跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 01:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾品誠
研究生(外文):TSENG, PIN-CHENG
論文名稱:基於基因演算法和卡爾曼濾波器的車道線追蹤方法
論文名稱(外文):A Lane Tracking Method Based on Genetic Algorithm and Kalman Filter
指導教授:周阜毅楊柏遠
指導教授(外文):CHOU, FU-IYANG, PO-YUAN
口試委員:蔡進聰周阜毅楊柏遠
口試委員(外文):TSAI, JINN-TSONGCHOU, FU-IYANG, PO-YUAN
口試日期:2024-07-02
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:73
中文關鍵詞:車道路線追蹤自適應卡爾曼濾波器基因演算法
外文關鍵詞:Lane trackingadaptive Kalman filtergenetic algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:19
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本文提出一種基於初始點位置和自適應卡爾曼預測路徑融合基因演算法(Genetic algorithm) 組成的車道路線追蹤演算法。為了降低計算成本,採用影像特徵擷取並選擇待處理區域的感興趣區域 (Region of Interest) 來分割車輛前進路徑周圍的左側和右側道路線和路面,接著預測初始位置以及後續的座標點位置。大多數情況下,道路線是直線或彎曲的,因此可利用卡爾曼濾波器來預測下一刻道路線的位置,使車輛能夠平穩前進。
由於一般卡爾曼濾波器在一開始無法確定參數值,導致系統的不確定性,如狀態雜訊 (Process noise) 和量測雜訊 (Measurement noise) 必須設定得足夠準確,否則將導致卡爾曼濾波器對系統狀態的初始估計出現重大誤差,無法實現最佳效能。因此本文採用自適應卡爾曼濾波器來動態調整狀態雜訊和量測雜訊,以提高卡爾曼濾波器參數的精確度,並增強卡爾曼濾波器在預測過程中的性能。除了狀態雜訊和量測雜訊之外,卡爾曼增益 (Kalman filter gain) 也對動態狀態的初始估計有明顯的誤差影響,因此本文採用基因演算法針對預測更新座標與實際座標計算誤差,將計算出來符合當前狀態估計的結果作為卡爾曼增益的初始值來改善卡爾曼濾波器的效能。
從實驗測試結果得知,本文提出的方法能夠在道路線缺失或座標點判斷錯誤的情況下預測車道道路線且呈現優秀的性能,且結果數據表明使用插值基因演算法的自適應卡爾曼濾波器方法相較於只使用自適應卡爾曼濾波器方法在左側道路線上的均方誤差降低54.5276倍;在右側道路線上的均方誤差降低了72.7803倍。

This thesis proposes a lane-tracking method based on a Genetic algorithm and Kalman filter. To reduce the computational cost, this thesis uses image feature extraction and selects the ROI of the area to be processed to segment the left and right side road lines and surfaces around the vehicle's forward path. Then, the initial position is predicted. In most cases, road lines are straight or curved, so the Kalman filter, a linear system, is used to predict the position of the road line at the next moment, allowing the vehicle to advance steadily.
However, the process noise and measurement noise must be set accurately enough; otherwise, they will lead to significant errors in the Kalman filter's initial estimation of dynamic states, thereby failing to achieve optimal performance. Therefore, this thesis utilizes an adaptive Kalman filter to dynamically adjust the process noise and measurement noise to improve the Kalman filter parameters' precision and enhance the Kalman filter's performance during the prediction process. In addition to the process noise and measurement noise, the Kalman filter gain also significantly affects the Kalman filter's initial estimation of dynamic states. Thus, this thesis employs a genetic algorithm to calculate the error between the predicted updated coordinates and actual coordinates. The optima results that match the current state estimation are used as the initial value of the Kalman gain to improve the Kalman filter's performance.
The experimental results show that the proposed method can predict lane road lines with excellent performance, even in cases of missing road lines or incorrect coordinate point judgment. The results indicate that the proposed adaptive Kalman filter method using the interpolated genetic algorithm reduced the mean square error on the left road line by 54.5276 times and on the right road line by 72.7803 times compared to using only the adaptive Kalman filter method.

摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
圖 目 錄 viii
表 目 錄 x
符號說明 xi
一、緒論 1
1.1 研究背景 1
1.2 相關文獻與研究動機 2
1.3 論文架構 5
二、相關研究 6
2.1 影像處理 7
2.1.1 Region of Interest 7
2.1.2 亮度資訊 7
2.1.3 高通濾波器 8
2.1.4 連通元件標記 9
2.2 卡爾曼濾波器 10
2.2.1 卡爾曼濾波器 10
2.2.2 自適應卡爾曼濾波器 12
2.2.3 擴展卡爾曼濾波器 14
2.2.4 無跡卡爾曼濾波器 15
2.3 基因演算法 15
2.4 插值方法 17
2.4.1 線性插值 17
2.4.2 二次多項式插值 18
2.5 系統評估指標 19
2.5.1 平均均方誤差 19
三、研究方法與步驟 21
3.1 測試及應用資料收集 27
3.2 硬體相關配置資訊 27
3.3 TCP傳輸 28
3.4 初始點位置 28
3.4.1 ROI 28
3.4.2 道路線亮度資訊強化 29
3.5 自適應卡爾曼濾波器 30
3.6 基因演算法計算卡爾曼增益 31
3.7 評估模型效能 32
四、研究成果 33
五、結論與未來展望 42
5.1 結論 42
5.2 未來展望 43
參考文獻 44
附錄A 48
附錄B 54


[1]Abualsaud, H., Liu, S., Lu, D. B., Situ, K., Rangesh, A. and Trivedi, M. M., 2021. “Laneaf: Robust multi-lane detection with affinity fields.” IEEE Robotics and Automation Letters, Vol. 6, no. 4, pp. 7477-7484.
[2]Akhlaghi, S., Zhou, N. and Huang, Z., 2017. “Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation.” 2017 IEEE power & energy society general meeting, pp. 1-5.
[3]Bao, P., Zhang, L. and Wu, X., 2005. “Canny edge detection enhancement by scale multiplication.” IEEE Transactions on pattern analysis and machine intelligence, Vol. 27, no. 9, pp. 1485-1490.
[4]Canny, J., 1986. “A computational approach to edge detection.” IEEE Transactions on pattern analysis and machine intelligence, vol. PAMI-8. 6, pp. 679-698.
[5]Chakraborty, S. and Sunil, K. T., 2023. “Route perception of autonomous vehicle using feature extraction and Kalman filter.” 2023 International Conference on Recent Advances in Electrical, Electronics, Ubiquitous Communication, and Computational Intelligence (RAEEUCCI), pp. 1-5.
[6]Chiu, K.-Y. and Lin, S.-F., 2005. “Lane detection using color-based segmentation.” IEEE Proceedings. Intelligent Vehicles Symposium, 2005, pp. 706-711.
[7]Danlami, M., Jamel, S., Ramli, S. N. and Azahari, S. R. M., 2020. “Comparing the legendre wavelet filter and the gabor wavelet filter for feature extraction based on iris recognition system.” 2020 IEEE 6th International Conference on Optimization and Applications (ICOA), pp. 1-6.
[8]Demigny, D., 2002. “On optimal linear filtering for edge detection.” IEEE Transactions on Image Processing, Vol. 11, no. 7, pp. 728-737.
[9]Han, Y., Wang, B., Guan, T., Tian, D., Yang, G., Wei, W., Tang, H. and Chuah, J. H., 2022. “Research on road environmental sense method of intelligent vehicle based on tracking check.” IEEE Transactions on Intelligent Transportation Systems, Vol. 24, no. 1, pp. 1261-1275.
[10]Huang, W.-J.,2009,”Fast lane-marking tracking algorithm on embedded system.”,Master's degree,NDHU College of Science and Engineering。
[11]Jiang, L., Li, J. and Ai, W., 2019. “Lane line detection optimization algorithm based on improved hough transform and r-least squares with dual removal.” 2019 IEEE 4th advanced information technology, electronic and automation control conference (IAEAC), Vol. 1, pp. 186-190.
[12]Julier, S. J. and Uhlmann, J. K., 1997. “New extension of the Kalman filter to nonlinear systems.” Signal processing, sensor fusion, and target recognition VI, Vol. 3068, pp. 182-193.
[13]Kalman, R. E., 1960. “A new approach to linear filtering and prediction problems.”
[14]Lee, C. and Moon, J.-H., 2018. “Robust lane detection and tracking for real-time applications.” IEEE Transactions on Intelligent Transportation Systems, Vol. 19, no. 12, pp. 4043-4048.
[15]Liu, R., Yuan, Z., Liu, T. and Xiong, Z., 2021. “End-to-end lane shape prediction with transformers.” Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp. 3694-3702.
[16]Ludwig, S. A., 2018. “Genetic algorithm based Kalman filter adaptation algorithm for magnetic and inertial measurement unit.” 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1-7.
[17]Megalingam, R. K., Karath, M., Prajitha, P. and Pocklassery, G., 2019. “Computational analysis between software and hardware implementation of sobel edge detection algorithm.” 2019 International Conference on Communication and Signal Processing (ICCSP), pp. 0529-0533.
[18]Mehra, R., 1970. “On the identification of variances and adaptive Kalman filtering.” IEEE Transactions on automatic control, Vol. 15, no. 2, pp. 175-184.
[19]Qu, Z., Jin, H., Zhou, Y., Yang, Z. and Zhang, W., 2021. “Focus on local: Detecting lane marker from bottom up via key point.” Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 14122-14130.
[20]Ribeiro, M. I., 2004. “Kalman and extended Kalman filters: Concept, derivation and properties.” Institute for Systems and Robotics, Vol. 43, no. 46, pp. 3736-3741.
[21]Roboflow. April 2020. Udacity self driving car dataset. https://public.roboflow.com/object-detection/self-driving-car.
[22]Rong, W., Li, Z., Zhang, W. and Sun, L., 2014. “An improved canny edge detection algorithm.” 2014 IEEE international conference on mechatronics and automation, pp. 577-582.
[23]Rotaru, C., Graf, T. and Zhang, J., 2004. “Extracting road features from color images using a cognitive approach.” IEEE Intelligent Vehicles Symposium, 2004, pp. 298-303.
[24]Standards, S., 2021. J3016_202104 taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. https://www.sae.org/standards/?search=J3016.
[25]Sultana, S., Ahmed, B., Paul, M., Islam, M. R. and Ahmad, S., 2023. “Vision-based robust lane detection and tracking in challenging conditions.” IEEE access.
[26]Sun, T.-Y., Tsai, S.-J. and Chan, V., 2006. “Hsi color model based lane-marking detection.” 2006 ieee intelligent transportation systems conference, pp. 1168-1172.
[27]Tabelini, L., Berriel, R., Paixao, T. M., Badue, C., De Souza, A. F. and Oliveira-Santos, T., 2021a. “Keep your eyes on the lane: Real-time attention-guided lane detection.” Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 294-302.
[28]Tabelini, L., Berriel, R., Paixao, T. M., Badue, C., De Souza, A. F. and Oliveira-Santos, T., 2021b. “Polylanenet: Lane estimation via deep polynomial regression.” 2020 25th International Conference on Pattern Recognition (ICPR), pp. 6150-6156.
[29]Venkata Sai, S. H., Parthiban, S. and Nagalakshmi, T., 2023. “Enhancing dehaze method in real hill based images using gaussian filter over gabor filter for better accuracy.” 2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT), pp. 1-4.
[30]Wan, E. A. and Van Der Merwe, R., 2000. “The unscented Kalman filter for nonlinear estimation.” Proceedings of the IEEE 2000 adaptive systems for signal processing, communications, and control symposium (Cat. No. 00EX373), pp. 153-158.
[31]Wang, D., Yin, J., Tang, C., Cheng, X. and Ge, B., 2020. “Color edge detection using the normalization anisotropic gaussian kernel and multichannel fusion.” IEEE access, Vol. 8, pp. 228277-228288.
[32]Xi, Y., Tang, X., Li, Z., Cui, Y., Zhao, T., Zeng, X., Guo, J. and Duan, W., 2019. “Harmonic estimation in power systems using an optimised adaptive Kalman filter based on pso‐ga.” IET Generation, Transmission & Distribution, Vol. 13, no. 17, pp. 3968-3979.
[33]Xia, X., Hashemi, E., Xiong, L. and Khajepour, A., 2022. “Autonomous vehicle kinematics and dynamics synthesis for sideslip angle estimation based on consensus Kalman filter.” IEEE Transactions on Control Systems Technology, Vol. 31, no. 1, pp. 179-192.
[34]Xu, Q., Varadarajan, S., Chakrabarti, C. and Karam, L. J., 2014. “A distributed canny edge detector: Algorithm and fpga implementation.” IEEE Transactions on Image Processing, Vol. 23, no. 7, pp. 2944-2960.
[35]Xue, Z., Zhang, Y., Cheng, C. and Ma, G., 2020. “Remaining useful life prediction of lithium-ion batteries with adaptive unscented Kalman filter and optimized support vector regression.” Neurocomputing, Vol. 376, pp. 95-102.
[36]Yaacoub, C. and Daou, R. A. Z., 2019. “Fractional order sobel edge detector.” 2019 Ninth International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1-5.
[37]Yurtsever, E., Lambert, J., Carballo, A. and Takeda, K., 2020. “A survey of autonomous driving: Common practices and emerging technologies.” IEEE access, Vol. 8, pp. 58443-58469.
[38]Zheng, T., Huang, Y., Liu, Y., Tang, W., Yang, Z., Cai, D. and He, X., 2022. “Clrnet: Cross layer refinement network for lane detection.” Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 898-907.
[39]Zou, Q., Jiang, H., Dai, Q., Yue, Y., Chen, L. and Wang, Q., 2019. “Robust lane detection from continuous driving scenes using deep neural networks.” IEEE transactions on vehicular technology, Vol. 69, no. 1, pp. 41-54.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top