|
[1]Wei, S. (2021). PP-ShiTu: A Practical Lightweight Image Recognition System. arXiv preprint arXiv:2111.00775. [2]Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137-1149. [3]He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. arXiv preprint arXiv:1703.06870. [4]Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587). [5]Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2015). You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 779-788). [6]Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 6517-6525). [7]Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. arXiv preprint arXiv:1804.02767. [8]Bochkovskiy, A., Wang, C.Y., & Liao, H.Y. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv preprint arXiv:2004.10934. [9]Tan, M., Pang, R., & Le, Q.V. (2019). EfficientDet: Scalable and Efficient Object Detection. arXiv preprint arXiv:1911.09070. [10]劉致圻. (2019). 應用深度學習於船舶影像分類研究 [Master's thesis, National Taiwan Ocean University]. [11]林修賢. (2021). YOLO深度學習網路應用於漁船編號之辨識 [Master's thesis, National Taiwan Ocean University]. [12]Chen, R.-H. (2021). Research on deep neural networks based fishing vessels identification system [Master's thesis, National Chin-Yi University of Technology]. [13]Huang, X. (2021). PP-YOLOv2: A Practical Object Detector. arXiv preprint arXiv:2104.10419. [14]Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., & Zhang, L. (2021). Swin Transformer: Hierarchical vision transformer using shifted windows. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, 13131-13140. [15]Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. Proceedings of the 36th International Conference on Machine Learning (ICML), 2019, 6105-6114. [16]Cui, C., Gao, T., Wei, S., et al. (2021). PP-LCNet: A Lightweight CPU Convolutional Neural Network. arXiv preprint arXiv:2109.15099. [17]He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385. Retrieved from https://arxiv.org/abs/1512.03385 [18]Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. arXiv preprint arXiv:1708.02002. Retrieved from https://arxiv.org/abs/1708.02002 [19]Facebook Engineering. (2017, March 29). Faiss: A library for efficient similarity search. Retrieved from https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/ [20]Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). MobileNetV2: Inverted residuals and linear bottlenecks. arXiv preprint arXiv:1801.04381. Retrieved from https://arxiv.org/abs/1801.04381 [21]Ma, N., Zhang, X., Zheng, H. T., & Sun, J. (2018). ShuffleNet V2: Practical guidelines for efficient CNN architecture design. Proceedings of the European Conference on Computer Vision (ECCV), 2018, 116-131. [22]Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q. V., & Adam, H. (2019). Searching for MobileNetV3. *arXiv preprint arXiv:1905.02244*. Retrieved from https://arxiv.org/abs/1905.02244 [23]DC Fever. (n.d.). Sony Alpha 7R IV specifications. Retrieved July 2, 2024, from https://www.dcfever.com/cameras/fullspecification.php?id=2306 [24]Samsung. (n.d.). Galaxy S22 Ultra 5G (256GB). Retrieved July 2, 2024, from https://www.samsung.com/tw/smartphones/galaxy-s/galaxy-s22-ultra-burgundy-256gb-sm-s9080drgbri/ [25]Redmon, J., Farhadi, A. (2018). YOLOv3: An Incremental Improvement. arXiv preprint arXiv:1804.02767. [26]蘇柏廷. (2023). 應用於肺腺癌病理切片之影像分割 [National Kaohsiung University of Science and Technology].
|