|
[1] Chollet, F. (2017). Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). [2] Faceswap [Online]. Available: https://faceswap.dev/ [3] Thies, J., Zollhöfer, M., Stamminger, M., Theobalt, C., & Nießner, M. (2016). Face2Face: Real-time Face Capture and Reenactment of RGB Videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). [4] Li, L., Bao, J., Yang, H., Chen, D., & Wen, F. (2020). FaceShifter: Towards High Fidelity And Occlusion Aware Face Swapping. arXiv preprint arXiv:1912.13457. [5] 卷積神經網路 (CNN) 的發展. Dec. 31, 2019. [Online]. Available: https://medium.com/ai-academy-taiwan/%E5%8D%B7%E7%A9%8D%E7%A5%9E%E7%B6%93%E7%B6%B2%E8%B7%AF-cnn-%E7%9A%84%E7%99%BC%E5%B1%95-4c5d29e60c55 [6] Afchar, D., Nozick, V., Yamagishi, J., & Echizen, I. (2018). MesoNet: A Compact Facial Video Forgery Detection Network. In Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS). [7] Nguyen, H. H., Yamagishi, J., & Echizen, I. (2019). Capsule-Forensic: Using Capsule Networks to Detect Forged Images and Videos. arXiv preprint arXiv:1910.12467. [8] Li, Y., Chang, M. C., & Lyu, S. (2018). In Ictu Oculi: Exposing AI Generated Fake Face Videos by Detecting Eye Blinking. In Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS). [9] Hulzebosch, N., Ibrahimi, S., & Worring, M. (2020). Detecting CNN-Generated Facial Images in Real-World Scenarios. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). [10] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). [11] Johnston, B. (2018). A Review of Image-Based Automatic Facial Landmark Identification Techniques. In EURASIP Journal on Image and Video Processing. [12] Zhang, Z., Luo, P., Loy, C. C., & Tang, X. (2016). Learning Deep Representation for Face Alignment with Auxiliary Attributes. In IEEE Transactions on Pattern Analysis and Machine Intelligence. [13] Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint Face Detection and Alignment using Multi-Task Cascaded Convolutional Networks. In IEEE Signal Processing Letters, 23(10), 1499-1503. [14] Deng, J., Guo, J., Zhou, Y., Yu, J., Kotsia, I., & Zafeiriou, S. (2020). RetinaFace: Single-Stage Dense Face Localisation in the Wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 5203-5212. [15] Bazarevsky, V., Grishchenko, I., Raveendran, K., Kartynnik, Y., Grundmann, M., & Kwatra, V. (2019). BlazeFace: Sub-Millisecond Neural Face Detection on Mobile GPUs. arXiv preprint arXiv:1907.05047. [16] Li, Y., Chang, M. C., & Lyu, S. (2020). Celeb-DF: A Large-Scale Challenging Dataset for DeepFake Forensics. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). [17] Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., & Nießner, M. (2019). FaceForensics++: Learning to Detect Manipulated Facial Images. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). [18] Yang, X., Li, Y., & Lyu, S. (2019). Exposing Deep Fakes Using Inconsistent Head Poses. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). [19] Dolhansky, B., Howes, R., Pflaum, B., Baram, N., & Ferrer, C. C. (2020). The DeepFake Detection Challenge (DFDC) Preview Dataset. arXiv preprint arXiv:2006.07397. [20] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016). TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI).
|