跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/20 18:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳家嶔
研究生(外文):CHEN, JIA-CHIN
論文名稱:以遷移式學習增強類神經網路對回收料射出成型塑件之品質預測能力
論文名稱(外文):Enhancing Artificial Neural Network Quality Prediction of Injection-molded Parts for Recycled Plastic with Transfer Learning
指導教授:黃明賢黃明賢引用關係
指導教授(外文):HUANG, MING-SHYAN
口試委員:鍾文仁王珉玟
口試委員(外文):JONG, WEN-RENWANG, MIN-WEN
口試日期:2024-06-21
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:機電工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:74
中文關鍵詞:回收材料射出成型品質指標遷移式學習多層感知器品質預測
外文關鍵詞:Regrind plastic injection moldingQuality indexQuality predictionTransfer learningArtificial neural network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 ix
第1章 緒論 1
1-1 前言 1
1-2 科學化試模 2
1-3 二次料射出成型 3
1-4 人工智慧於射出成型應用 4
1-5 研究動機與目的 5
1-6 論文架構 6
第2章 文獻回顧 7
2-1 射出成型感測資訊 7
2-2 回收材料射出成型 7
2-3 類神經網路於射出成型品質預測 8
2-4 結合遷移式學習於射出成型 9
第3章 理論基礎 11
3-1 壓力曲線特徵擷取 11
3-2 類神經網路 13
3-3 貝式優化演算法 15
3-4 遷移式學習 17
第4章 研究方法 19
4-1 實驗設備與架構 19
4-2 實驗設計 24
4-2-1 科學化試模 25
4-2-2 田口實驗設計 27
4-2-3 全因子實驗 28
4-3 預測模型訓練 29
4-3-1 數據前處理 30
4-3-2 預訓練模型建立 32
4-3-3 目標品質預測模型建立 33
4-4 模型表現驗證 33
第5章 結果與討論 35
5-1 科學化試模結果 35
5-1-1 滿模行程實驗 35
5-1-2 找尋射出速度實驗 36
5-1-3 多段保壓時間設定 37
5-1-4 多段保壓壓力設定 39
5-2 新料田口實驗 41
5-3 新料與二次料全因子實驗 43
5-4 Target data濾除結果 47
5-5 模型架構及數據降維於遷移學習之分析 48
5-5-1 模型架構於遷移學習表現 49
5-5-2 數據降維於遷移學習表現 50
5-6 遷移學習對比傳統訓練手法之分析 52
5-6-1 訓練過程之損失值變化歷程 52
5-6-2 訓練時間及迭代次數 54
5-6-3 測試誤差評估 56
5-6-4 模型預測值分布趨勢 61
第6章 結論與未來展望 66
6-1 結論 66
6-2 未來展望 68
參考文獻 70
附錄 74


[1] Benitez-Rangel, J. P., Dominguez-Gonzalez, A., Herrera-Ruiz, G., and Delgado-Rosas, M., 2007, "Filling process in injection mold: A review," Polymer-Plastics Technology and Engineering, 46(7), pp. 721-727.
[2] Vlachopoulos, J., and Strutt, D., 2003, "Polymer processing," Materials Science and Technology, 19(9), pp. 1161-1169.
[3] Wu, Y. R., Feng, Y. Q., Peng, S. T., Mao, Z. F., and Chen, B., 2023, "Generative machine learning-based multi-objective process parameter optimization towards energy and quality of injection molding," Environmental Science and Pollution Research.
[4] Kim, G., Choi, J. G., Ku, M., Cho, H., and Lim, S., 2021, "A Multimodal Deep Learning-Based Fault Detection Model for a Plastic Injection Molding Process," Ieee Access, 9, pp. 132455-132467.
[5] Pan, S. J., and Yang, Q. A., 2010, "A Survey on Transfer Learning," Ieee Transactions on Knowledge and Data Engineering, 22(10), pp. 1345-1359.
[6] Collins, C., 1999, "Monitoring cavity pressure perfects injection molding," Assembly Automation, 19(3), pp. 197-202.
[7] Zhao, P., Zhang, J., Dong, Z., Huang, J., Zhou, H., Fu, J., and Turng, L.-S., 2020, "Intelligent Injection Molding on Sensing, Optimization, and Control," Advances in Polymer Technology, 2020, pp. 1-22.
[8] Chen, J.-Y., Yang, K.-J., and Huang, M.-S., 2018, "Online quality monitoring of molten resin in injection molding," International Journal of Heat and Mass Transfer, 122, pp. 681-693.
[9] Hopewell, J., Dvorak, R., and Kosior, E., 2009, "Plastics recycling: challenges and opportunities," Philosophical Transactions of the Royal Society B-Biological Sciences, 364(1526), pp. 2115-2126.
[10] Krauklis, A. E., Karl, C. W., Gagani, A. I., and Jorgensen, J. K., 2021, "Composite Material Recycling Technology-State-of-the-Art and Sustainable Development for the 2020s," Journal of Composites Science, 5(1).
[11] Aurrekoetxea, J., Sarrionandia, M. A., Urrutibeascoa, I., and Maspoch, M. L. I., 2003, "Effects of injection moulding induced morphology on the fracture behaviour of virgin and recycled polypropylene," Polymer, 44(22), pp. 6959-6964.
[12] Incarnato, L., Scarfato, P., Acierno, D., Milana, M. R., and Feliciani, R., 2003, "Influence of recycling and contamination on structure and transport properties of polypropylene," Journal of Applied Polymer Science, 89(7), pp. 1768-1778.
[13] Mbarek, S., Baccouch, Z., Eterradossi, O., Perrin, D., Monasse, B., Garay, H., and Quantin, J. C., 2019, "Effect of recycling and injection parameters on gloss properties of smooth colored polypropylene parts: Contribution of surface and skin layer," Polymer Engineering and Science, 59(6), pp. 1288-1299.
[14] Mehat, N. M., and Kamaruddin, S., 2011, "Investigating the Effects of Injection Molding Parameters on the Mechanical Properties of Recycled Plastic Parts Using the Taguchi Method," Materials and Manufacturing Processes, 26(2), pp. 202-209.
[15] Gu, F., Hall, P., and Miles, N. J., 2016, "Development of composites based on recycled polypropylene for injection moulding automobile parts using hierarchical clustering analysis and principal component estimate," Journal of Cleaner Production, 137, pp. 632-643.
[16] Rafiq, M. Y., Bugmann, G., and Easterbrook, D. J., 2001, "Neural network design for engineering applications," Computers & Structures, 79(17), pp. 1541-1552.
[17] Ke, K. C., Wu, P. W., and Huang, M. S., 2024, "Multi-quality prediction of injection molding parts using a hybrid machine learning model," International Journal of Advanced Manufacturing Technology, 131(11), pp. 5511-5525.
[18] Uma Maheshwera Reddy, P., Sai Krishna Prashanth, K., and Kalvakolanu, S. D. S. A., 2023, "Prediction of weld-line width and sink-mark depth of plastic injection moulded parts using neural networks," Materials Today: Proceedings.
[19] Kim, J., and Lee, J. Y., 2023, "Development of a Quality Prediction Algorithm for an Injection Molding Process Considering Cavity Sensor and Vibration Data," International Journal of Precision Engineering and Manufacturing, 24(6), pp. 901-914.
[20] Gao, Z. Y., Dong, G. Y., Tang, Y. L., and Zhao, Y. F., 2023, "Machine learning aided design of conformal cooling channels for injection molding," Journal of Intelligent Manufacturing, 34(3), pp. 1183-1201.
[21] Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., and He, Q., 2021, "A Comprehensive Survey on Transfer Learning," Proceedings of the IEEE, 109(1), pp. 43-76.
[22] Huang, Y.-M., Jong, W.-R., and Chen, S.-C., 2021, "Transfer Learning Applied to Characteristic Prediction of Injection Molded Products," Polymers, 13(22), p. 3874.
[23] Liu, J., Guo, F., Gao, H., Li, M., Zhang, Y., and Zhou, H., 2021, "Defect detection of injection molding products on small datasets using transfer learning," Journal of manufacturing processes, 70, pp. 400-413.
[24] Yu, Z., Zhang, Y. M., Zhang, S. Y., Yi, G. D., and Qiu, L. M., 2024, "Semi-supervised auxiliary learning for surface defect detection and segmentation of injection-molded products from small image datasets," International Journal of Advanced Manufacturing Technology, 131(9-10), pp. 5243-5264.
[25] Lockner, Y., and Hopmann, C., 2021, "Induced network-based transfer learning in injection molding for process modelling and optimization with artificial neural networks," The International Journal of Advanced Manufacturing Technology, 112(11-12), pp. 3501-3513.
[26] Ke, K. C., and Huang, M. S., 2020, "Quality Prediction for Injection Molding by Using a Multilayer Perceptron Neural Network," Polymers, 12(8).
[27] Chen, J. Y., Tseng, C. C., and Huang, M. S., 2019, "Quality Indexes Design for Online Monitoring Polymer Injection Molding," Advances in Polymer Technology, 2019.
[28] Svozil, D., Kvasnicka, V., and Pospichal, J., 1997, "Introduction to multi-layer feed-forward neural networks," Chemometrics and Intelligent Laboratory Systems, 39(1), pp. 43-62.
[29] Yang, L., and Shami, A., 2020, "On hyperparameter optimization of machine learning algorithms: Theory and practice," Neurocomputing, 415, pp. 295-316.
[30] Román, A. J., Qin, S., Zavala, V. M., and Osswald, T. A., 2021, "Neural network feature and architecture optimization for injection molding surface defect prediction of model polypropylene," Polymer Engineering & Science, 61(9), pp. 2376-2387.
[31] Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M., Boulesteix, A. L., Deng, D., and Lindauer, M., 2023, "Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges," WIREs Data Mining and Knowledge Discovery, 13(2).
[32] Iman, M., Arabnia, H. R., and Rasheed, K., 2023, "A Review of Deep Transfer Learning and Recent Advancements," Technologies, 11(2), p. 40.
[33] Nian, S. C., Fang, Y. C., and Huang, M. S., 2019, "In-mold and Machine Sensing and Feature Extraction for Optimized IC-tray Manufacturing," Polymers, 11(8).
[34] Chen, J.-Y., Hung, P.-H., and Huang, M.-S., 2021, "Determination of process parameters based on cavity pressure characteristics to enhance quality uniformity in injection molding," International Journal of Heat and Mass Transfer, 180.
[35] Chang, Y.-H., Wei, T.-H., Chen, S.-C., and Lou, Y.-F., 2020, "The investigation onPVTcontrol method establishment for scientific injection molding parameter setting and its quality control," Polymer Engineering and Science, 60(11), pp. 2895-2907.
[36] Zhang, Y., and Yang, Q., 2018, "An overview of multi-task learning," National Science Review, 5(1), pp. 30-43.
[37] Venkatesh, B., and Anuradha, J., 2019, "A Review of Feature Selection and Its Methods," Cybernetics and Information Technologies, 19(1), pp. 3-26.
[38] Jia, W., Sun, M., Lian, J., and Hou, S., 2022, "Feature dimensionality reduction: a review," Complex & Intelligent Systems, 8(3), pp. 2663-2693.
[39] Gim, J., Yang, H., and Turng, L.-S., 2023, "Transfer learning of machine learning models for multi-objective process optimization of a transferred mold to ensure efficient and robust injection molding of high surface quality parts," Journal of Manufacturing Processes, 87, pp. 11-24.
[40] Lockner, Y., Hopmann, C., and Zhao, W., 2022, "Transfer learning with artificial neural networks between injection molding processes and different polymer materials," Journal of Manufacturing Processes, 73, pp. 395-408.
[41] Annicchiarico, D., and Alcock, J. R., 2014, "Review of Factors that Affect Shrinkage of Molded Part in Injection Molding," Materials and Manufacturing Processes, 29(6), pp. 662-682.

電子全文 電子全文(網際網路公開日期:20260801)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊