[1] Banerjee, M. K. (2017). 2.1 Fundamentals of heat treating metals and alloys.
Comprehensive materials finishing, 1-49.
[2] Munusamy, S., & Jerald, J. (2023). Effect of in-Situ Intrinsic Heat Treatment in
Metal Additive Manufacturing: A Comprehensive Review. Metals and Materials
International, 29(12), 3423-3441
[3] Gajdzik, B., Wolniak, R., & Grebski, W. W. (2023). Electricity and heat demand in
steel industry technological processes in Industry 4.0 conditions. Energies, 16(2),
787.
[4] 陳彥儒, 許曉弘, 陳其褘, & 張智銘. (2020). 金屬材料熱處理模擬分析技術發
展現況. 機械工業雜誌, (453), 42-47.
[5] 蕭博仁(2021)。應用機器學習於金屬銲接參數最佳化。﹝碩士論文。華梵大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/v4cs86。
[6] 吳姎恂(2020)。應用不同深度學習工具以提高金屬加工產品瑕疵檢測之影像
辨識成功率。﹝碩士論文。明志科技大學﹞臺灣博碩士論文知識加值系統。
https://hdl.handle.net/11296/axv5ga。
[7] Han, J., Pei, J., & Tong, H. (2022). Data mining: concepts and techniques. Morgan
kaufmann.
[8] Chen, M. S., Han, J., & Yu, P. S. (1996). Data mining: an overview from a database
perspective. IEEE Transactions on Knowledge and data Engineering, 8(6), 866-
883.
[9] Weisberg, S. (2005). Applied linear regression (Vol. 528). John Wiley & Sons.
[10] Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 12(1), 55-67.
[11] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society Series B: Statistical Methodology, 58(1), 267-288.
[12] Drucker, H., Burges, C. J., Kaufman, L., Smola, A., & Vapnik, V. (1996). Support
71
vector regression machines. Advances in neural information processing systems, 9.
[13] Timofeev, R. (2004). Classification and regression trees (CART) theory and
applications. Humboldt University, Berlin, 54.
[14] Cutler, A., Cutler, D. R., & Stevens, J. R. (2012). Random forests. Ensemble
machine learning: Methods and applications, 157-175.
[15] Freund, Y., & Schapire, R. E. (1996, July). Experiments with a new boosting
algorithm. In icml (Vol. 96, pp. 148-156).
[16] Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining (pp. 785-794).
[17] Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter
optimization. Journal of machine learning research, 13(2).(random search)
[18] Zou, M., Jiang, W. G., Qin, Q. H., Liu, Y. C., & Li, M. L. (2022). Optimized
XGBoost model with small dataset for predicting relative density of Ti-6Al-4V parts
manufactured by selective laser melting. Materials, 15(15), 5298.
[19] Famili, A., Shen, W. M., Weber, R., & Simoudis, E. (1997). Data preprocessing and
intelligent data analysis. Intelligent data analysis, 1(1), 3-23.
[20] Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system
sciences, 55(1), 119-139.
[21] 陳婷文. (2020). Lasso 迴歸於 可詮釋預測分析: 強階層與樹狀結構. 政治大學
資訊管理學系學位論文, 2020, 1-43.
[22] Tao, F., Qi, Q., Liu, A., & Kusiak, A. (2018). Data-driven smart
manufacturing. Journal of Manufacturing Systems, 48, 157-169.