跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 01:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:阿卡錫
研究生(外文):AKASH PRALHAD VADRALE
論文名稱:高雄海岸海洋微藻(Chlorella sorokiniana Kh12)於生產葉黃素和脂質的生物技術之研究
論文名稱(外文):BIOPROSPECTING OF MARINE MICROALGAE (CHLORELLA SOROKINIANA KH12) FROM KAOHSIUNG SEACOAST FOR LUTEIN AND LIPID PRODUCTION
指導教授:董正釱
指導教授(外文):Cheng-Di Dong
口試委員:高志明Shu Chen HsiehCheng-Di DongChiu-Wen ChenPatel, Anil KumarSinghania, Reeta Rani
口試委員(外文):Jimmy C. M. Kao謝淑貞董正釱陳秋妏安尼洱莉塔
口試日期:2024-05-23
學位類別:博士
校院名稱:國立高雄科技大學
系所名稱:水圈學院水產科技產業博士班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:123
中文關鍵詞:阿卡錫
外文關鍵詞:Akashi
ORCID或ResearchGate:https://www.researchgate.net/profile/Akash-Vadrale
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究從台灣高雄海岸採集的海水樣本中分離出具有生產類胡蘿蔔素葉黃素特性的微細藻Chlorella sorokiniana Kh12。此研究目的在評估和優化C. sorokiniana Kh12培養條件、葉黃素累積階段、提高葉黃素和脂質的萃取量。使用2X-(HT)-9k 模式的混合營養培養C. sorokiniana Kh12得到3.46 g/L的生物量和13.69 mg/g的葉黃素產量,這是目前相關報告中的最高產量之一。C. sorokiniana Kh12使用珠磨和有機溶劑甲醇震盪 7 分鐘可獲得最大葉黃素萃取率(7.56 mg/g),以上結果顯示C. sorokiniana Kh12具有生產脂質和葉黃素的潛力。 透過生物製程條件優化培養C. sorokiniana Kh12的結果顯示大量營養素和微量營養素的 3x: 3x 比例顯著提升生物量至4.6 g/L 和葉黃素含量至14.02 mg/g; 連續培養在32℃溫度下使C. sorokiniana Kh12的葉黃素含量提升到17.3 mg/g; 在10k lux光照強度下培養C. sorokiniana Kh12得到最高的葉黃素含量14.42 mg/g; C. sorokiniana Kh12培養在鹽度25%至75%之間有利於提升脂質含量為20.5%至26%; 使用兩階段培養C. sorokiniana Kh12策略部分,結果顯示有效提升C. sorokiniana Kh12生物量、葉黃素和脂質產量分別為4.1 g/L、16.01mg/g和246 mg/g,使用 3x:3x 大量微量營養素比例可提高葉黃素生產力和產量(4.05 mg/L/d,56.74 mg/L)。C. sorokiniana Kh12培養在管式生物反應器比普通生物反應器有較高的二氧化碳的利用率而提高生物量產量; 在探討管式生物反應器培養條件對C. sorokiniana Kh12生物量和葉黃素產量的影響方面,實施多種培養策略包含改變光照、切換到管式生物反應器、光/暗、部分圖案遮光、培養六天後改變光照、溫度、營養物添加和組合的兩階段方法; 管式反應器中的 8k 光強度顯示出較好的生物量(6.75 g/L)以及葉黃素生產率和產量(4.43 mg/L/d,62.1mg/L); 光/暗週期(18:6) 循環以及部分圖案遮光顯示出更好的葉黃素產量(65.48 mg/L 和69.14 mg/L)以及生產力(4.67 mg/L/d 和4.93 mg/L/d ); 尿素作為碳/氮源,透過基因上調將產量和生產力提高到 82.1 mg/L 和 5.86 mg/L/d,與其他最高產量相比,在有限的養分供給條件下達到最大產量。此外,在兩個階段中觀察到生物量和葉黃素的增加,其中在第二階段添加(BS,HT),並且在第8天後增加2k的光強度產生8.31 g/L的生物量和86.42 mg/L的葉黃素產量和 6.17 mg/L/d 的生產力,這是混合營養分批培養報告中獲得的最高生產力之一。
此外,反應器有限空間造成對細胞的干擾,研究結果雖然獲得較高生物量但卻無法有效提升葉黃素含量。 C. sorokiniana Kh12 是目前研究報告中葉黃素產量最高的微細藻之一,顯示出其作為商業葉黃素生產的潛力藻種。本研究成功分離並優化了微細藻 C. sorokiniana Kh12 的葉黃素生產策略。這些發現為葉黃素生產的生物製程優化提供了重要的研究資訊,並凸顯出這個微細藻種在工業規模上生產高價值葉黃素的潛力。

A study was performed to identify and characterize novel strains capable of producing the carotenoid lutein from seawater samples collected along the coast of Kaohsiung, Taiwan. The microalgae strain, Chlorella sorokiniana Kh12 was found to be a viable option for the synthesis of lutein. The research aimed to optimize the cultivation conditions, lutein accumulation stage, and extraction methods for maximizing lutein and lipid recovery. For Chlorella sorokiniana Kh12, the study focused on evaluating and optimizing various parameters. Under mixotrophic cultivation using a 2X-(HT)-9k mode, Kh12 exhibited high biomass production (3.46 g/L) and lutein yield (13.69 mg/g), making it one of the highest reported yields. MeOH was determined as the most effective solvent for lutein extraction, and bead milling for seven minutes yielded the maximum lutein extraction yield (7.56 mg/g). These results demonstrated the potential for lipid co-production and commercial lutein synthesis. In the case of Chlorella sorokiniana Kh12, the bioprocess conditions for lutein production were optimized by investigating various parameters. A 3x:3x ratio of macro- and micronutrients significantly influenced biomass yield (4.6 g/L) and lutein content (14.02 mg/g). Continuous cultivation at 32 °C increased lutein content to 17.3 mg/g, while an illumination intensity of 10k lux resulted in the highest lutein content (14.42 mg/g). Manipulating salinity levels from 25% to 75% facilitated lipid accumulation, with an optimized lipid content ranging from 20.5% to 26%, and implementing a two-stage strategy further enhanced biomass, lutein, and lipid yields, reaching 4.1 g/L, 16.01, and 246 mg/g, respectively. The use of a 3x:3x macro-micronutrient ratio led to the increase in lutein productivity and yield (4.05 mg/L/d, 56.74 mg/L). Furthermore, the tubular bioreactor gives higher biomass than the normal bioreactor because of better mass transfer utilization of CO2. To increase the biomass and lutein, several tactics such as varying light, switching to a tubular bioreactor, light/dark, patterned light and a two-stage approach involving changing the light, temperature, nutrient feeding, and combination after six days are being implemented.8k light intensity in a tubular reactor showed better biomass which was 6.75 g/L, and lutein productivity and yield (4.43 mg/L/d, 62.1mg/L). Furthermore Light/dark (18:6) cycles as well as pattern light have shown better lutein yields of 65.48 mg/L and 69.14 mg/L and productivity’s 4.67 mg/L/d and 4.93 mg/L/d. respectively. Urea, as carbon/nitrogen source, boosted yield and productivity to 82.1 mg/L and 5.86 mg/L/d by gene upregulation which is maximum with a limited amount of nutrients compared to other maximum yields. Moreover, an increase in biomass as well as lutein was observed in two stages where in the second stage addition of (BS, HT), and 2k increase of light intensity after day 8 yielded 8.31 g/L biomass and 86.42 mg/L lutein yield and 6.17 mg/L/d productivity which is one of the maximum reported in mixotrophic batch cultivation.
Moreover, results with high biomass also slightly decrease lutein due to the interference of cells in the limited space of the reactor. Chlorella sorokiniana Kh12 showed itself as a potential source for commercial lutein production by producing one of the highest lutein yields. This research study successfully isolated and optimized lutein production strategies for microalgae strains, Chlorella sorokiniana Kh12. The findings contribute valuable insights into the bioprocess optimization of lutein production and highlight the potential of these strains for high-value lutein production on an industrial scale.

List of Content
ACKNOWLEDGEMENT………………………………………………………….… iii
摘要 ………………………………………………………………………………….. iv
ABSTRACT…………………………………………………………………………… vi
ABBREVIATIONS……………………………………………………………………. viii
LIST OF FIGURES………………………………………………………………..…. xii
CHAPTER 1- INTRODUCTION…………...……..………………………………… 1
1.1 Research background…………………………………………………………….. 1
1.2 Research objectives………………….……………………………………..……. 5
CHAPTER 2 – LITERATURE REVIEW……………………...…...………………. 6
2.1 Overview of microalgae lutein…………………………………………...……… 6
2.1.1 Microalgae isolation and selection…………………………………………. 6
2.1.2 Effect of macro and micronutrients………………………………………… 7
2.1.3 Effect of light intensity…………………………………………………….. 7
2.1.4 Effect of temperature………………………………………………………. 8
2.1.5 Effect of salinity……………………………………………………………. 8
2.1.6 Enhancement strategies: upstream and downstream processing…………… 9
2.1.7 Two-stage cultivation strategies………….………………………………… 9
2.1.8 Challenges and future directions……………………………………………. 10
CHAPTER 3 - MATERIALS AND METHOD……………………...……………… 12
3.1. Chemicals and materials....................................................................................... 12
3.2 Field collection of microalgae samples and enrichment in media......................... 12
3.3 Initial evaluation of algal culture for enhanced biomass production……………. 12
3.4 Screening identification and cultivation parameters of the microalgae strain....... 13
3.5 Lutein extraction.................................................................................................... 16
3.5.1 Impact of solvent on the extraction of lutein................................................ 16
3.5.2 The impact of the cell disruption technique.................................................. 16
3.6 Optimizing parameters for the production of lutein............................................... 18
3.6.1 Micro- and macronutrient effects.................................................................. 18
3.6.2 Influence of temperature, light, and salinity................................................. 18
3.6.3 Analysis of ROS in different conditions……………………..…………..... 19
3.6.4 Effect of combination of salinity and temperature………………………… 19
3.6.5 Impact of different light intensities on tubular bioreactor…………..……. 19
3.6.6 Impact of pattern and light/dark cycles in a tubular bioreactor……………. 20
3.6.7 Effect of nitrogen sources and two-stage strategies……….…..…………... 21
3.7 Analytical methods................................................................................................. 22
3.7.1 Biomass, lutein, and lipid estimation............................................................ 23
3.7.2 Chromatography............................................................................................ 23
3.7.3 Statistical analysis......................................................................................... 23
CHAPTER 4 - RESULTS AND DISCUSSIONS......................................................... 25
4.1 Identification and characterization of promising microalgal strains.................. 25
4.2 Lutein, biomass, and lipid yield under autotrophic, mixotrophic, and
nutrient-stressed conditions.................................................................................. 26
4.3 Impact of solvent on the extraction of lutein....................................................... 32
4.4 Enhancing lutein extraction from Chlorella sorokiniana Kh12 through optimized cell disruption……………………………………………………... 35
4.5 Influence of variation of micro and macronutrients............................................. 36
4.6 Influence of different illumination intensities on Kh12....................................... 40
4.7 Influence of temperatures ................................................................................... 43
4.8 Influence of salinity ............................................................................................ 45
4.9 Effect of short-term stress of temperature and salinity on cells ROS generation. 47
4.10 Influence of different light intensity in tubular bioreactor……………………... 49
4.11 Effect of light/dark condition…………………………………………………... 51
4.12 Effect of pattern bioreactor…………………………………………………….. 53
4.13 Effect of nitrogen sources ……………………………………….…………….. 55
4.14 Two-stage cultivation strategies ……………………………………………….. 57
CHAPTER 5 – SUMMARY AND FUTURE DIRECTIONS………………............. 61
5.1 Summary ............................................................................................................... 61
5.2 Future perspectives ............................................................................................... 63
REFERENCES .............................................................................................................. 65


1.Ahmad, S., Iqbal, K., Kothari, R., Singh, H. M., Sari, A., & Tyagi, V. V. (2022). A critical overview of upstream cultivation and downstream processing of algae-based biofuels: opportunity, technological barriers and future perspective. Journal of Biotechnology, 351, 74-98.
2.Ali, E., and Mirza, S. S. (2017). A new method to isolate algal species from mix algal culture. BioRxiv, 233981.
3.Balevičius, V., & Duffy, C. D. (2020). Excitation quenching in chlorophyll–carotenoid antenna systems:‘coherent’or ‘incoherent’. Photosynthesis research, 144, 301-315.
4.Bermejo, E., Ruiz-Domínguez, M. C., Cuaresma, M., Vaquero, I., Ramos-Merchante, A., Vega, J. M., ... & Garbayo, I. (2018). Production of lutein, and polyunsaturated fatty acids by the acidophilic eukaryotic microalga Coccomyxa onubensis under abiotic stress by salt or ultraviolet light. Journal of bioscience and bioengineering, 125(6), 669-675.
5.Becerra, M. O., Contreras, L. M., Lo, M. H., Díaz, J. M., & Herrera, G. C. (2020). Lutein as a functional food ingredient: Stability and bioavailability. Journal of Functional Foods, 66, 103771.
6.Berner, T., Dubinsky, Z., Wyman, K., Falkowski, P.G. 1989. Photoadaptation and the “package” effect in Dunaliella tertiolecta (Chlorophyceae) 1. J. Phycol. 25(1), 70-8.
7.Bialevich, V., Zachleder, V., & Bišová, K. (2022). The effect of variable light source and light intensity on the growth of three algal species. Cells, 11(8), 1293.
8.Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology, 37(8), 911-917.
9.Britton, G. (2008). Functions of intact carotenoids. In Carotenoids: volume 4: natural functions (pp. 189-212). Basel: Birkhäuser Basel.
10.Bulynina, S. S., Ziganshina, E. E., & Ziganshin, A. M. (2023). Growth Efficiency of Chlorella sorokiniana in Synthetic Media and Unsterilized Domestic Wastewater. BioTech, 12(3), 53.
11.Camarena-Bernard, C., & Pozzobon, V. (2024). Evolving perspectives on lutein production from microalgae-A focus on productivity and heterotrophic culture. Biotechnology Advances, 108375.
12.Castillo, T., Ramos, D., García-Beltrán, T., Brito-Bazan, M., & Galindo, E. (2021). Mixotrophic cultivation of microalgae: an alternative to produce high-value metabolites. Biochemical Engineering Journal, 176, 108183.
13.Cerón, M. C., Campos, I., Sánchez, J. F., Acién, F. G., Molina, E., & Fernández-Sevilla, J. M. (2008). Recovery of lutein from microalgae biomass: Development of a process for Scenedesmus almeriensis biomass. Journal of Agricultural and Food Chemistry, 56(24), 11761–11766.
14.Chan, M. C., Ho, S. H., Lee, D. J., Chen, C. Y., Huang, C. C., & Chang, J. S. (2013). Characterization, extraction and purification of lutein produced by an indigenous microalga Scenedesmus obliquus CNW-N. Biochemical Engineering Journal, 78, 24-31.
15.Cheirsilp, B., & Torpee, S. (2012). Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration, and fed-batch cultivation. Bioresource Technology, 110, 510-516.
16.Chen, C. Y., Hsieh, C., Lee, D. J., Chang, C. H., & Chang, J. S. (2016). Production, extraction and stabilization of lutein from microalga Chlorella sorokiniana MB-1. Bioresource Technology, 200, 500-505.
17.Chen, J. H., Kato, Y., Matsuda, M., Chen, C. Y., Nagarajan, D., Hasunuma, T., ... & Chang, J. S. (2021). Lutein production with Chlorella sorokiniana MB-1-M12 using novel two-stage cultivation strategies–metabolic analysis and process improvement. Bioresource technology, 334, 125200.
18.Chinnasamy, S., Ramakrishnan, B., Bhatnagar, A., & Das, K. C. (2009). Biomass production potential of a wastewater alga Chlorella Vulgaris ARC 1 under elevated levels of CO2 and temperature. International Journal Of Molecular Sciences, 10(2), 518-532.
19.Chen, Z., & Su, B. (2020). Influence of medium frequency light/dark cycles on the cultivation of Auxeno chlorella pyrenoidosa. Applied Sciences, 10(15), 5093.
20.Chokshi, K., Pancha, I., Ghosh, A., & Mishra, S. (2017). Salinity induced oxidative stress alters the physiological responses and improves the biofuel potential of green microalgae Acutodesmus dimorphus. Bioresource technology, 244, 1376-1383.
21.Choi, Y. Y., Patel, A. K., Hong, M. E., Chang, W. S., & Sim, S. J. (2019). Microalgae bioenergy carbon capture utilization and storage (BECCS) technology: an emerging sustainable bioprocess for reduced CO2 emission and biofuel production. Bioresour Technol Rep, 7(100270), 10-1016.
22.Cordero, B. F., Obraztsova, I., Couso, I., Leon, R., Vargas, M. A., & Rodriguez, H. (2011). Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Marine drugs, 9(9), 1607-1624.
23.Coulombier, N., Nicolau, E., Le Déan, L., Barthelemy, V., Schreiber, N., Brun, P., ... & Jauffrais, T. (2020). Effects of nitrogen availability on the antioxidant activity and carotenoid content of the microalgae Nephroselmis sp. Marine drugs, 18(9), 453.
24.Craft, N.E., Soares, J.H. (1992). Relative solubility, stability, and absorptivity of lutein and β-carotene in organic solvents, J. Agric. Food Chem. 1992, 40, 3, 431–434.
25.Cruz-balladares, V., Marticorena, P., Riquelme, C. (2021). Effect on growth and productivity of lutein from the Chlorophyta microalga, strain MCH of Muriellopsis sp., when grown in seawater and outdoor conditions at the Atacama Desert. Elect. J. Biotechnol. 54, 77–85.
26.Cuaresma, M., Janssen, M., Vílchez, C., & Wijffels, R. H. (2009). Productivity of Chlorella sorokiniana in a short light‐path (SLP) panel photobioreactor under high irradiance. Biotechnology and bioengineering, 104(2), 352-359.
27.Dammak, M., Hadrich, B., Miladi, R., Barkallah, M., Hentati, F., Hachicha, R., ... & Abdelkafi, S. (2017). Effects of nutritional conditions on growth and biochemical composition of Tetraselmis sp. Lipids in Health and Disease, 16, 1-13.
28.Del Campo, J. A., Moreno, J., Rodrı́guez, H., Vargas, M. A., Rivas, J., & Guerrero, M. G. (2000). Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp.(Chlorophyta). Journal of Biotechnology, 76(1), 51-59.
29.Del Campo, J. A., Rodrı́guez, H., Moreno, J., Vargas, M. Á., Rivas, J., & Guerrero, M. G. (2001). Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. Journal of biotechnology, 85(3), 289-295.
30.Demmig-Adams, B., Polutchko, S. K., & Adams III, W. W. (2022). Structure-function-environment relationship of the isomers zeaxanthin and lutein. Photochem, 2(2), 308-325.
31.Dias, M. G., Borge, G. I. A., Kljak, K., Mandić, A. I., Mapelli-Brahm, P., Olmedilla-Alonso, B., ... & Meléndez-Martínez, A. J. (2021). European database of carotenoid levels in foods. Factors affecting carotenoid content. Foods, 10(5), 912.
32.Dineshkumar, R., Subramanian, G., Dash, S. K., & Sen, R. (2016). Development of an optimal light-feeding strategy coupled with semi-continuous reactor operation for simultaneous improvement of microalgal photosynthetic efficiency, lutein production and CO2 sequestration. Biochemical Engineering Journal, 113, 47-56.
33.Dinh, C. T., Do, C. V. T., Nguyen, T. P. T., Nguyen, N. H., Le, T. G., & Tran, T. D. (2022). Isolation, purification and cytotoxic evaluation of lutein from mixotrophically grown Chlorella sorokiniana TH01. Algal Research, 62, 102632.
34.Do, C. V. T., Dinh, C. T., Dang, M. T., Dang, T., Giang, T. (2022b). A novel flat-panel photobioreactor for simultaneous production of lutein and carbon sequestration by Chlorella sorokiniana TH01. Bioresour. Technol. 345, 126552.
35.Do, C. V. T., Tuat, N., Nguyen, T., Huong, M., Pham, T., Yen, T., Pham, T., Ngo, V. G., Giang, T., Dang, T. (2022a). Central composite design for simultaneously optimizing biomass and lutein production by a mixotrophic Chlorella sorokiniana TH01. Biochem. Eng. J. 177, 108231.
36.Encarnação, T., Burrows, H. D., Pais, A. C., Campos, M. G., & Kremer, A. (2012). Effect of N and P on the Uptake of Magnesium and Iron and on the Production of Carotenoids and Chlorophyll by the Microalgae Nannochloropsis sp. Journal of Agricultural Science and Technology. A, 2(6A), 824.
37.Ermis, H., Guven-Gulhan, U., Cakir, T., & Altinbas, M. (2020). Effect of iron and magnesium addition on population dynamics and high value product of microalgae grown in anaerobic liquid digestate. Scientific reports, 10(1), 1-12.
38.Fábryová, T., Cheel, J., Kubáč, D., Hrouzek, P., Vu, D. L., Tůmová, L., Kopecký, J. (2019). Purification of lutein from the green microalgae Chlorella vulgaris by integrated use of a new extraction protocol and a multi-injection high-performance counter-current chromatography (HPCCC). Algal Res. 41.
39.Fábryová, T., Kubáč, D., Kuzma, M., Hrouzek, P., Kopecký, J., Tůmová, L., & Cheel, J. (2021). High-performance countercurrent chromatography for lutein production from a chlorophyll-deficient strain of the microalgae Parachlorella kessleri HY1. Journal of Applied Phycology, 33(4), 1999-2013.
40.Fox, J. M., & Zimba, P. V. (2018). Minerals and trace elements in microalgae. Microalgae in health and disease prevention (pp. 177-193). Academic Press.
41.Frede, K., Winkelmann, S., Busse, L., & Baldermann, S. (2023). The effect of LED light quality on the carotenoid metabolism and related gene expression in the genus Brassica. BMC Plant Biology, 23(1), 328.
42.Feng, P., Deng, Z., Hu, Z., & Fan, L. (2011). Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors. Bioresource technology, 102(22), 10577-10584.
43.Fu, Y., Wang, Y., Yi, L., Liu, J., Yang, S., Liu, B., ... & Sun, H. (2023). Lutein production from microalgae: A review. Bioresource Technology, 128875.
44.Gim, G. H., Kim, S. W. (2018). Optimization of Cell Disruption and Transesterification of Lipids from Botryococcus braunii LB572. Biotechnology and Bioprocess Engineering, 23(5), 550–556.
45.Gong, M., & Bassi, A. (2017). Investigation of Chlorella vulgaris UTEX 265 cultivation under light and low temperature stressed conditions for lutein production in flasks and the coiled tree photo-bioreactor (CTPBR). Applied biochemistry and biotechnology, 183, 652-671.
46.Gris, B., Morosinotto, T., Giacometti, G.M., Bertucco, A. and Sforza, E., 2014. Cultivation of Scenedesmus obliquus in photobioreactors: effects of light intensities and light–dark cycles on growth, productivity, and biochemical composition. Applied biochemistry and biotechnology, 172, pp.2377-2389.
47.Guedes, V. C., Palma, G. M., & Horta, A. C. L. (2023). An evaluation of light wavelengths, intensity and control for the production of microalgae in photobioreactors: a review. Brazilian Journal of Chemical Engineering, 1-14.
48.Halim, R., Danquah, M. K., & Webley, P. A. (2012). Extraction of oil from microalgae for biodiesel production: A review. Biotechnology advances, 30(3), 709-732.
49.Haris, N., Manan, H., Jusoh, M., Khatoon, H., Katayama, T., & Kasan, N. A. (2022). Effect of different salinity on the growth performance and proximate composition of isolated indigenous microalgae species. Aquaculture Reports, 22, 100925.
50.Havaux, M. (1998). Carotenoids as membrane stabilizers in chloroplasts. Trends in plant science, 3(4), 147-151.
51.Hu, J., Meng, W., Su, Y., Qian, C., & Fu, W. (2023). Emerging technologies for advancing microalgal photosynthesis and metabolism toward sustainable production. Frontiers in Marine Science, 10, 1260709.
52.Hudek, K., Davis, L. C., Ibbini, J., & Erickson, L. (2014). Commercial products from algae. Algal Biorefineries: volume 1: cultivation of cells and products, 275-295.
53.Husseini, Z. N., Tafreshi, S. A. H., Aghaie, P., & Toghyani, M. A. (2020). CaCl2 pretreatment improves gamma toxicity tolerance in microalga Chlorella vulgaris. Ecotoxicology and Environmental Safety, 192, 110261.
54.Hutner, S.H., Provasoli, L., Schatz, A., Haskins, C.P. (1950). Some approaches to the study of the role of metals in the metabolism of microorganisms. Proceedings of the American Philosophical Society 94(2), 152-170.
55.Ip, P.F., and Chen, F. (2005). Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Proc. Biochem. 40(2), 733-738.
56.Jahns, P., & Holzwarth, A. R. (2012). The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1817(1), 182-193.
57.Jeon, J. Y., Kwon, J. S., Kang, S. T., Kim, B. R., Jung, Y., Han, J. G., ... & Hwang, J. K. (2014). Optimization of culture media for large‐scale lutein production by heterotrophic Chlorella vulgaris. Biotechnology progress, 30(3), 736-743.
58.Jeong, D., Jang, A. (2020). Exploration of microalgal species for simultaneous wastewater treatment and biofuel production, Environ. Res. 188, 109772.
59.Juneja, A., Ceballos, R. M., & Murthy, G. S. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies, 6(9), 4607-4638.
60.Kadri, M. S., Singhania, R. R., Anisha, G. S., Gohil, N., Singh, V., Patel, A. K., & Patel, A. K. (2023). Microalgal lutein: Advancements in production, extraction, market potential, and applications. Bioresource Technology, 129808.
61.Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial cell factories, 17, 1-21.
62.Krimech, A., Helamieh, M., Wulf, M., Krohn, I., Riebesell, U., Cherifi, O., ... & Kerner, M. (2022). Differences in adaptation to light and temperature extremes of Chlorella sorokiniana strains isolated from a wastewater lagoon. Bioresource Technology, 350, 126931.
63.Kumari, S., Kumar, V., Kothari, R., & Kumar, P. (2024). Nutrient sequestration and lipid production potential of Chlorella vulgaris under pharmaceutical wastewater treatment: experimental, optimization, and prediction modeling studies. Environmental Science and Pollution Research, 31(5), 7179-7193.
64.Lee, K. H., Jang, Y. W., Kim, H., Ki, J. S., & Yoo, H. Y. (2021). Optimization of lutein recovery from Tetraselmis suecica by response surface methodology. Biomolecules, 11(2), 1–15.
65.Li, Y., Zhao, Y., Zhang, H., Ding, Z., & Han, J. (2024). The Application of Natural Carotenoids in Multiple Fields and Their Encapsulation Technology: A Review. Molecules, 29(5), 967.
66.Lin, J. H., Lee, D. J., & Chang, J. S. (2015). Lutein in specific marigold flowers and microalgae. Journal of the Taiwan Institute of Chemical Engineers, 49, 90-94.
67.Liu, N., Mou, Y., Su, K., Li, X., Lu, T., Yan, W., ... & Yu, Z. (2022). The effect of salinity stress on the growth and lipid accumulation of Scenedesmus quadricauda FACHB-1297 under xylose mixotrophic cultivation. Process Safety and Environmental Protection, 165, 887-894.
68.Low, K. L., Idris, A., & Yusof, N. M. (2020). Novel protocol optimized for microalgae lutein used as food additives. Food chemistry, 307, 125631.
69.Ma, R., Zhang, Z., Ho, S. H., Ruan, C., Li, J., Xie, Y., ... & Chen, J. (2020a). Two-stage bioprocess for hyper-production of lutein from microalga Chlorella sorokiniana FZU60: Effects of temperature, light intensity, and operation strategies. Algal Research, 52, 102119.
70.Ma, R., Zhang, Z., Tang, Z., Ho, S. H., Shi, X., Liu, L., ... & Chen, J. (2021). Enhancement of co-production of lutein and protein in Chlorella sorokiniana FZU60 using different bioprocess operation strategies. Bioresources and Bioprocessing, 8(1), 1-12.
71.Ma, R., Zhao, X., Ho, S. H., Shi, X., Liu, L., Xie, Y., ... & Lu, Y. (2020b). Co-production of lutein and fatty acid in microalga Chlamydomonas sp. JSC4 in response to different temperatures with gene expression profiles. Algal Research, 47, 101821.
72.Maltsev, Y., Maltseva, K., Kulikovskiy, M., & Maltseva, S. (2021). Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition. Biology, 10(10), 1060.
73.Markou, G., Vandamme, D., & Muylaert, K. (2014). Microalgal and cyanobacterial cultivation: The supply of nutrients. Water research, 65, 186-202.
74.Novosel, N., Mišić Radić, T., Levak Zorinc, M., Zemla, J., Lekka, M., Vrana, I., ... & Ivošević DeNardis, N. (2022a). Salinity-induced chemical, mechanical, and behavioral changes in marine microalgae. Journal of Applied Phycology, 1-17.
75.Novosel, N., Mišić Radić, T., Zemla, J., Lekka, M., Čačković, A., Kasum, D., ... & Ivošević DeNardis, N. (2022b). Temperature-induced response in algal cell surface properties and behaviour: an experimental approach. Journal of Applied Phycology, 34(1), 243-259.
76.Pagels, F., Pereira, R. N., Vicente, A. A., Guedes, A. C. (2021). Extraction of pigments from microalgae and cyanobacteria-a review on current methodologies. Appl. Sci. 11(11).
77.Pancha, I., Chokshi, K., Maurya, R., Trivedi, K., Patidar, S. K., Ghosh, A., & Mishra, S. (2015). Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology, 189, 341-348.
78.Patel, A. K., Albarico, F. P. J. B., Perumal, P. K., Vadrale, A. P., Ntan, C. T., Chau, H. T. B., ... & Singhania, R. R. (2022). Algae as an emerging source of bioactive pigments. Bioresource Technology, 126910.
79.Patel, A. K., Choi, Y. Y., & Sim, S. J. (2020). Emerging prospects of mixotrophic microalgae: Way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels. Bioresource technology, 300, 122741.
80.Patel, A. K., Joun, J. M., Hong, M. E., & Sim, S. J. (2019). Effect of light conditions on mixotrophic cultivation of green microalgae. Bioresource technology, 282, 245-253.
81.Patel, A. K., Tambat, V. S., Chen, C. W., Chauhan, A. S., Kumar, P., Vadrale, A. P., ... & Singhania, R. R. (2022). Recent advancements in astaxanthin production from microalgae: A review. Bioresource Technology, 128030.
82.Patel, A. K., Vadrale, A. P., Tseng, Y. S., Chen, C. W., Dong, C. D., & Singhania, R. R. (2022). Bioprospecting of marine microalgae from Kaohsiung Seacoast for lutein and lipid production. Bioresource Technology, 351, 126928.
83.Patel, A. K., Albarico, F. P. J. B., Perumal, P. K., Vadrale, A. P., Nian, C. T., Chau, H. T. B., ... & Singhania, R. R. (2022). Algae as an emerging source of bioactive pigments. Bioresource technology, 351, 126910.
84.Patel, A.K., Choi, Y.Y., Sim, S.J., (2020a). Emerging prospects of mixotrophic microalgae: way forward to bioprocess sustainability, environmental remediation and cost-effective biofuels. Bioresour. Technol. 300, 122741.
85.Patel, A.K., Joun, J.M., Hong, M.E., Sim, S.J. (2019). Effect of light conditions on mixotrophic cultivation of green microalgae. Bioresour. Technol. 282, 245–253.
86.Patel, A.K., Joun, J.M., Hong, M.E., Sim, S.J., (2020b). A sustainable mixotrophic microalgae cultivation from dairy wastes for carbon credit, bioremediation and lucrative biofuels. Bioresour. Technol. 313, 123681.
87.Patel, A.K., Singhania, R.R., Sim, S.J., Dong, C.D. (2021a). Recent advancements in mixotrophic bioprocessing for production of high value microalgal products, Bioresour. Technol. 320, 124421.
88.Patel, A.K., Singhania, R.R., Chang J.S., Chen, C.W., Dong, C.D. (2021b). Novel application of biodesalination from microalgae. Bioresour Technol. 337, 125343.
89.Patel, A.K., Singhania, R.R., Wu, C.H., Kuo, C.H., Chen, C.W., Dong, C.D. (2021c). Advances in micro- and nanobubbles technology for application in biochemical processes. Environ. Technol. Innov. 23, 101729.
90.Patel, A.K., Singhania, R.R., Dong, C.D., Obulisami, P.K., Sim, S.J. (2021d). Mixotrophic biorefinery: A promising algal platform for sustainable biofuels and high value coproducts. Renew. Sust. Energ. Rev. 152, 111669.
91.Patel, A., Rova, U., Christakopoulos, P., & Matsakas, L. (2022). Microalgal lutein biosynthesis: Recent trends and challenges to enhance the lutein content in microalgal cell factories. Frontiers in Marine Science, 9, 1015419.
92.Patel, A.K., Vadrale, A.P., Singhania, R.R., Chen, C.W., Chang, J.S. and Dong, C.D., (2023). Enhanced mixotrophic production of lutein and lipid from potential microalgae isolate Chlorella sorokiniana C16. Bioresource technology, 386, p.129477.
93.Patil, S., Lali, A. M., & Prakash, G. (2020). An efficient algae cell wall disruption methodology for recovery of intact chloroplasts from microalgae. J. Appl. Biol. Biotechnol. 8(3), 23–28.
94.Payne, M. F., & Rippingale, R. J. (2000). Evaluation of diets for culture of the calanoid copepod Gladioferens imparipes. 85–96.
95.Pei, H., Zhang, L., Betenbaugh, M. J., Jiang, L., Lin, X., Ma, C., ... & Lin, W. F. (2022). Highly efficient harvesting and lipid extraction of limnetic Chlorella sorokiniana SDEC-18 grown in seawater for microalgal biofuel production. Algal Research, 66, 102813.
96.Pereira, A. G., Otero, P., Echave, J., Carreira-Casais, A., Chamorro, F., Collazo, N., ... & Prieto, M. A. (2021). Xanthophylls from the sea: algae as source of bioactive carotenoids. Marine drugs, 19(4), 188.
97.Perez-Garcia, O., & Bashan, Y. (2015). Microalgal heterotrophic and mixotrophic culturing for bio-refining: from metabolic routes to techno-economics. Algal Biorefineries: Volume 2: Products and Refinery Design, 61-131.
98.Prasath, B. B., Elsawah, A. M., Liyuan, Z., & Poon, K. (2021). Modeling and optimization of the effect of abiotic stressors on the productivity of the biomass, chlorophyll and lutein in microalgae Chlorella pyrenoidosa. Journal of Agriculture and Food Research, 5, 100163.
99.Praveenkumar, R., Lee, J., Vijayan, D., Lee, S. Y., Lee, K., Sim, S. J., ... & Oh, Y. K. (2020). Morphological change and cell disruption of Haematococcus pluvialis cyst during high-pressure homogenization for astaxanthin recovery. Applied Sciences, 10(2), 513.
100.Ren, Y., Sun, H., Deng, J., Huang, J., & Chen, F. (2021). Carotenoid production from microalgae: biosynthesis, salinity responses and novel biotechnologies. Marine Drugs, 19(12), 713.
101.Ruen-ngam, D., Shotipruk, A., & Pavasant, P. (2010). Comparison of extraction methods for recovery of astaxanthin from Haematococcus pluvialis. Separation Science and Technology, 46(1), 64-70.
102.Rai, M. P., Gautom, T., & Sharma, N. (2015). Effect of salinity, pH, light intensity on growth and lipid production of microalgae for bioenergy application. OnLine Journal of Biological Sciences, 15(4), 260.
103.Rezaei, A., Cheniany, M., Ahmadzadeh, H., & Vaezi, J. (2024). A new isolate cold-adapted Ankistrodesmus sp. OR119838: influence of light, temperature, and nitrogen concentration on growth characteristics and biochemical composition using the two-stage cultivation strategy. Bioprocess and Biosystems Engineering, 1-13.
104.Sadukha, S., Mehta, B., Chatterjee, S., Ghosh, A., & Dineshkumar, R. (2023). Sequential downstream process for concurrent extraction of lutein, phytol, and biochemicals from marine microalgal biomass as a sustainable biorefinery. ACS Sustainable Chemistry & Engineering, 11(2), 547-558.
105.Safi, C., Camy, S., Frances, C., Varela, M. M., Badia, E. C., Pontalier, P. Y., & Vaca-Garcia, C. (2014). Extraction of lipids and pigments of Chlorella vulgaris by supercritical carbon dioxide: influence of bead milling on extraction performance. Journal of applied phycology, 26, 1711-1718.
106.Sallehudin, N. J., Raus, R. A., Mustapa, M., Othman, R., & Mel, M. (2018). Screening of lutein content in several fresh-water microalgae. International Food Research Journal, 25(6).
107.Sánchez, J. F., Fernández, J. M., Acién, F. G., Rueda, A., Pérez-Parra, J., & Molina, E. (2008). Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochemistry, 43(4), 398-405.
108.Sarkar, S., Manna, M. S., Bhowmick, T. K., & Gayen, K. (2020). Extraction of chlorophylls and carotenoids from dry and wet biomass of isolated Chlorella Thermophila: Optimization of process parameters and modelling by artificial neural network. Process Biochemistry, 96, 58-72.
109.Schüler, L. M., Santos, T., Pereira, H., Duarte, P., Katkam, N. G., Florindo, C., & Varela, J. C. (2020). Improved production of lutein and β-carotene by thermal and light intensity upshifts in the marine microalga Tetraselmis sp. CTP4. Algal Research, 45, 101732.
110.Sharmila, D., Suresh, A., Indhumathi, J., Gowtham, K., & Velmurugan, N. (2018). Impact of various color filtered LED lights on microalgae growth, pigments and lipid production. European Journal of Biotechnology and Bioscience, 6(6), 1-7.
111.Sim, S. J., Joun, J. M., Hong, M. E., & Patel, A. K. (2019). Split mixotrophy: a novel mixotrophic cultivation strategy to improve mixotrophic effects in microalgae cultivation. Bioresour Technol, 291, 121820.
112.Slegers, P. M., Wijffels, R. H., van Straten, G., & Van Boxtel, A. J. B. (2011). Design scenarios for flat panel photobioreactors. Applied energy, 88(10), 3342-3353.
113.Solovchenko, A., & Chekanov, K. (2014). Production of carotenoids using microalgae cultivated in photobioreactors. Production of biomass and bioactive compounds using bioreactor technology, 63-91.
114.Sommerburg, O., Keunen, J. E., Bird, A. C., & Van Kuijk, F. J. (1998). Fruits and vegetables that are sources for lutein and zeaxanthin: the macular pigment in human eyes. British Journal of Ophthalmology, 82(8), 907-910.
115.Song, I., Kim, J., Baek, K., Choi, Y., Shin, B., & Jin, E. (2020). The generation of metabolic changes for the production of high-purity zeaxanthin mediated by CRISPR-Cas9 in Chlamydomonas reinhardtii. Microbial Cell Factories, 19(1), 1-9.
116.Srivastava, G., & Goud, V. V. (2017). Salinity induced lipid production in microalgae and cluster analysis (ICCB 16-BR_047). Bioresource Technology, 242, 244-252.
117.Sun, X. M., Ren, L. J., Zhao, Q. Y., Ji, X. J., & Huang, H. (2018). Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. Biotechnology for biofuels, 11, 1-16.
118.Takeshita, T., Ota, S., Yamazaki, T., Hirata, A., Zachleder, V., & Kawano, S. (2014). Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresource Technology, 158, 127-134.
119.Tharek, A., Yahya, A., Salleh, M. M., Jamaluddin, H., Yoshizaki, S., Hara, H & Mohamad, S. E. (2021). Improvement and screening of astaxanthin producing mutants of newly isolated Coelastrum sp. using ethyl methane sulfonate induced mutagenesis technique. Biotechnology Reports, 32, e00673.
120.Tsai, H. P., Chuang, L. T., & Chen, C. N. N. (2016). Production of long chain omega-3 fatty acids and carotenoids in tropical areas by a new heat-tolerant microalga Tetraselmis sp. DS3. Food chemistry, 192, 682-690.
121.Vadrale, A.P., Dong, C.D., Haldar, D., Wu, C.H., Chen, C.W., Singhania, R.R. and Patel, A.K., 2023. Bioprocess development to enhance biomass and lutein production from Chlorella sorokiniana Kh12. Bioresource Technology, 370, p.128583.
122.Wang, M., Ye, X., Bi, H., & Shen, Z. (2024). Microalgae biofuels: illuminating the path to a sustainable future amidst challenges and opportunities. Biotechnology for Biofuels and Bioproducts, 17(1), 10.
123.Wu, T., Li, L., Jiang, X., Yang, Y., Song, Y., Chen, L., ... & Gu, Y. (2019). Sequencing and comparative analysis of three Chlorella genomes provide insights into strain-specific adaptation to wastewater. Scientific reports, 9(1), 1-12.
124.Xie, Y., Li, J., Ho, S. H., Ma, R., Shi, X., Liu, L., & Chen, J. (2020). Pilot-scale cultivation of Chlorella sorokiniana FZU60 with a mixotrophy/photoautotrophy two-stage strategy for efficient lutein production. Bioresource technology, 314, 123767.
125.Xie, Y., Xiong, X., & Chen, S. (2021). Challenges and potential in increasing lutein content in microalgae. Microorganisms, 9(5), 1068.
126.Yeh, T. J., Tseng, Y. F., Chen, Y. C., Hsiao, Y., Lee, P. C., Chen, T. J., ... & Lee, T. M. (2017). Transcriptome and physiological analysis of a lutein-producing alga Desmodesmus sp. reveals the molecular mechanisms for high lutein productivity. Algal research, 21, 103-119.
127.Zaripheh, S., & Erdman Jr, J. W. (2002). Factors that influence the bioavailablity of xanthophylls. The Journal of nutrition, 132(3), 531S-534S.
128.Zhao, X., Ma, R., Liu, X., Ho, S. H., Xie, Y., & Chen, J. (2019). Strategies related to light quality and temperature to improve lutein production of marine microalga Chlamydomonas sp. Bioprocess and Biosystems Engineering, 42, 435-443.
129.Zheng, H., Wang, Y., Li, S., Nagarajan, D., Varjani, S., Lee, D. J., & Chang, J. S. (2022). Recent advances in lutein production from microalgae. Renewable and Sustainable Energy Reviews, 153, 111795.
130.Zhu, L. D., Li, Z. H., & Hiltunen, E. (2016). Strategies for lipid production improvement in microalgae as a biodiesel feedstock. BioMed research international, 2016(1), 8792548.
131.Zhu, L., Gao, H., Li, L., Zhang, Y., Zhao, Y., & Yu, X. (2022). Promoting lutein production from the novel alga Acutodesmus sp. by melatonin induction. Bioresource Technology, 362, 127818.
132.Zijffers, J. W. F., Schippers, K. J., Zheng, K., Janssen, M., Tramper, J., & Wijffels, R. H. (2010). Maximum photosynthetic yield of green microalgae in photobioreactors. Marine biotechnology, 12, 708-718.
133.Ziganshina, E. E., Bulynina, S. S., & Ziganshin, A. M. (2022). Growth Characteristics of Chlorella sorokiniana in a Photobioreactor during the Utilization of Different Forms of Nitrogen at Various Temperatures. Plants, 11(8), 1086.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top