跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/09 20:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇俊憲
研究生(外文):SU CHUN HSIEN
論文名稱:模糊理論應用於晶圓隱形雷射切割之參數設計
論文名稱(外文):Application of Fuzzy Theory to Parameter Design in Wafer Stealth Laser Dicing
指導教授:蘇德仁蘇德仁引用關係鄭瑞川鄭瑞川引用關係
指導教授(外文):Te-Jen SuJui-Chuan Cheng
口試委員:邱建良蘇德仁鄭瑞川王鴻猷
口試委員(外文):Chien-Liang ChiuTe-Jen SuJui-Chuan ChengHung-Yu Wang
口試日期:2024-07-02
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:116
中文關鍵詞:隱形雷射切割技術
外文關鍵詞:Stealth laser dicing technology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
模糊理論在晶圓隱形雷射切割技術中的應用,目標是提升切割參數的精度與效率。隨著科技進步和電動車產業的發展,半導體晶片的需求急速增加,促使晶圓切割技術向更高效、更精確的方向發展。相較於傳統的刀片切割和雷射切割技術,隱形雷射切割技術能夠避免刀片切割造成的崩邊和雷射切割的熱損傷,提供一種無應力且無熱損傷的解決方案。本研究通過模糊控制系統,採用分層設定的方法來優化切割參數。系統的第一層根據加工物的厚度和金屬層的厚度來確定最適合的雷射功率;第二層則利用最終晶片厚度和第一層確定的雷射功率作為輸入,計算出最佳的打點高度。這樣的參數設定旨在提升切割質量和效率,同時也驗證模糊控制系統在實際應用中的效果。實驗結果顯示,模糊控制系統能顯著提高切割精度和效率,具體表現在切割成功率100%、材料消耗減少66%、能耗降低4%和參數調整工時節省50%。模糊控制系統在雷射功率控制上的精確性超過人工設定,打點高度的設置也得到顯著改善。研究證明模糊理論在晶圓隱形雷射切割中具有廣泛的應用潛力,未來研究可結合人工智慧技術進一步提升切割參數的自動化設定,以提高生產效率和產品質量。
The application of fuzzy theory in stealth laser dicing technology for wafers aims to enhance the precision and efficiency of cutting parameters. With technological advancements and the growth of the electric vehicle industry, the demand for semiconductor chips has rapidly increased, driving wafer cutting technology towards greater efficiency and precision. Compared to traditional blade cutting and laser cutting techniques, stealth laser dicing technology can avoid the chipping caused by blade cuts and the thermal damage caused by laser cuts, providing a stress-free and thermal damage-free solution. This study optimizes cutting parameters through a fuzzy control system using a layered setting method. The first layer determines the most suitable laser power based on the thickness of the workpiece and the metal layer; the second layer uses the final wafer thickness and the laser power determined in the first layer as inputs to calculate the optimal scribing height. These parameter settings aim to enhance cutting quality and efficiency while also verifying the practical application effects of the fuzzy control system. Experimental results show that the fuzzy control system significantly improves cutting precision and efficiency, achieving a 100% cutting success rate, a 66% reduction in material consumption, a 4% reduction in energy usage, and a 50% reduction in parameter adjustment labor time. The precision of the fuzzy control system in controlling laser power surpasses manual settings, and the optimization of scribing height is also significantly improved. The study demonstrates that fuzzy theory has extensive potential applications in stealth laser dicing of wafers. Future research may integrate artificial intelligence technology to further enhance the automation of cutting parameter settings, thereby improving production efficiency and product quality.
摘要..........................................................................................................................i
英文摘要.................................................................................................................ii
致謝........................................................................................................................iii
目錄.........................................................................................................................iv
圖目錄..................................................................................................................viii
表目錄..................................................................................................................xiii
第一章 緒論
1.1 研究背景與動機..................................................................................................1
1.2 研究目的...............................................................................................................................4
1.3 論文架構.............................................................................................................5
第二章 晶圓切割簡述
2.1半導體封裝簡介..................................................................................................6
2.1.1晶圓構造........................................................................................................6
2.1.2封裝流程.........................................................................................................................7
2.2晶圓切割.............................................................................................................9
2.2.1刀片切割.......................................................................................................9
2.2.2雷射切割.....................................................................................................12
2.2.3隱形雷射切割..............................................................................................14
2.2.4切割效能比較.............................................................................................................16
第三章 研究方法
3.1 製程參數說明....................................................................................................17
3.1.1測試樣品條件...............................................................................................17
3.1.2控制參數......................................................................................................18
3.1.3條件與參數對應...........................................................................................18
3.1.4額外現象說明...............................................................................................20
3.2 模糊理論..........................................................................................................25
3.2.1模糊理論概述..............................................................................................25
3.2.2模糊集合和隸屬函數.................................................................................................27
3.2.3模糊邏輯.....................................................................................................28
3.2.4模糊理論應用..............................................................................................29
3.2.5 模糊控制器.................................................................................................30
3.3 系統設計..........................................................................................................31
3.3.1 模糊控制器設定說明..................................................................................31
3.3.2 雷射功率設定.............................................................................................32
3.3.3 打點高度設定.............................................................................................35
第四章 實驗結果與分析
4.1 系統測試..........................................................................................................38
4.1.1 雷模糊控制器執行雷射輸出功率測試........................................................38
4.1.1.1 加工物厚度600μm雷射功率測試......................................................39
4.1.1.2 加工物厚度650μm雷射功率測試......................................................41
4.1.1.3 加工物厚度700μm雷射功率測試......................................................44
4.1.1.4 加工物厚度750μm雷射功率測試......................................................46
4.1.1.5 加工物厚度800μm雷射功率測試...............................................................49
4.1.2 打點位置測試.............................................................................................50
   4.1.2.1 加工物厚度 600μm打點高度測試..............................................................51
4.1.2.1.1晶圓厚度125μm,加工物厚度600μm打點高度測試.....................52
4.1.2.1.2晶圓厚度150(200) μm,加工物厚度600μm打點高度測試...........55
4.1.2.1.3晶圓厚度175(130) μm,加工物厚度600μm打點高度測試...........57
4.1.2.2加工物厚度 650μm打點高度測試................................................................60
4.1.2.2.1晶圓厚度125μm,加工物厚度650μm打點高度測試.....................60
4.1.2.2.2晶圓厚度150(200) μm,加工物厚度650μm打點高度測試...........63
4.1.2.2.3晶圓厚度175(130) μm,加工物厚度650μm打點高度測試...........65
4.1.2.3加工物厚度 700μm打點高度測試................................................................68
4.1.2.3.1晶圓厚度125μm,加工物厚度700μm打點高度測試.....................68
4.1.2.3.2晶圓厚度150(200) μm,加工物厚度700μm打點高度測試...........71
4.1.2.3.3晶圓厚度175(130) μm,加工物厚度700μm打點高度測試...........73
4.1.2.4加工物厚度 750μm打點高度測試................................................................76
4.1.2.4.1晶圓厚度125μm,加工物厚度750μm打點高度測試.....................76
4.1.2.4.2晶圓厚度150(200) μm,加工物厚度750μm打點高度測試...........79
4.1.2.4.3晶圓厚度175(130) μm,加工物厚度750μm打點高度測試...........81
4.1.2.5加工物厚度 800μm打點高度測試................................................................84
4.1.2.5.1晶圓厚度125μm,加工物厚度800μm打點高度測試.....................84
4.1.2.5.2晶圓厚度150(200) μm,加工物厚度800μm打點高度測試...........87
4.1.2.5.3晶圓厚度175(130) μm,加工物厚度800μm打點高度測試...........89
4.2 實驗結果............................................................................................................92
4.3 結果分析.............................................................................................................94
第五章 結論與未來展望
5.1研究貢獻..........................................................................................................95
5.2未來發展趨勢...................................................................................................96
第六章 參考文獻........................................................................................................................97

[1] 楊敏生,模糊理論簡介,數學傳播中央研究院數學研究所發行 ,數學傳播,  
  1994年, 十八卷一期.
[2] 李允中、王小璠、蘇木春,模糊理論及其應用,2012年, 第三版.
[3] 陳奇中, MATLAB程式設計與工程應用 東華書局 發行, 2022年, 第三版.
[4] Quirk.Serda ,羅文雄 譯, 半導體製造技術 滄海圖書發行,2003年, 第一版.
[5] 鍾文仁,、陳佑任,IC封裝製程與CAE應用,2021年,第四版.
[6] K. Aizawa、J. Maeda、Y. Hasegawa 和 S. Takyu,“A Study on Back Grinding Tape for   
  Ultra-thin Chip Fabrication”,2018 年第 20 屆電子材料與封裝國際會議 (EMAP),
中國香港,2018年,第 1-4 頁,doi:10.1109/EMAP.2018.8660772。
[7] R. Zhang, H. Liu, B. Li and T. Sugiya, "Ultra wafer thinning and dicing technology for   
  stacked die packages," 2016 China Semiconductor Technology International Conference
(CSTIC), Shanghai, China, 2016, pp. 1-5, doi: 10.1109/CSTIC.2016.7464047.
[8] N. S. George, A. Harish Shah, R. Tanola, J. Lu, C. Sim and H. Singh, "Comparative
Analysis of Laser Parameters effect on Laser Splash Performance During Wafer Stealth
Dicing," 2023 IEEE 25th Electronics Packaging Technology Conference (EPTC),
Singapore, 2023, pp. 129-134, doi: 10.1109/EPTC59621.2023.10457868.
[9] N. Suzuki, K. Atsμmi, N. Uchiyama and T. Ohba, "Improving Throughput of Zero-Kerf
Singulation for Ultra-Thin Wafers using Stealth Dicing," 2018 13th International
Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT),
Taipei, Taiwan, 2018, pp. 55-57, doi: 10.1109/IMPACT.2018.8625832.
[10] N. Suzuki, T. Ohba, Y. Kondo, T. Sakamoto, N. Uchiyama and K. Atsμmi, "High
Throughput and Improved Edge Straightness for Memory Applications Using Stealth
Dicing," 2018 IEEE 68th Electronic Components and Technology Conference (ECTC),
San Diego, CA, USA, 2018, pp. 2180-2185, doi: 10.1109/ECTC.2018.00327.
[11] W. H. Teh, D. S. Boning and R. E. Welsch, "Multi-Strata Stealth Dicing Before Grinding
for Singulation-Defects Elimination and Die Strength Enhancement: Experiment and
Simulation," in IEEE Transactions on Semiconductor Manufacturing, vol. 28, no. 3, pp.
408-423, Aug. 2015, doi: 10.1109/TSM.2015.2438875.
[12] Y. Xie, X. Zhang, C. Yang, L. Gao and M. Li, "Effects of Stealth Dicing Parameters on
Singulation Defects and Die Strength," 2020 21st International Conference on Electronic
Packaging Technology (ICEPT), Guangzhou, China, 2020, pp. 1-4, doi:
10.1109/ICEPT50128.2020.9202940.
[13] N. Suzuki, T. Nakamura, Y. Kondo, S
Tominaga, K. Atsμmi and T. Ohba, "Damage-Less Singulation of Ultra-Thin Wafers using
Stealth Dicing," 2020 IEEE 70th Electronic Components and Technology Conference
(ECTC), Orlando, FL, USA, 2020, pp. 1043-1049, doi: 10.1109/ECTC32862.2020.00169.
[14] M. Kμmagai, N. Uchiyama, E. Ohmura, R. Sugiura, K. Atsμmi and K. Fukμmitsu,
"Advanced Dicing Technology for Semiconductor Wafer—Stealth Dicing," in IEEE
Transactions on Semiconductor Manufacturing, vol. 20, no. 3, pp. 259-265, Aug. 2007,
doi: 10.1109/TSM.2007.901849.
[15] M. Kμmagai, N. Uchiyama, E. Ohmura, R. Sugiura, K. Atsμmi and K. Fukμmitsu,
"Advanced Dicing Technology for Semiconductor Wafer—Stealth Dicing," in IEEE
Transactions on Semiconductor Manufacturing, vol. 20, no. 3, pp. 259-265, Aug. 2007, doi:
10.1109/TSM.2007.901849.
[16] L. A. Zadeh, "Fuzzy logic," in Computer, vol. 21, no. 4, pp. 83-93, April 1988, doi:
10.1109/2.53.
[17] E. Cox, "Fuzzy fundamentals," in IEEE Spectrμm, vol. 29, no. 10, pp. 58-61, Oct. 1992,
doi: 10.1109/6.158640.
[18] 陳一峰,《晶圓切割薄膜膠絲問題改善之研究》,國立高雄應用科技大學碩士論
文,2015年. (2024/04/01 查閱)
[19] 顏宏璋,《模糊理論應用於光纖網路配線設計》,國立高雄應用科技大學碩士論
文,2021年. (2024/04/05查閱)
[20] 李坤儒,《半導體新產品之新製程導入可行性評估》,育達科技大學碩士論文,
2023年. (2024/04/15 查閱)
[21] DISCO Corporation,薄型晶片的切割技術DBG/SDBG,
https://www.disco.co.jp/cn_t/solution/library/dbg_process.html(2024/04/20 查閱)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top