跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 02:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇允尉
研究生(外文):SU, YUN-WEI
論文名稱:以不同方式電沉積氧化銥電極應用於電解式微型幫浦及抗腐蝕研究
論文名稱(外文):Research on Corrosion Resistance of Iridium Oxide Electrodes Applied to Electrolytic Micropumps by Different Electrodeposition Methods
指導教授:鄭宗杰鄭宗杰引用關係
指導教授(外文):Tsung, Chieh-Cheng
口試委員:李柏穎潘俊仁鄭宗杰
口試委員(外文):LI,BO-YINGPAN,JUN-RENTsung, Chieh-Cheng
口試日期:2024-06-26
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:146
中文關鍵詞:Nafion電解式微型幫浦電化學沉積電極氧化銥
外文關鍵詞:NafionElectrodepositionIridium oxideElectrode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:11
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於患有慢性疾病的人口逐年上升,利用(Micro Electro Mechanical
Systems , MEMS)技術製造的微型藥物輸送系統也逐漸普及。藥物傳遞
系統(Drug Delivery Systems , DDS)是由藥物儲存器、微型幫浦、閥門、
微型感測器、微型通道以及相關電路所組成。典型的微型幫浦是也
MEMS 技術所涵蓋的一環,它既可以提供驅動源,又能將藥物精確地輸
送到相對應的器官。因此,微型幫浦在藥物輸送系統中扮演著十分重要
的角色。
黃金電極經過電解反應後,電極會產生腐蝕現象,為了改善電極應
用在電解式微型幫浦的耐腐蝕性,所以使用電化學沉積氧化銥薄膜,但
因循環伏安法(Cyclic voltammetry , CV)沉積所花費的時間過於冗長,
耗費的能源相對來說也會比較多。因此,本論文使用不同方式的電化學
沉積氧化銥薄膜在黃金電極表面以及旋塗 Nafion 薄膜於電極表面進而改
善腐蝕現象及節省能源。首先,經由掃描式電子顯微鏡(SEM)和能量色散
儀(EDS)得知,電極表面成長氧化銥薄膜並且有 Nafion 薄膜附著。接著由
X 光繞射儀(XRD)結果得知,電化學沉積的氧化銥是非晶結構以及 Nafion
薄膜為非結晶體。之後再利用 X 射線光電子能譜(XPS)量測電極表面元素,
II
在銥、氧以及碳的軌域皆有明顯元素鍵結。接下來再利用傅立葉轉換紅
外光譜(FTIR)量測電極表面元素,確認Nafion薄膜有成功附著於電極表面。
透過電化學阻抗圖譜(EIS)量測電極元件,由黃金電極和氧化銥電極內部
結構等效電路圖實驗結果得知,電沉積氧化銥電極阻抗遠低於黃金電極、
但旋塗 Nafion 薄膜又會使阻抗提高。由極化阻抗(Tafel)量測,氧化銥薄膜
可以改善電極的耐腐蝕性。與黃金電極相比,氧化銥具有良好的耐腐蝕
性,再旋塗 Nafion 薄膜以再改善電極的耐腐蝕性。因此,電沉積氧化銥
以及旋塗 Nafion 薄膜皆可以提高電極的耐腐蝕性和電化學性能。最後,
本研究成功地將氧化銥及 Nafion 薄膜應用在電解式微型幫浦之領域。
Due to the increasing population affected by chronic diseases, microscale
drug delivery systems manufactured using MEMS (Micro-Electro-Mechanical
Systems) technology are becoming more prevalent. A Drug Delivery System
(DDS) comprises a drug reservoir, micro-pumps, valves, micro-sensors, microchannels, and associated circuits. Micro-pumps, a key component covered by
MEMS technology, not only serve as a driving source but also precisely deliver
drugs to respective organs in DDS. Therefore, micro-pumps play a crucial role
in drug delivery systems.
After electrochemical reactions, gold electrodes undergo corrosion. To
enhance the corrosion resistance of electrodes for application in electrolytic
micro-pumps, Iridium oxide thin films are electrochemically deposited.
However, the time-consuming nature of cyclic voltammetry (CV) deposition led
to the exploration of alternative deposition methods to improve corrosion
resistance and save energy. In this paper, different methods for depositing
IV
Iridium oxide films on gold electrodes and spin-coating Nafion films on
electrode surfaces were employed to mitigate corrosion and energy consumption.
Scanning Electron Microscopy (SEM) and Energy Dispersive
Spectroscopy (EDS) revealed the growth of Iridium oxide films on the electrode
surface with attached Nafion films. X-ray Diffraction (XRD) indicated that the
electrochemically deposited Iridium oxide exhibited an amorphous structure,
and the Nafion film was non-crystalline. X-ray Photoelectron Spectroscopy
(XPS) measurements on the electrode surface confirmed significant elemental
bonding in the regions of Iridium, oxygen, and carbon. Fourier Transform
Infrared Spectroscopy (FTIR) demonstrated successful Nafion film attachment
to the electrode surface.
Electrochemical Impedance Spectroscopy (EIS) results revealed that the
impedance of the electrochemically deposited Iridium oxide electrode was
significantly lower than that of the gold electrode. However, the spin-coated
Nafion film increased impedance. Tafel polarization measurements indicated
that the Iridium oxide film could improve the electrode's corrosion resistance.
Compared to gold electrodes, Iridium oxide exhibited superior corrosion
resistance, further enhanced by the spin-coating Nafion film.
In conclusion, electrochemically deposited Iridium oxide and spin-coated
Nafion films both contribute to improved corrosion resistance and
electrochemical performance of the electrodes. Finally, this study successfully
applied Iridium oxide and Nafion films in the field of electrolytic micro-pumps.
中文摘要 I
Abstract III
第一章 緒論 1
1-1前言 1
第二章 基礎理論與文獻回顧 4
2-1微型幫浦介紹 4
2-2現今微流量幫浦驅動方式 5
2-2-1 機械式 5
2-2-2 非機械式 17
2-3微型幫浦在生醫領域應用 25
2-3-1細胞培養(Cell culturing) 26
2-3-2血液輸送(Blood transport) 27
2-3-3藥物輸送(Drug delivery) 28
2-4耐腐蝕材料及其定義 30
2-5氧化銥介紹 31
2-5-1氧化銥成長方式 33
2-6全氟磺酸化樹酯(Nafion)介紹 37
2-6-1全氟磺酸化樹酯(Nafion)製備方法 38
2-7電解式幫浦驅動原理 40
2-7-1法拉第電解定律 40
2-7-2電解理論 41
第三章 實驗製程與分析設備 42
3-1 元件設計 42
3-2 實驗步驟 42
3-2-1電極製作 42
3-2-2 氧化銥電解液調製 44
3-2-3氧化銥電極製作 44
3-2-4 Nafion薄膜製作 45
3-2-5微型幫浦外殼製作與組裝 45
3-3 實驗儀器設備 46
3-3-1 電化學分析儀 46
3-3-2 掃描式電子顯微鏡(SEM)和能量散射光譜儀(EDS) 49
3-3-3 X光繞射儀(XRD) 50
3-3-4 X射線光電子光譜(XPS) 50
3-3-5 傅立葉轉換紅外光譜儀(FTIR) 51
3-3-6接觸角量測 51
第四章 實驗結果與討論 63
4-1 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 63
4-1-1 Nafion薄膜 SEM及EDS面分析 64
4-2 透過循環伏安法成長氧化銥過程 68
4-3 透過定電流法成長氧化銥過程 70
4-4 X光電子能譜儀(X-ray Photoelectron Spectrometer,XPS) 72
4-4-1 Nafion薄膜XPS分析 78
4-5 X光繞射儀(X-Ray Diffraction, XRD) 82
4-5-1 Nafion薄膜XRD分析 83
4-6 傅立葉轉換紅外譜 (FTIR) 86
4-7 電化學阻抗圖譜(Electrochemical impedance spectroscopy, EIS) 88
4-7-1 Nafion薄膜EIS分析 92
4-8 極化曲線(Tafel) 97
4-8-1 Nafion薄膜Tafel分析 100
4-9 接觸角(Contact angle) 105
4-9-1 Nafion薄膜 106
4-10 流速(Flow Rate) 107
4-10-1 長期流速實驗 128
第五章 結論與未來展望 133
5-1結論 133
5-2未來展望 134
[1]A. Dash and G. Cudworth II, "Therapeutic applications of implantable drug delivery systems," Journal of pharmacological and toxicological methods, vol. 40, no. 1, pp. 1-12, 1998.
[2]J.-L. Coll, P. Chollet, E. Brambilla, D. Desplanques, J.-P. Behr, and M. Favrot, "In vivo delivery to tumors of DNA complexed with linear polyethylenimine," Human gene therapy, vol. 10, no. 10, pp. 1659-1666, 1999.
[3]N.-C. Tsai and C.-Y. Sue, "Review of MEMS-based drug delivery and dosing systems," Sensors and Actuators A: Physical, vol. 134, no. 2, pp. 555-564, 2007.
[4]J. Pickup, H. Keen, J. Parsons, and K. Alberti, "Continuous subcutaneous insulin infusion: an approach to achieving normoglycaemia," British medical journal, vol. 1, no. 6107, p. 204, 1978.
[5]D. G. Allen and M. V. Sefton, "A model of insulin delivery by a controlled release micropump," Annals of biomedical engineering, vol. 14, pp. 257-276, 1986.
[6]J. Selam, "External and implantable insulin pumps: current place in the treatment of diabetes," Experimental and Clinical Endocrinology & Diabetes, vol. 109, no. Suppl 2, pp. S333-S340, 2001.
[7]C. C. Wong, J. H. Flemming, D. R. Adkins, and M. A. Plowman, "Evaluation of mini/micro-pumps for Micro-Chem-Lab™," in ASME International Mechanical Engineering Congress and Exposition, 2002, vol. 36576, pp. 477-485.
[8]P. Mruetusatorn, M. R. Mahfouz, and J. J. Wu, "Low-voltage dynamic control for DC electroosmotic devices," Sensors and Actuators A: Physical, vol. 153, no. 2, pp. 237-243, 2009.
[9]P. N. Karanth, V. Desai, and S. Kulkarni, "Modeling of single and multilayer polyvinylidene fluoride film for micro pump actuation," Microsystem technologies, vol. 16, pp. 641-646, 2010.
[10]N. A. Md Yunus and N. G. Green, "Fabrication of microfluidic device channel using a photopolymer for colloidal particle separation," Microsystem technologies, vol. 16, pp. 2099-2107, 2010.
[11]D. Maillefer, H. Van Lintel, G. Rey-Mermet, and R. Hirschi, "A high-performance silicon micropump for an implantable drug delivery system," in Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 99CH36291), 1999: IEEE, pp. 541-546.
[12]V. Singhal and S. V. Garimella, "Induction electrohydrodynamics micropump for high heat flux cooling," Sensors and Actuators A: Physical, vol. 134, no. 2, pp. 650-659, 2007.
[13]T. Zhang and Q.-M. Wang, "Valveless piezoelectric micropump for fuel delivery in direct methanol fuel cell (DMFC) devices," Journal of power sources, vol. 140, no. 1, pp. 72-80, 2005.
[14]J. Diaz et al., "A micropump for pulmonary blood flow regulation," IEEE Industrial Electronics Magazine, vol. 1, no. 1, pp. 39-44, 2007.
[15]L. Cao, S. Mantell, and D. Polla, "Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology," Sensors and Actuators A: Physical, vol. 94, no. 1-2, pp. 117-125, 2001.
[16]N.-T. Nguyen, A. H. Meng, J. Black, and R. M. White, "Integrated flow sensor for in situ measurement and control of acoustic streaming in flexural plate wave micropumps," Sensors and Actuators A: Physical, vol. 79, no. 2, pp. 115-121, 2000.
[17]L. Wallman, S. Ekström, G. Marko‐Varga, T. Laurell, and J. Nilsson, "Autonomous protein sample processing on‐chip using solid‐phase microextraction, capillary force pumping, and microdispensing," Electrophoresis, vol. 25, no. 21‐22, pp. 3778-3787, 2004.
[18]H. Suzuki and R. Yoneyama, "Integrated microfluidic system with electrochemically actuated on-chip pumps and valves," Sensors and Actuators B: Chemical, vol. 96, no. 1-2, pp. 38-45, 2003.
[19]R. Ehwald, H. Woehlecke, H. Adleff, and M. Ehwald, "Method for control of the volume flux of a liquid in an osmotic micropump and osmotic micropump," ed: Google Patents, 2011.
[20]N. Nguyen and S. T. Wereley, "Microfluidics for internal flow control: micropumps," Fundam Appl Microfluidics, Artech House, pp. 293-341, 2002.
[21]F. Amirouche, Y. Zhou, and T. Johnson, "Current micropump technologies and their biomedical applications," Microsystem technologies, vol. 15, pp. 647-666, 2009.
[22]C. Zhang, D. Xing, and Y. Li, "Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends," Biotechnology advances, vol. 25, no. 5, pp. 483-514, 2007.
[23]A. Machauf, Y. Nemirovsky, and U. Dinnar, "A membrane micropump electrostatically actuated across the working fluid," Journal of Micromechanics and Microengineering, vol. 15, no. 12, p. 2309, 2005.
[24]Q. Cui, C. Liu, and X. F. Zha, "Simulation and optimization of a piezoelectric micropump for medical applications," The International Journal of Advanced Manufacturing Technology, vol. 36, pp. 516-524, 2008.
[25]H. Van Lintel, F. Van de Pol, and S. Bouwstra, "A piezoelectric micropump based on micromachining of silicon," Sensors and actuators, vol. 15, no. 2, pp. 153-167, 1988.
[26]B. Ma et al., "A PZT insulin pump integrated with a silicon micro needle array for transdermal drug delivery," in 56th Electronic Components and Technology Conference 2006, 2006: IEEE, p. 5 pp.
[27]Y.-C. Hsu, S.-J. Lin, and C.-C. Hou, "Development of peristaltic antithrombogenic micropumps for in vitro and ex vivo blood transportation tests," Microsystem Technologies, vol. 14, pp. 31-41, 2008.
[28]R. Linnemann, P. Woias, C.-D. Senfft, and J. Ditterich, "A self-priming and bubble-tolerant piezoelectric silicon micropump for liquids and gases," in Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No. 98CH36176, 1998: IEEE, pp. 532-537.
[29]M. J. Zdeblick and J. Angell, "A microminiature electric-to-fluidic valve," in Transducers, 1987, vol. 87, p. 2.
[30]S. R. Hwang, W. Y. Sim, G. Y. Kim, S. S. Yang, and J. J. Pak, "Fabrication and test of a submicroliter-level thermopneumatic micropump for transdermal drug delivery," in 2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology, 2005: IEEE, pp. 143-145.
[31]O. C. Jeong, S. W. Park, S. S. Yang, and J. J. Pak, "Fabrication of a peristaltic PDMS micropump," Sensors and Actuators A: Physical, vol. 123, pp. 453-458, 2005.
[32]E. Makino, T. Mitsuya, and T. Shibata, "Fabrication of TiNi shape memory micropump," Sensors and Actuators A: Physical, vol. 88, no. 3, pp. 256-262, 2001.
[33]W. L. Benard, H. Kahn, A. H. Heuer, and M. A. Huff, "Thin-film shape-memory alloy actuated micropumps," Journal of Microelectromechanical systems, vol. 7, no. 2, pp. 245-251, 1998.
[34]W. Benard, H. Kahn, A. Heuer, and M. Huff, "A titanium-nickel shape-memory alloy actuated micropump," in Proceedings of International Solid State Sensors and Actuators Conference (Transducers' 97), 1997, vol. 1: IEEE, pp. 361-364.
[35]S. Guo and T. Fukuda, "SMA actuator-based novel type of micropump for biomedical application," in IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004, 2004, vol. 2: IEEE, pp. 1616-1621.
[36]S. Guo, T. Nakamura, T. Fukuda, and K. Oguro, "Development of the micro pump using ICPF actuator," in Proceedings of International Conference on Robotics and Automation, 1997, vol. 1: IEEE, pp. 266-271.
[37]S. Guo, T. Nakamura, T. Fukuda, and K. Oguro, "Design and experiments of micro pump using ICPF actuator," in MHS'96 Proceedings of the Seventh International Symposium on Micro Machine and Human Science, 1996: IEEE, pp. 235-240.
[38]S. Guo, N. Kato, T. Fukuda, and K. Oguro, "A fish microrobot using ICPF actuator," in AMC'98-Coimbra. 1998 5th International Workshop on Advanced Motion Control. Proceedings (Cat. No. 98TH8354), 1998: IEEE, pp. 592-597.
[39]S. Guo, T. Fukuda, K. Kosuge, F. Arai, K. Oguro, and M. Negoro, "Micro catheter system with active guide wire," in Proceedings of 1995 IEEE International Conference on Robotics and Automation, 1995, vol. 1: IEEE, pp. 79-84.
[40]S. Tadokoro, S. Yamagami, M. Ozawa, T. Kimura, T. Takamori, and K. Oguro, "Soft micromanipulation device with multiple degrees of freedom consisting of high polymer gel actuators," in Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 99CH36291), 1999: IEEE, pp. 37-42.
[41]L. Huang, W. Wang, M. Murphy, K. Lian, and Z.-G. Ling, "LIGA fabrication and test of a DC type magnetohydrodynamic (MHD) micropump," Microsystem technologies, vol. 6, pp. 235-240, 2000.
[42]J. Jang and S. S. Lee, "Theoretical and experimental study of MHD (magnetohydrodynamic) micropump," Sensors and Actuators A: Physical, vol. 80, no. 1, pp. 84-89, 2000.
[43]K.-H. Heng, W. Wang, M. C. Murphy, and K. Lian, "UV-LIGA microfabrication and test of an AC-type micropump based on the magnetohydrodynamic (MHD) principle," in Microfluidic Devices and Systems III, 2000, vol. 4177: SPIE, pp. 161-171.
[44]G. Fuhr, R. Hagedorn, T. Muller, W. Benecke, and B. Wagner, "Pumping of water solutions in microfabricated electrohydrodynamic systems," in [1992] Proceedings IEEE Micro Electro Mechanical Systems, 1992: IEEE, pp. 25-30.
[45]M. Badran and M. Moussa, "On the design of an electrohydrodynamic ion-drag micropump," in 2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04), 2004: IEEE, pp. 137-140.
[46]C.-H. Chen and J. G. Santiago, "A planar electroosmotic micropump," Journal of Microelectromechanical systems, vol. 11, no. 6, pp. 672-683, 2002.
[47]Y. Takemori, S. Horiike, T. Nishimoto, H. Nakanishi, and T. Yoshida, "High pressure electroosmotic pump packed with uniform silica nanospheres," in The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS'05., 2005, vol. 2: IEEE, pp. 1573-1576.
[48]H. A. Rouabah, B. Y. Park, R. B. Zaouk, H. Morgan, M. J. Madou, and N. G. Green, "Design and fabrication of an ac-electro-osmosis micropump with 3D high-aspect-ratio electrodes using only SU-8," Journal of Micromechanics and Microengineering, vol. 21, no. 3, p. 035018, 2011.
[49]P. Wang, Z. Chen, and H.-C. Chang, "A new electro-osmotic pump based on silica monoliths," Sensors and Actuators B: Chemical, vol. 113, no. 1, pp. 500-509, 2006.
[50]E. Colgate and H. Matsumoto, "An investigation of electrowetting‐based microactuation," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 8, no. 4, pp. 3625-3633, 1990.
[51]K.-S. Yun, I.-J. Cho, J.-U. Bu, C.-J. Kim, and E. Yoon, "A surface-tension driven micropump for low-voltage and low-power operations," Journal of microelectromechanical systems, vol. 11, no. 5, pp. 454-461, 2002.
[52]J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C.-J. Kim, "Electrowetting and electrowetting-on-dielectric for microscale liquid handling," Sensors and actuators a: Physical, vol. 95, no. 2-3, pp. 259-268, 2002.
[53]H. Suzuki and R. Yoneyama, "A reversible electrochemical nanosyringe pump and some considerations to realize low-power consumption," Sensors and Actuators B: chemical, vol. 86, no. 2-3, pp. 242-250, 2002.
[54]P.-Y. Li, R. Sheybani, C. A. Gutierrez, J. T. Kuo, and E. Meng, "A parylene bellows electrochemical actuator," Journal of Microelectromechanical Systems, vol. 19, no. 1, pp. 215-228, 2009.
[55]C. K. Byun, K. Abi‐Samra, Y. K. Cho, and S. Takayama, "Pumps for microfluidic cell culture," Electrophoresis, vol. 35, no. 2-3, pp. 245-257, 2014.
[56]J. Y. Sim, M. P. Haney, S. I. Park, J. G. McCall, and J.-W. Jeong, "Microfluidic neural probes: in vivo tools for advancing neuroscience," Lab on a Chip, vol. 17, no. 8, pp. 1406-1435, 2017.
[57]J. Smits and N. Vitafin, "Piezo-electrical micropump," European patent EP0134614, Netherlands, 1984.
[58]Z. Ma, Y. Zheng, Y. Cheng, S. Xie, X. Ye, and M. Yao, "Development of an integrated microfluidic electrostatic sampler for bioaerosol," Journal of Aerosol Science, vol. 95, pp. 84-94, 2016.
[59]S. A. M. Shaegh et al., "Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding," Sensors and Actuators B: Chemical, vol. 255, pp. 100-109, 2018.
[60]M. K. Dehghan Manshadi, D. Khojasteh, M. Mohammadi, and R. Kamali, "Electroosmotic micropump for lab‐on‐a‐chip biomedical applications," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 29, no. 5, pp. 845-858, 2016.
[61]D. Xia and J. Bai, "Simulation study and function analysis of micro-axial blood pumps," in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 2006: IEEE, pp. 2971-2974.
[62]E. Zordan and F. Amirouche, "Design and analysis of a double superimposed chamber valveless MEMS micropump," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 221, no. 2, pp. 143-151, 2007.
[63]M. Sen, D. Wajerski, and M. Gad-el-Hak, "A novel pump for MEMS applications," Journal of Fluids Engineering, Transactions of the ASME, vol. 118, no. 3, pp. 624-627, 1996.
[64]L. Leverett, J. Hellums, C. P. Alfrey, and E. C. Lynch, "Red blood cell damage by shear stress," Biophysical journal, vol. 12, no. 3, pp. 257-273, 1972.
[65]J. G. Smits, "Piezoelectric micropump with three valves working peristaltically," Sensors and Actuators A: Physical, vol. 21, no. 1-3, pp. 203-206, 1990.
[66]A. Cobo, R. Sheybani, H. Tu, and E. Meng, "A wireless implantable micropump for chronic drug infusion against cancer," Sensors and Actuators A: Physical, vol. 239, pp. 18-25, 2016.
[67]R. Sheybani, A. Cobo, and E. Meng, "Wireless programmable electrochemical drug delivery micropump with fully integrated electrochemical dosing sensors," Biomedical microdevices, vol. 17, pp. 1-13, 2015.
[68]I. Uguz et al., "A microfluidic ion pump for in vivo drug delivery," Advanced Materials, vol. 29, no. 27, p. 1701217, 2017.
[69]R. D. Meyer, S. F. Cogan, T. H. Nguyen, and R. D. Rauh, "Electrodeposited iridium oxide for neural stimulation and recording electrodes," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 9, no. 1, pp. 2-11, 2001.
[70]P. Johnson and L. Hench, "An in vitro analysis of metal electrodes for use in the neural environment," Brain, Behavior and Evolution, vol. 14, no. 1-2, pp. 23-45, 1977.
[71]K. S. Kang and J. Shay, "Blue sputtered iridium oxide films (Blue SIROF's)," Journal of the Electrochemical Society, vol. 130, no. 4, p. 766, 1983.
[72]J. McIntyre, W. Peck, and S. Nakahara, "Oxidation state changes and structure of electrochromic iridium oxide films," Journal of The Electrochemical Society, vol. 127, no. 6, p. 1264, 1980.
[73]J. Klein, S. Clauson, and S. Cogan, "Morphology and charge capacity of sputtered iridium oxide films," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 7, no. 5, pp. 3043-3047, 1989.
[74]S. F. Cogan, "Neural stimulation and recording electrodes," Annu. Rev. Biomed. Eng., vol. 10, pp. 275-309, 2008.
[75]E. Slavcheva, U. Schnakenberg, and W. Mokwa, "Deposition of sputtered iridium oxide—Influence of oxygen flow in the reactor on the film properties," Applied Surface Science, vol. 253, no. 4, pp. 1964-1969, 2006.
[76]K. Wang, C.-C. Liu, and D. M. Durand, "Flexible nerve stimulation electrode with iridium oxide sputtered on liquid crystal polymer," IEEE transactions on biomedical engineering, vol. 56, no. 1, pp. 6-14, 2009.
[77]V. K. LaMer and R. H. Dinegar, "Theory, production and mechanism of formation of monodispersed hydrosols," Journal of the american chemical society, vol. 72, no. 11, pp. 4847-4854, 1950.
[78]L. Ouattara, S. Fierro, O. Frey, M. Koudelka, and C. Comninellis, "Electrochemical comparison of IrO 2 prepared by anodic oxidation of pure iridium and IrO 2 prepared by thermal decomposition of H 2 IrCl 6 precursor solution," Journal of applied electrochemistry, vol. 39, pp. 1361-1367, 2009.
[79]S. Fierro, A. Kapałka, and C. Comninellis, "Electrochemical comparison between IrO2 prepared by thermal treatment of iridium metal and IrO2 prepared by thermal decomposition of H2IrCl6 solution," Electrochemistry communications, vol. 12, no. 1, pp. 172-174, 2010.
[80]W.-D. Huang, H. Cao, S. Deb, M. Chiao, and J.-C. Chiao, "A flexible pH sensor based on the iridium oxide sensing film," Sensors and Actuators A: Physical, vol. 169, no. 1, pp. 1-11, 2011.
[81]T. Silva, A. Simoes, M. Ferreira, M. Walls, and M. D. C. Belo, "Electronic structure of iridium oxide films formed in neutral phosphate buffer solution," Journal of Electroanalytical Chemistry, vol. 441, no. 1-2, pp. 5-12, 1998.
[82]A. Kusoglu and A. Z. Weber, "New insights into perfluorinated sulfonic-acid ionomers," Chemical reviews, vol. 117, no. 3, pp. 987-1104, 2017.
[83]L. Li et al., "Processing, characterization, and impact of Nafion thin film on photonic nanowaveguides for humidity sensing," Advanced Photonics Research, vol. 3, no. 2, p. 2100181, 2022.
[84]S. T. Palisoc, M. T. Natividad, and S. Tadios, "Fabrication and morphological characterization of Nafion thin films spin coated on silica," Journal of Optoelectronics and Advanced Materials, vol. 16, no. 5-6, p. 759, 2014.
[85]S. Vengatesan, E. Cho, H.-J. Kim, and T.-H. Lim, "Effects of curing condition of solution cast Nafion® membranes on PEMFC performance," Korean Journal of Chemical Engineering, vol. 26, pp. 679-684, 2009.
[86]D. K. Paul, K. Karan, A. Docoslis, J. B. Giorgi, and J. Pearce, "Characteristics of self-assembled ultrathin Nafion films," Macromolecules, vol. 46, no. 9, pp. 3461-3475, 2013.
[87]K. Yamanaka, "Anodically electrodeposited iridium oxide films (AEIROF) from alkaline solutions for electrochromic display devices," Japanese journal of applied physics, vol. 28, no. 4R, p. 632, 1989.
[88]S. Mailley, M. Hyland, P. Mailley, J. McLaughlin, and E. McAdams, "Electrochemical and structural characterizations of electrodeposited iridium oxide thin-film electrodes applied to neurostimulating electrical signal," Materials Science and Engineering: C, vol. 21, no. 1-2, pp. 167-175, 2002.
[89]M. D. Obradović, B. D. Balanč, U. Č. Lačnjevac, and S. L. Gojković, "Electrochemically deposited iridium-oxide: Estimation of intrinsic activity and stability in oxygen evolution in acid solution," Journal of Electroanalytical Chemistry, vol. 881, p. 114944, 2021.
[90]D. Wu, X. Wang, and X. Wu, "A Study on the Anodic Electrodeposition of Iridium Oxide on Different Substrates," Journal of The Electrochemical Society, vol. 169, no. 9, p. 092503, 2022.
[91]M. A. Petit and V. Plichon, "Anodic electrodeposition of iridium oxide films," Journal of Electroanalytical Chemistry, vol. 444, no. 2, pp. 247-252, 1998.
[92]Y. Gong, C. Wang, Q. Shen, and L. Zhang, "Microstructure and properties of annealed IrO2 thin films prepared by pulsed laser deposition," Materials Chemistry and Physics, vol. 116, no. 2-3, pp. 573-577, 2009.
[93]Y. J. Park et al., "Electrodeposition of high-surface-area IrO2 films on Ti felt as an efficient catalyst for the oxygen evolution reaction," Frontiers in Chemistry, vol. 8, p. 593272, 2020.
[94]Y. Zhang et al., "Electrodeposited nanometer-size IrO2/Ti electrodes with 0.3 mg IrO2 cm− 2 for sludge dewatering electrolysers," Electrochimica Acta, vol. 265, pp. 507-513, 2018.
[95]S. A. Marzouk, S. Ufer, R. P. Buck, T. A. Johnson, L. A. Dunlap, and W. E. Cascio, "Electrodeposited iridium oxide pH electrode for measurement of extracellular myocardial acidosis during acute ischemia," Analytical chemistry, vol. 70, no. 23, pp. 5054-5061, 1998.
[96]林孝安, 王玠荏, 林明杰, and 吳靖宙, "可量測微升液體 pH 值與溶氧濃度的電化學式微流體感測晶片," 農林學報, vol. 62, no. 4, pp. 331-341, 2013.
[97]S. Chen et al., "Reconstructed Ir‒O‒Mo species with strong Brønsted acidity for acidic water oxidation," Nature Communications, vol. 14, no. 1, p. 4127, 2023.
[98]D. Labou, E. Slavcheva, U. Schnakenberg, and S. Neophytides, "Performance of laboratory polymer electrolyte membrane hydrogen generator with sputtered iridium oxide anode," Journal of Power Sources, vol. 185, no. 2, pp. 1073-1078, 2008.
[99]M. Mehdipour, S. H. Tabaian, and S. Firoozi, "Anodic electrodeposition of ligand-free iridium oxide on titanium with high mass loading and study of electrochemical treatments," Journal of Electroanalytical Chemistry, vol. 858, p. 113831, 2020.
[100]R. Sanjines, A. Aruchamy, and F. Levy, "Thermal stability of sputtered iridium oxide films," Journal of the Electrochemical Society, vol. 136, no. 6, p. 1740, 1989.
[101]S. Kakooei, M. C. Ismail, and B. A. Wahjoedi, "Electrochemical study of iridium oxide coating on stainless steel substrate," International Journal of Electrochemical Science, vol. 8, no. 3, pp. 3290-3301, 2013.
[102]M. Martinez de Yuso, A. Calderón, V. Romero, M. Cuberes, and J. Benavente, "Chemical and homogeneity changes of a Nafion membrane surface associated to its doping with the cation of the room‐temperature ionic liquid AliquatCl," Surface and Interface Analysis, vol. 48, no. 7, pp. 561-565, 2016.
[103]M. S. Loeian, D. A. Ziolkowska, F. Khosravi, J. B. Jasinski, and B. Panchapakesan, "Exfoliated WS2-nafion composite based electromechanical actuators," Scientific reports, vol. 7, no. 1, p. 14599, 2017.
[104]N. Page et al., "The effect of deposition parameters on microstructure and electrochemical performance of reactively sputtered iridium oxide coatings," Materials Today Communications, vol. 29, p. 102967, 2021.
[105]Z. e. Porat, J. R. Fryer, M. Huxham, and I. Rubinstein, "Electron microscopy investigation of the microstructure of nafion films," The Journal of Physical Chemistry, vol. 99, no. 13, pp. 4667-4671, 1995.
[106]Z. Liang et al., "FT-IR study of the microstructure of Nafion® membrane," Journal of membrane science, vol. 233, no. 1-2, pp. 39-44, 2004.
[107]S. Yao, M. Wang, and M. Madou, "A pH electrode based on melt-oxidized iridium oxide," Journal of the electrochemical society, vol. 148, no. 4, p. H29, 2001.
[108]S. F. Cogan et al., "Sputtered iridium oxide films for neural stimulation electrodes," Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, vol. 89, no. 2, pp. 353-361, 2009.
[109]D. J. Laser, Design, fabrication, and applications of silicon electroosmotic micropumps. Stanford University, 2005.
[110]S. Yuan and S. Hu, "Characterization and electrochemical studies of Nafion/nano-TiO2 film modified electrodes," Electrochimica acta, vol. 49, no. 25, pp. 4287-4293, 2004.
[111]T. Binninger and M.-L. Doublet, "The Ir–OOOO–Ir transition state and the mechanism of the oxygen evolution reaction on IrO 2 (110)," Energy & Environmental Science, vol. 15, no. 6, pp. 2519-2528, 2022.


電子全文 電子全文(網際網路公開日期:20290722)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top