|
1.Ahmad, S., Iqbal, K., Kothari, R., Singh, H. M., Sari, A., & Tyagi, V. V. (2022). A critical overview of upstream cultivation and downstream processing of algae-based biofuels: opportunity, technological barriers and future perspective. Journal of Biotechnology, 351, 74-98. 2.Ali, E., and Mirza, S. S. (2017). A new method to isolate algal species from mix algal culture. BioRxiv, 233981. 3.Balevičius, V., & Duffy, C. D. (2020). Excitation quenching in chlorophyll–carotenoid antenna systems:‘coherent’or ‘incoherent’. Photosynthesis research, 144, 301-315. 4.Bermejo, E., Ruiz-Domínguez, M. C., Cuaresma, M., Vaquero, I., Ramos-Merchante, A., Vega, J. M., ... & Garbayo, I. (2018). Production of lutein, and polyunsaturated fatty acids by the acidophilic eukaryotic microalga Coccomyxa onubensis under abiotic stress by salt or ultraviolet light. Journal of bioscience and bioengineering, 125(6), 669-675. 5.Becerra, M. O., Contreras, L. M., Lo, M. H., Díaz, J. M., & Herrera, G. C. (2020). Lutein as a functional food ingredient: Stability and bioavailability. Journal of Functional Foods, 66, 103771. 6.Berner, T., Dubinsky, Z., Wyman, K., Falkowski, P.G. 1989. Photoadaptation and the “package” effect in Dunaliella tertiolecta (Chlorophyceae) 1. J. Phycol. 25(1), 70-8. 7.Bialevich, V., Zachleder, V., & Bišová, K. (2022). The effect of variable light source and light intensity on the growth of three algal species. Cells, 11(8), 1293. 8.Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology, 37(8), 911-917. 9.Britton, G. (2008). Functions of intact carotenoids. In Carotenoids: volume 4: natural functions (pp. 189-212). Basel: Birkhäuser Basel. 10.Bulynina, S. S., Ziganshina, E. E., & Ziganshin, A. M. (2023). Growth Efficiency of Chlorella sorokiniana in Synthetic Media and Unsterilized Domestic Wastewater. BioTech, 12(3), 53. 11.Camarena-Bernard, C., & Pozzobon, V. (2024). Evolving perspectives on lutein production from microalgae-A focus on productivity and heterotrophic culture. Biotechnology Advances, 108375. 12.Castillo, T., Ramos, D., García-Beltrán, T., Brito-Bazan, M., & Galindo, E. (2021). Mixotrophic cultivation of microalgae: an alternative to produce high-value metabolites. Biochemical Engineering Journal, 176, 108183. 13.Cerón, M. C., Campos, I., Sánchez, J. F., Acién, F. G., Molina, E., & Fernández-Sevilla, J. M. (2008). Recovery of lutein from microalgae biomass: Development of a process for Scenedesmus almeriensis biomass. Journal of Agricultural and Food Chemistry, 56(24), 11761–11766. 14.Chan, M. C., Ho, S. H., Lee, D. J., Chen, C. Y., Huang, C. C., & Chang, J. S. (2013). Characterization, extraction and purification of lutein produced by an indigenous microalga Scenedesmus obliquus CNW-N. Biochemical Engineering Journal, 78, 24-31. 15.Cheirsilp, B., & Torpee, S. (2012). Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration, and fed-batch cultivation. Bioresource Technology, 110, 510-516. 16.Chen, C. Y., Hsieh, C., Lee, D. J., Chang, C. H., & Chang, J. S. (2016). Production, extraction and stabilization of lutein from microalga Chlorella sorokiniana MB-1. Bioresource Technology, 200, 500-505. 17.Chen, J. H., Kato, Y., Matsuda, M., Chen, C. Y., Nagarajan, D., Hasunuma, T., ... & Chang, J. S. (2021). Lutein production with Chlorella sorokiniana MB-1-M12 using novel two-stage cultivation strategies–metabolic analysis and process improvement. Bioresource technology, 334, 125200. 18.Chinnasamy, S., Ramakrishnan, B., Bhatnagar, A., & Das, K. C. (2009). Biomass production potential of a wastewater alga Chlorella Vulgaris ARC 1 under elevated levels of CO2 and temperature. International Journal Of Molecular Sciences, 10(2), 518-532. 19.Chen, Z., & Su, B. (2020). Influence of medium frequency light/dark cycles on the cultivation of Auxeno chlorella pyrenoidosa. Applied Sciences, 10(15), 5093. 20.Chokshi, K., Pancha, I., Ghosh, A., & Mishra, S. (2017). Salinity induced oxidative stress alters the physiological responses and improves the biofuel potential of green microalgae Acutodesmus dimorphus. Bioresource technology, 244, 1376-1383. 21.Choi, Y. Y., Patel, A. K., Hong, M. E., Chang, W. S., & Sim, S. J. (2019). Microalgae bioenergy carbon capture utilization and storage (BECCS) technology: an emerging sustainable bioprocess for reduced CO2 emission and biofuel production. Bioresour Technol Rep, 7(100270), 10-1016. 22.Cordero, B. F., Obraztsova, I., Couso, I., Leon, R., Vargas, M. A., & Rodriguez, H. (2011). Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Marine drugs, 9(9), 1607-1624. 23.Coulombier, N., Nicolau, E., Le Déan, L., Barthelemy, V., Schreiber, N., Brun, P., ... & Jauffrais, T. (2020). Effects of nitrogen availability on the antioxidant activity and carotenoid content of the microalgae Nephroselmis sp. Marine drugs, 18(9), 453. 24.Craft, N.E., Soares, J.H. (1992). Relative solubility, stability, and absorptivity of lutein and β-carotene in organic solvents, J. Agric. Food Chem. 1992, 40, 3, 431–434. 25.Cruz-balladares, V., Marticorena, P., Riquelme, C. (2021). Effect on growth and productivity of lutein from the Chlorophyta microalga, strain MCH of Muriellopsis sp., when grown in seawater and outdoor conditions at the Atacama Desert. Elect. J. Biotechnol. 54, 77–85. 26.Cuaresma, M., Janssen, M., Vílchez, C., & Wijffels, R. H. (2009). Productivity of Chlorella sorokiniana in a short light‐path (SLP) panel photobioreactor under high irradiance. Biotechnology and bioengineering, 104(2), 352-359. 27.Dammak, M., Hadrich, B., Miladi, R., Barkallah, M., Hentati, F., Hachicha, R., ... & Abdelkafi, S. (2017). Effects of nutritional conditions on growth and biochemical composition of Tetraselmis sp. Lipids in Health and Disease, 16, 1-13. 28.Del Campo, J. A., Moreno, J., Rodrı́guez, H., Vargas, M. A., Rivas, J., & Guerrero, M. G. (2000). Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp.(Chlorophyta). Journal of Biotechnology, 76(1), 51-59. 29.Del Campo, J. A., Rodrı́guez, H., Moreno, J., Vargas, M. Á., Rivas, J., & Guerrero, M. G. (2001). Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. Journal of biotechnology, 85(3), 289-295. 30.Demmig-Adams, B., Polutchko, S. K., & Adams III, W. W. (2022). Structure-function-environment relationship of the isomers zeaxanthin and lutein. Photochem, 2(2), 308-325. 31.Dias, M. G., Borge, G. I. A., Kljak, K., Mandić, A. I., Mapelli-Brahm, P., Olmedilla-Alonso, B., ... & Meléndez-Martínez, A. J. (2021). European database of carotenoid levels in foods. Factors affecting carotenoid content. Foods, 10(5), 912. 32.Dineshkumar, R., Subramanian, G., Dash, S. K., & Sen, R. (2016). Development of an optimal light-feeding strategy coupled with semi-continuous reactor operation for simultaneous improvement of microalgal photosynthetic efficiency, lutein production and CO2 sequestration. Biochemical Engineering Journal, 113, 47-56. 33.Dinh, C. T., Do, C. V. T., Nguyen, T. P. T., Nguyen, N. H., Le, T. G., & Tran, T. D. (2022). Isolation, purification and cytotoxic evaluation of lutein from mixotrophically grown Chlorella sorokiniana TH01. Algal Research, 62, 102632. 34.Do, C. V. T., Dinh, C. T., Dang, M. T., Dang, T., Giang, T. (2022b). A novel flat-panel photobioreactor for simultaneous production of lutein and carbon sequestration by Chlorella sorokiniana TH01. Bioresour. Technol. 345, 126552. 35.Do, C. V. T., Tuat, N., Nguyen, T., Huong, M., Pham, T., Yen, T., Pham, T., Ngo, V. G., Giang, T., Dang, T. (2022a). Central composite design for simultaneously optimizing biomass and lutein production by a mixotrophic Chlorella sorokiniana TH01. Biochem. Eng. J. 177, 108231. 36.Encarnação, T., Burrows, H. D., Pais, A. C., Campos, M. G., & Kremer, A. (2012). Effect of N and P on the Uptake of Magnesium and Iron and on the Production of Carotenoids and Chlorophyll by the Microalgae Nannochloropsis sp. Journal of Agricultural Science and Technology. A, 2(6A), 824. 37.Ermis, H., Guven-Gulhan, U., Cakir, T., & Altinbas, M. (2020). Effect of iron and magnesium addition on population dynamics and high value product of microalgae grown in anaerobic liquid digestate. Scientific reports, 10(1), 1-12. 38.Fábryová, T., Cheel, J., Kubáč, D., Hrouzek, P., Vu, D. L., Tůmová, L., Kopecký, J. (2019). Purification of lutein from the green microalgae Chlorella vulgaris by integrated use of a new extraction protocol and a multi-injection high-performance counter-current chromatography (HPCCC). Algal Res. 41. 39.Fábryová, T., Kubáč, D., Kuzma, M., Hrouzek, P., Kopecký, J., Tůmová, L., & Cheel, J. (2021). High-performance countercurrent chromatography for lutein production from a chlorophyll-deficient strain of the microalgae Parachlorella kessleri HY1. Journal of Applied Phycology, 33(4), 1999-2013. 40.Fox, J. M., & Zimba, P. V. (2018). Minerals and trace elements in microalgae. Microalgae in health and disease prevention (pp. 177-193). Academic Press. 41.Frede, K., Winkelmann, S., Busse, L., & Baldermann, S. (2023). The effect of LED light quality on the carotenoid metabolism and related gene expression in the genus Brassica. BMC Plant Biology, 23(1), 328. 42.Feng, P., Deng, Z., Hu, Z., & Fan, L. (2011). Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors. Bioresource technology, 102(22), 10577-10584. 43.Fu, Y., Wang, Y., Yi, L., Liu, J., Yang, S., Liu, B., ... & Sun, H. (2023). Lutein production from microalgae: A review. Bioresource Technology, 128875. 44.Gim, G. H., Kim, S. W. (2018). Optimization of Cell Disruption and Transesterification of Lipids from Botryococcus braunii LB572. Biotechnology and Bioprocess Engineering, 23(5), 550–556. 45.Gong, M., & Bassi, A. (2017). Investigation of Chlorella vulgaris UTEX 265 cultivation under light and low temperature stressed conditions for lutein production in flasks and the coiled tree photo-bioreactor (CTPBR). Applied biochemistry and biotechnology, 183, 652-671. 46.Gris, B., Morosinotto, T., Giacometti, G.M., Bertucco, A. and Sforza, E., 2014. Cultivation of Scenedesmus obliquus in photobioreactors: effects of light intensities and light–dark cycles on growth, productivity, and biochemical composition. Applied biochemistry and biotechnology, 172, pp.2377-2389. 47.Guedes, V. C., Palma, G. M., & Horta, A. C. L. (2023). An evaluation of light wavelengths, intensity and control for the production of microalgae in photobioreactors: a review. Brazilian Journal of Chemical Engineering, 1-14. 48.Halim, R., Danquah, M. K., & Webley, P. A. (2012). Extraction of oil from microalgae for biodiesel production: A review. Biotechnology advances, 30(3), 709-732. 49.Haris, N., Manan, H., Jusoh, M., Khatoon, H., Katayama, T., & Kasan, N. A. (2022). Effect of different salinity on the growth performance and proximate composition of isolated indigenous microalgae species. Aquaculture Reports, 22, 100925. 50.Havaux, M. (1998). Carotenoids as membrane stabilizers in chloroplasts. Trends in plant science, 3(4), 147-151. 51.Hu, J., Meng, W., Su, Y., Qian, C., & Fu, W. (2023). Emerging technologies for advancing microalgal photosynthesis and metabolism toward sustainable production. Frontiers in Marine Science, 10, 1260709. 52.Hudek, K., Davis, L. C., Ibbini, J., & Erickson, L. (2014). Commercial products from algae. Algal Biorefineries: volume 1: cultivation of cells and products, 275-295. 53.Husseini, Z. N., Tafreshi, S. A. H., Aghaie, P., & Toghyani, M. A. (2020). CaCl2 pretreatment improves gamma toxicity tolerance in microalga Chlorella vulgaris. Ecotoxicology and Environmental Safety, 192, 110261. 54.Hutner, S.H., Provasoli, L., Schatz, A., Haskins, C.P. (1950). Some approaches to the study of the role of metals in the metabolism of microorganisms. Proceedings of the American Philosophical Society 94(2), 152-170. 55.Ip, P.F., and Chen, F. (2005). Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Proc. Biochem. 40(2), 733-738. 56.Jahns, P., & Holzwarth, A. R. (2012). The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1817(1), 182-193. 57.Jeon, J. Y., Kwon, J. S., Kang, S. T., Kim, B. R., Jung, Y., Han, J. G., ... & Hwang, J. K. (2014). Optimization of culture media for large‐scale lutein production by heterotrophic Chlorella vulgaris. Biotechnology progress, 30(3), 736-743. 58.Jeong, D., Jang, A. (2020). Exploration of microalgal species for simultaneous wastewater treatment and biofuel production, Environ. Res. 188, 109772. 59.Juneja, A., Ceballos, R. M., & Murthy, G. S. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies, 6(9), 4607-4638. 60.Kadri, M. S., Singhania, R. R., Anisha, G. S., Gohil, N., Singh, V., Patel, A. K., & Patel, A. K. (2023). Microalgal lutein: Advancements in production, extraction, market potential, and applications. Bioresource Technology, 129808. 61.Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial cell factories, 17, 1-21. 62.Krimech, A., Helamieh, M., Wulf, M., Krohn, I., Riebesell, U., Cherifi, O., ... & Kerner, M. (2022). Differences in adaptation to light and temperature extremes of Chlorella sorokiniana strains isolated from a wastewater lagoon. Bioresource Technology, 350, 126931. 63.Kumari, S., Kumar, V., Kothari, R., & Kumar, P. (2024). Nutrient sequestration and lipid production potential of Chlorella vulgaris under pharmaceutical wastewater treatment: experimental, optimization, and prediction modeling studies. Environmental Science and Pollution Research, 31(5), 7179-7193. 64.Lee, K. H., Jang, Y. W., Kim, H., Ki, J. S., & Yoo, H. Y. (2021). Optimization of lutein recovery from Tetraselmis suecica by response surface methodology. Biomolecules, 11(2), 1–15. 65.Li, Y., Zhao, Y., Zhang, H., Ding, Z., & Han, J. (2024). The Application of Natural Carotenoids in Multiple Fields and Their Encapsulation Technology: A Review. Molecules, 29(5), 967. 66.Lin, J. H., Lee, D. J., & Chang, J. S. (2015). Lutein in specific marigold flowers and microalgae. Journal of the Taiwan Institute of Chemical Engineers, 49, 90-94. 67.Liu, N., Mou, Y., Su, K., Li, X., Lu, T., Yan, W., ... & Yu, Z. (2022). The effect of salinity stress on the growth and lipid accumulation of Scenedesmus quadricauda FACHB-1297 under xylose mixotrophic cultivation. Process Safety and Environmental Protection, 165, 887-894. 68.Low, K. L., Idris, A., & Yusof, N. M. (2020). Novel protocol optimized for microalgae lutein used as food additives. Food chemistry, 307, 125631. 69.Ma, R., Zhang, Z., Ho, S. H., Ruan, C., Li, J., Xie, Y., ... & Chen, J. (2020a). Two-stage bioprocess for hyper-production of lutein from microalga Chlorella sorokiniana FZU60: Effects of temperature, light intensity, and operation strategies. Algal Research, 52, 102119. 70.Ma, R., Zhang, Z., Tang, Z., Ho, S. H., Shi, X., Liu, L., ... & Chen, J. (2021). Enhancement of co-production of lutein and protein in Chlorella sorokiniana FZU60 using different bioprocess operation strategies. Bioresources and Bioprocessing, 8(1), 1-12. 71.Ma, R., Zhao, X., Ho, S. H., Shi, X., Liu, L., Xie, Y., ... & Lu, Y. (2020b). Co-production of lutein and fatty acid in microalga Chlamydomonas sp. JSC4 in response to different temperatures with gene expression profiles. Algal Research, 47, 101821. 72.Maltsev, Y., Maltseva, K., Kulikovskiy, M., & Maltseva, S. (2021). Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition. Biology, 10(10), 1060. 73.Markou, G., Vandamme, D., & Muylaert, K. (2014). Microalgal and cyanobacterial cultivation: The supply of nutrients. Water research, 65, 186-202. 74.Novosel, N., Mišić Radić, T., Levak Zorinc, M., Zemla, J., Lekka, M., Vrana, I., ... & Ivošević DeNardis, N. (2022a). Salinity-induced chemical, mechanical, and behavioral changes in marine microalgae. Journal of Applied Phycology, 1-17. 75.Novosel, N., Mišić Radić, T., Zemla, J., Lekka, M., Čačković, A., Kasum, D., ... & Ivošević DeNardis, N. (2022b). Temperature-induced response in algal cell surface properties and behaviour: an experimental approach. Journal of Applied Phycology, 34(1), 243-259. 76.Pagels, F., Pereira, R. N., Vicente, A. A., Guedes, A. C. (2021). Extraction of pigments from microalgae and cyanobacteria-a review on current methodologies. Appl. Sci. 11(11). 77.Pancha, I., Chokshi, K., Maurya, R., Trivedi, K., Patidar, S. K., Ghosh, A., & Mishra, S. (2015). Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology, 189, 341-348. 78.Patel, A. K., Albarico, F. P. J. B., Perumal, P. K., Vadrale, A. P., Ntan, C. T., Chau, H. T. B., ... & Singhania, R. R. (2022). Algae as an emerging source of bioactive pigments. Bioresource Technology, 126910. 79.Patel, A. K., Choi, Y. Y., & Sim, S. J. (2020). Emerging prospects of mixotrophic microalgae: Way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels. Bioresource technology, 300, 122741. 80.Patel, A. K., Joun, J. M., Hong, M. E., & Sim, S. J. (2019). Effect of light conditions on mixotrophic cultivation of green microalgae. Bioresource technology, 282, 245-253. 81.Patel, A. K., Tambat, V. S., Chen, C. W., Chauhan, A. S., Kumar, P., Vadrale, A. P., ... & Singhania, R. R. (2022). Recent advancements in astaxanthin production from microalgae: A review. Bioresource Technology, 128030. 82.Patel, A. K., Vadrale, A. P., Tseng, Y. S., Chen, C. W., Dong, C. D., & Singhania, R. R. (2022). Bioprospecting of marine microalgae from Kaohsiung Seacoast for lutein and lipid production. Bioresource Technology, 351, 126928. 83.Patel, A. K., Albarico, F. P. J. B., Perumal, P. K., Vadrale, A. P., Nian, C. T., Chau, H. T. B., ... & Singhania, R. R. (2022). Algae as an emerging source of bioactive pigments. Bioresource technology, 351, 126910. 84.Patel, A.K., Choi, Y.Y., Sim, S.J., (2020a). Emerging prospects of mixotrophic microalgae: way forward to bioprocess sustainability, environmental remediation and cost-effective biofuels. Bioresour. Technol. 300, 122741. 85.Patel, A.K., Joun, J.M., Hong, M.E., Sim, S.J. (2019). Effect of light conditions on mixotrophic cultivation of green microalgae. Bioresour. Technol. 282, 245–253. 86.Patel, A.K., Joun, J.M., Hong, M.E., Sim, S.J., (2020b). A sustainable mixotrophic microalgae cultivation from dairy wastes for carbon credit, bioremediation and lucrative biofuels. Bioresour. Technol. 313, 123681. 87.Patel, A.K., Singhania, R.R., Sim, S.J., Dong, C.D. (2021a). Recent advancements in mixotrophic bioprocessing for production of high value microalgal products, Bioresour. Technol. 320, 124421. 88.Patel, A.K., Singhania, R.R., Chang J.S., Chen, C.W., Dong, C.D. (2021b). Novel application of biodesalination from microalgae. Bioresour Technol. 337, 125343. 89.Patel, A.K., Singhania, R.R., Wu, C.H., Kuo, C.H., Chen, C.W., Dong, C.D. (2021c). Advances in micro- and nanobubbles technology for application in biochemical processes. Environ. Technol. Innov. 23, 101729. 90.Patel, A.K., Singhania, R.R., Dong, C.D., Obulisami, P.K., Sim, S.J. (2021d). Mixotrophic biorefinery: A promising algal platform for sustainable biofuels and high value coproducts. Renew. Sust. Energ. Rev. 152, 111669. 91.Patel, A., Rova, U., Christakopoulos, P., & Matsakas, L. (2022). Microalgal lutein biosynthesis: Recent trends and challenges to enhance the lutein content in microalgal cell factories. Frontiers in Marine Science, 9, 1015419. 92.Patel, A.K., Vadrale, A.P., Singhania, R.R., Chen, C.W., Chang, J.S. and Dong, C.D., (2023). Enhanced mixotrophic production of lutein and lipid from potential microalgae isolate Chlorella sorokiniana C16. Bioresource technology, 386, p.129477. 93.Patil, S., Lali, A. M., & Prakash, G. (2020). An efficient algae cell wall disruption methodology for recovery of intact chloroplasts from microalgae. J. Appl. Biol. Biotechnol. 8(3), 23–28. 94.Payne, M. F., & Rippingale, R. J. (2000). Evaluation of diets for culture of the calanoid copepod Gladioferens imparipes. 85–96. 95.Pei, H., Zhang, L., Betenbaugh, M. J., Jiang, L., Lin, X., Ma, C., ... & Lin, W. F. (2022). Highly efficient harvesting and lipid extraction of limnetic Chlorella sorokiniana SDEC-18 grown in seawater for microalgal biofuel production. Algal Research, 66, 102813. 96.Pereira, A. G., Otero, P., Echave, J., Carreira-Casais, A., Chamorro, F., Collazo, N., ... & Prieto, M. A. (2021). Xanthophylls from the sea: algae as source of bioactive carotenoids. Marine drugs, 19(4), 188. 97.Perez-Garcia, O., & Bashan, Y. (2015). Microalgal heterotrophic and mixotrophic culturing for bio-refining: from metabolic routes to techno-economics. Algal Biorefineries: Volume 2: Products and Refinery Design, 61-131. 98.Prasath, B. B., Elsawah, A. M., Liyuan, Z., & Poon, K. (2021). Modeling and optimization of the effect of abiotic stressors on the productivity of the biomass, chlorophyll and lutein in microalgae Chlorella pyrenoidosa. Journal of Agriculture and Food Research, 5, 100163. 99.Praveenkumar, R., Lee, J., Vijayan, D., Lee, S. Y., Lee, K., Sim, S. J., ... & Oh, Y. K. (2020). Morphological change and cell disruption of Haematococcus pluvialis cyst during high-pressure homogenization for astaxanthin recovery. Applied Sciences, 10(2), 513. 100.Ren, Y., Sun, H., Deng, J., Huang, J., & Chen, F. (2021). Carotenoid production from microalgae: biosynthesis, salinity responses and novel biotechnologies. Marine Drugs, 19(12), 713. 101.Ruen-ngam, D., Shotipruk, A., & Pavasant, P. (2010). Comparison of extraction methods for recovery of astaxanthin from Haematococcus pluvialis. Separation Science and Technology, 46(1), 64-70. 102.Rai, M. P., Gautom, T., & Sharma, N. (2015). Effect of salinity, pH, light intensity on growth and lipid production of microalgae for bioenergy application. OnLine Journal of Biological Sciences, 15(4), 260. 103.Rezaei, A., Cheniany, M., Ahmadzadeh, H., & Vaezi, J. (2024). A new isolate cold-adapted Ankistrodesmus sp. OR119838: influence of light, temperature, and nitrogen concentration on growth characteristics and biochemical composition using the two-stage cultivation strategy. Bioprocess and Biosystems Engineering, 1-13. 104.Sadukha, S., Mehta, B., Chatterjee, S., Ghosh, A., & Dineshkumar, R. (2023). Sequential downstream process for concurrent extraction of lutein, phytol, and biochemicals from marine microalgal biomass as a sustainable biorefinery. ACS Sustainable Chemistry & Engineering, 11(2), 547-558. 105.Safi, C., Camy, S., Frances, C., Varela, M. M., Badia, E. C., Pontalier, P. Y., & Vaca-Garcia, C. (2014). Extraction of lipids and pigments of Chlorella vulgaris by supercritical carbon dioxide: influence of bead milling on extraction performance. Journal of applied phycology, 26, 1711-1718. 106.Sallehudin, N. J., Raus, R. A., Mustapa, M., Othman, R., & Mel, M. (2018). Screening of lutein content in several fresh-water microalgae. International Food Research Journal, 25(6). 107.Sánchez, J. F., Fernández, J. M., Acién, F. G., Rueda, A., Pérez-Parra, J., & Molina, E. (2008). Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochemistry, 43(4), 398-405. 108.Sarkar, S., Manna, M. S., Bhowmick, T. K., & Gayen, K. (2020). Extraction of chlorophylls and carotenoids from dry and wet biomass of isolated Chlorella Thermophila: Optimization of process parameters and modelling by artificial neural network. Process Biochemistry, 96, 58-72. 109.Schüler, L. M., Santos, T., Pereira, H., Duarte, P., Katkam, N. G., Florindo, C., & Varela, J. C. (2020). Improved production of lutein and β-carotene by thermal and light intensity upshifts in the marine microalga Tetraselmis sp. CTP4. Algal Research, 45, 101732. 110.Sharmila, D., Suresh, A., Indhumathi, J., Gowtham, K., & Velmurugan, N. (2018). Impact of various color filtered LED lights on microalgae growth, pigments and lipid production. European Journal of Biotechnology and Bioscience, 6(6), 1-7. 111.Sim, S. J., Joun, J. M., Hong, M. E., & Patel, A. K. (2019). Split mixotrophy: a novel mixotrophic cultivation strategy to improve mixotrophic effects in microalgae cultivation. Bioresour Technol, 291, 121820. 112.Slegers, P. M., Wijffels, R. H., van Straten, G., & Van Boxtel, A. J. B. (2011). Design scenarios for flat panel photobioreactors. Applied energy, 88(10), 3342-3353. 113.Solovchenko, A., & Chekanov, K. (2014). Production of carotenoids using microalgae cultivated in photobioreactors. Production of biomass and bioactive compounds using bioreactor technology, 63-91. 114.Sommerburg, O., Keunen, J. E., Bird, A. C., & Van Kuijk, F. J. (1998). Fruits and vegetables that are sources for lutein and zeaxanthin: the macular pigment in human eyes. British Journal of Ophthalmology, 82(8), 907-910. 115.Song, I., Kim, J., Baek, K., Choi, Y., Shin, B., & Jin, E. (2020). The generation of metabolic changes for the production of high-purity zeaxanthin mediated by CRISPR-Cas9 in Chlamydomonas reinhardtii. Microbial Cell Factories, 19(1), 1-9. 116.Srivastava, G., & Goud, V. V. (2017). Salinity induced lipid production in microalgae and cluster analysis (ICCB 16-BR_047). Bioresource Technology, 242, 244-252. 117.Sun, X. M., Ren, L. J., Zhao, Q. Y., Ji, X. J., & Huang, H. (2018). Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. Biotechnology for biofuels, 11, 1-16. 118.Takeshita, T., Ota, S., Yamazaki, T., Hirata, A., Zachleder, V., & Kawano, S. (2014). Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresource Technology, 158, 127-134. 119.Tharek, A., Yahya, A., Salleh, M. M., Jamaluddin, H., Yoshizaki, S., Hara, H & Mohamad, S. E. (2021). Improvement and screening of astaxanthin producing mutants of newly isolated Coelastrum sp. using ethyl methane sulfonate induced mutagenesis technique. Biotechnology Reports, 32, e00673. 120.Tsai, H. P., Chuang, L. T., & Chen, C. N. N. (2016). Production of long chain omega-3 fatty acids and carotenoids in tropical areas by a new heat-tolerant microalga Tetraselmis sp. DS3. Food chemistry, 192, 682-690. 121.Vadrale, A.P., Dong, C.D., Haldar, D., Wu, C.H., Chen, C.W., Singhania, R.R. and Patel, A.K., 2023. Bioprocess development to enhance biomass and lutein production from Chlorella sorokiniana Kh12. Bioresource Technology, 370, p.128583. 122.Wang, M., Ye, X., Bi, H., & Shen, Z. (2024). Microalgae biofuels: illuminating the path to a sustainable future amidst challenges and opportunities. Biotechnology for Biofuels and Bioproducts, 17(1), 10. 123.Wu, T., Li, L., Jiang, X., Yang, Y., Song, Y., Chen, L., ... & Gu, Y. (2019). Sequencing and comparative analysis of three Chlorella genomes provide insights into strain-specific adaptation to wastewater. Scientific reports, 9(1), 1-12. 124.Xie, Y., Li, J., Ho, S. H., Ma, R., Shi, X., Liu, L., & Chen, J. (2020). Pilot-scale cultivation of Chlorella sorokiniana FZU60 with a mixotrophy/photoautotrophy two-stage strategy for efficient lutein production. Bioresource technology, 314, 123767. 125.Xie, Y., Xiong, X., & Chen, S. (2021). Challenges and potential in increasing lutein content in microalgae. Microorganisms, 9(5), 1068. 126.Yeh, T. J., Tseng, Y. F., Chen, Y. C., Hsiao, Y., Lee, P. C., Chen, T. J., ... & Lee, T. M. (2017). Transcriptome and physiological analysis of a lutein-producing alga Desmodesmus sp. reveals the molecular mechanisms for high lutein productivity. Algal research, 21, 103-119. 127.Zaripheh, S., & Erdman Jr, J. W. (2002). Factors that influence the bioavailablity of xanthophylls. The Journal of nutrition, 132(3), 531S-534S. 128.Zhao, X., Ma, R., Liu, X., Ho, S. H., Xie, Y., & Chen, J. (2019). Strategies related to light quality and temperature to improve lutein production of marine microalga Chlamydomonas sp. Bioprocess and Biosystems Engineering, 42, 435-443. 129.Zheng, H., Wang, Y., Li, S., Nagarajan, D., Varjani, S., Lee, D. J., & Chang, J. S. (2022). Recent advances in lutein production from microalgae. Renewable and Sustainable Energy Reviews, 153, 111795. 130.Zhu, L. D., Li, Z. H., & Hiltunen, E. (2016). Strategies for lipid production improvement in microalgae as a biodiesel feedstock. BioMed research international, 2016(1), 8792548. 131.Zhu, L., Gao, H., Li, L., Zhang, Y., Zhao, Y., & Yu, X. (2022). Promoting lutein production from the novel alga Acutodesmus sp. by melatonin induction. Bioresource Technology, 362, 127818. 132.Zijffers, J. W. F., Schippers, K. J., Zheng, K., Janssen, M., Tramper, J., & Wijffels, R. H. (2010). Maximum photosynthetic yield of green microalgae in photobioreactors. Marine biotechnology, 12, 708-718. 133.Ziganshina, E. E., Bulynina, S. S., & Ziganshin, A. M. (2022). Growth Characteristics of Chlorella sorokiniana in a Photobioreactor during the Utilization of Different Forms of Nitrogen at Various Temperatures. Plants, 11(8), 1086.
|