feasibility of the actual application of this antenna.

頁次
摘要 I
ABSTRACT II
誌 謝 IV
目錄 VI
表 目 錄 VIII
圖 目 錄 IX
第一章 序論 1
1.1研究背景 1
1.2研究動機與文獻導覽 2
1.3論文架構 3
第二章 應用於第五代通訊之具雙頻GPS頻段集成式天線整合穿戴裝置 4
2.1前言 4
2.2集成式天線配置架構與設計 5
2.2.1孔徑天線基礎理論 7
2.2.2 GPS L1/L5天線配置與設計 12
2.2.3 WLAN/Bluetooth天線配置與設計 15
2.2.4 5G FR1 n77/n78/n79天線配置與設計 17
2.2.5 5G FR1 n1/n2/n3/n7/n25天線配置與設計 20
2.3天線模擬、實測結果與參數探討 22
2.3.1模擬與量測結果 22
2.3.2解隔離機制探討 30
2.3.3參數探討 32
2.4電磁波人體吸收比 42
2.4.1電磁波危害與制定SAR規範 42
2.4.2各國SAR規範標準 43
2.4.3 SAR模擬與實測 44
2.5 GPS定位量測 47
2.5.1 GPS衛星定位概述 47
2.5.2 GPS衛星定位原理 48
2.5.3 GPS衛星定位實測結果 49
2.6章節結論 51
第三章 具梯形導波器準八木毫米波天線 52
3.1前言 52
3.2平面準八木偶極天線原理 53
3.3天線結構與設計原理 58
3.3.1天線設計原理 59
3.3.2天線結構參數探討 69
3.4章節結論 77
第四章 具梯形導波器準八木毫米波陣列天線結合波束成形器 78
4.1前言 78
4.2相位陣列天線原理 79
4.3雙天線單元之準八木毫米波天線 84
4.3.1解隔離結構設計 84
4.3.2天線特性模擬說明 90
4.4四天線單元之準八木毫米波天線 93
4.5四天線單元之準八木毫米波天線結合波束成型器 97
4.5.1波束成形器說明 97
4.5.2模擬與實測結果探討 98
4.6章節結論 103
第五章 研究總結 104
參考文獻 105


[1]財團法人台灣經濟研究院,2021/2022產業技術白皮書,經濟部技術處,110年。
[2]財團法人台灣經濟研究院,2023/2024產業技術白皮書,經濟部產業技術司,112年。
[3]張庭瑜,台灣消費者智慧穿戴裝置使用調查:
https://www.fashionexpress.org.tw/funcloth/paper/5616822767
[4]台灣三星電子 Galaxy Watch5 Pro:
https://www.samsung.com/tw/watches/galaxy-watch/galaxy-watch5-pro-black-titanium-bluetooth-sm-r920nzkabri/
[5]Apple watch Ultra:https://www.apple.com/tw/apple-watch-ultra/
[6]Google pixel watch:
https://store.google.com/tw/product/google_pixel_watch?hl=zh-TW
[7]財團法人電信技術中心,美國FCC率先發布5G通訊頻段規劃及使用規範:https://www.ttc.org.tw/News/more?id=1272030867
[8]W.S. Chen, C.K. Yang, and W.S. Sin, “MIMO Antenna with Wi-Fi and Blue-Tooth for Smart Watch Applications,” 2015 IEEE MTT-S 2015 IMWS-BIO, Tainan City, Taiwan, Sept 21-23,2015.
[9]S.Y. Lin, Y.C. Lin, J.J. Peng, and Y.Y. Tuan, “Microstrip antennas for smart watch,” 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), Taiwan, July 26-29, 2016.
[10]C.Y. Hong and S.H. Yeh, “Cellular antenna design with metallic housing for wearable device,” 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), Taiwan, July 26-29,2016.
[11]W.Z. Lee and W.S. Chen, “An antenna design on metal frame of smart watch,” 2019 International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), Taiwan, Sept.18-20,2019.
[12]C.T. Liao, Z.K. Yang, and H.M. Chen, “Multiple Integrated Antennas for Wearable Fifth-Generation Communication and Internet of Things Applications, ”IEEE Access, vol.9, pp.120328-120346, August 2021.
[13]F. Zhou, Q. Liu, and K. Zhao, “A Dual-band Loop MIMO Antenna for Smart Watch Applications,” 2016 Progress In Electromagnetic Research Symposium (PIERS), Shanghai, China, August 8–11, 2016.
[14]Y. Jin and J. Choi, “Bandwidth Enhanced Compact Dual-band Smart Watch Antenna for WLAN 2.4/5.2 GHz Application,” 2017 International Applied Computational Electromagnetics Society Symposium (ACES), Suzhou, China, August 01-04,2017.
[15]H.S. Huang, H.L. Su, and S.L. Chen, “Multiband Antennas for GPS/GSM1800/ Bluetooth/Wi-Fi Smart Watch Applications,” 2017 IEEE International Conference on Computational Electromagnetics (ICCEM), Kumamoto, Japan, March 08-10,2017.
[16]W.S. Chen, G.Q. Lin, G.R. Zhang, and C.Y. Desmond, “Sim Multiband antennas for GSM/GPS/LTE/WLAN smart watch applications,” 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Taiwan, Oct.16-19,2017.
[17]W.S. Chen, G.Q. Lin, and W.H. Hsu, “WLAN MIMO Antennas with a GPS Antenna for Smart Watch applications,” 2017 International Workshop on Electromagnetics: Applications and Student Innovation Competition, Taiwan, May 30,2017.
[18]G. Li, G. Gao, J. Bao, B. Yi, C. Song, and L.A. Bian “A Watch Strap Antenna for the Applications of Wearable Systems,” IEEE Access, vol.5, pp.10332-10338, June 2017.
[19]K. Zhao, Z. Ying, and S. He “Antenna Designs of Smart Watch for Cellular Communications by using Metal Belt,” 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, April 13-17, 2015.
[20]S. Powell,D. Akos, and V. Zavorotny, “GPS SBAS L1/L5 bistatic radar altimeter,” 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, July 13-18, 2014.
[21]M.A. Sohaib, S. Bashir, S.u.R. Rehman, and F. Azam “High Gain Microstrip Yagi Antenna for Millimeter Waves,” 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, March 03-04, 2018.
[22]L. Lu, K. Ma, F. Meng, and K. S. Yeo, “Design of a 60-GHz Quasi-Yagi Antenna With Novel Ladder-Like Directors for Gain and Bandwidth Enhancements,” IEEE Antennas and Wireless Propagation Letters, vol.15, pp.682-685, August 2015.
[23]S. X. Ta, J. J. Han, H. Choo, and I. Park, “High gain 60 GHz band printed quasi-Yagi antenna using a novel microstrip-slotline transition feed” Proceedings of 2012 5th Global Symposium on Millimeter-Waves, Harbin, China, May 27-30, 2012.
[24]Y. Cheng and Y. Li, “A wideband high-gain quasi-yagi antenna for millimeter-wave applications,” 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi'an, China, October 16-19,2017.
[25]G. Bai, Y. Liu, and C. Liao, “A Broadband High Gain Microstrip Yagi Antenna Array for Mm wave Communication Systems,”2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Tangerang, Indonesia, November 18-20,2020.
[26]B. Ashrafi Nia, F. De Flaviis, and S. Saadat, “Flexible Quasi-Yagi-Uda antenna for 5G communication,” 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Singapore, Singapore, December 04-10,2021.
[27]K. C. Gupta, Microstrip lines and slotlines, Artech House Publish, pp.197-200,1996.
[28]K. L. Wong and P. R. Wu, “Dual-Wideband Linear Open Slot Antenna With Two Open Ends For The LTE/WWAN Smartphone,” Microw.Opt. Technol. Lett., Vol. 57, No. 6, 2015.
[29]Ansys HFSS Help: https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/Electronics/v222/en/home.htm%23../Subsystems/HFSS/Content/GettingStarted/WelcometoHFSSHelp.htm
[30]邱駿逸、陳冠名、楊舒雅、余志薇,「基地臺電磁波安全研究之文獻回顧與探討」,國家通訊傳播委員會108年委託研究報告,108年8月。
[31]ICNIRP,For Limiting Exposure To Electromagnetic Fields (100 KHz To 300 GHz),HEALTH PHYS 118(5),pp.483-524,2020
[32]Ginger / Morrison SAR webinar 德國萊茵: https://event.gc.tuv.com/index.php?r=site%2Fdownload-file&id=2787
[33]耀登科技股份有限公司-cSAR3D:https://www.auden.com.tw/es_biz/csar3d/
[34]CFR聯邦規則彙編(SAR值規範):https://www.ecfr.gov/current/title-47/chapter-I/subchapter-A/part-1/subpart-I/section-1.1310
[35]GeoComputing Laboratory,空間資訊學概論,中央大學。
[36] 內政部地政司衛星測量中心: https://gps.moi.gov.tw/sscenter/Introduce/InfoPage.aspx
[37]曾清涼, GPS衛星的導航,《科學發展》成功大學地球科學系 《科學發展》2011年11月,467期,58 ~ 66頁
[38]V. Patel and N. Desai, “Implementation of GPS L5 signal using model based design tool,” 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), Coimbatore, India, March 06-08,2014.
[39]H. Kumar and G. Kumar, “Compact Planar Yagi-Uda Antenna with Improved Characteristics,” 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, March 19-24,2017.
[40]H. Wang and I. Park, “Coplanar Strip Line-Fed Series Dipole Array Antenna for High-Gain Realization,” IEEE Trans. Antennas Propag., vol. 69, NO. 8, August 2021.
[41]Constantine A. Balanis, Antenna Theory: Analysis and Design, 4th Edition, John Wiley & Sons, pp.41、52、61、319、560、1027,2016.
[42]天線與微波元件實驗室,傳輸線理論,高科大光電工程研究所。
[43]D. M. Pozar, Microwave engineering, 4th Edition. John wiley & sons, 2012.

電子全文 電子全文(網際網路公開日期:20290807)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top