跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/25 18:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張銘詩
研究生(外文):TRUONG, MINH-THI
論文名稱:以科技持續理論與價值採用模型探討越南行動外送平台持續使用意願之研究
論文名稱(外文):The Study on Continuance Usage Intention of Mobile Food Delivery Apps in Vietnam from Technology Continuance Theory and Value-Based Adoption Model Perspectives
指導教授:鄭玉惠博士
指導教授(外文):Dr. Cheng, Yu-Hui
口試委員:陳孟修林義屏鄭玉惠
口試日期:2024-01-04
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:供應鏈管理系
學門:商業及管理學門
學類:行銷與流通學類
論文種類:學術論文
論文出版年:2023
畢業學年度:112
語文別:英文
論文頁數:89
中文關鍵詞:行動外送平台持續使用意願知覺價值價值增加模型科技持續理論
外文關鍵詞:Mobile Food Delivery AppsContinuance Usage IntentionPerceived ValueValue-based Adoption ModelTechnology Continuance Theory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:40
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於其便利性與速度,行動外送平台(Mobile Food Delivery Applications, MFDAs)受到廣大消費者的青睞。本研究結合科技持續理論(Technology Continuance Theory, TCT)及價值增加模型(Value-based Adoption Model, VAM)以建立一全面性模型,以探討影響顧客持續使用MFDAs的因素。本研究針對使用MFDAs的越南消費者,以便利抽樣方法進行問卷調查,共收集530份調查,並透過結構方程模型(SEM)分析進行模型驗證。研究結果揭示了源自VAM和TCT框架的所有原始因素與使用者繼續使用 MFDAs的意圖之間存在正相關關係。這些研究結果為MFDAs相關領域的學者和實務工作者提供了寶貴的啟示。
Mobile Food Delivery Applications (MFDAs) have witnessed a surge in popularity, driven by the convenience and speed they offer consumers. This study aims to develop a comprehensive model that integrates the Technology Continuance Theory (TCT) and the Value-based Adoption Model (VAM) framework to understand the factors influencing users' persistent engagement with MFDAs. This research collects data from a convenience sample comprising Vietnamese customers who have previously utilized MFDAs. Structural Equation Modeling (SEM) analysis was employed to examine the information gathered from 530 participants via online questionnaire. The research findings reveal positive associations between all original factors derived from the VAM and TCT frameworks and users' intentions to continue using MFDAs. These research findings offer valuable implications for academics and practitioners involved in areas related to MFDAs.
摘要 i
ABSTRACT ii
ACKNOWLEDGMENTS iii
LIST OF TABLES vi
LIST OF FIGURES vii
LIST OF ABBREVIATIONS viii
CHAPTER 1. INTRODUCTION 1
1.1. Research Background 1
1.2. Research Objectives 4
1.3. Research Contributions 4
1.4. Structure of Research 5
CHAPTER 2. LITERATURE REVIEW 6
2.1. Mobile Food Delivery Apps Overview 6
2.2. Theoretical Background of Research 6
2.2.1. Continuance Usage Intention 6
2.2.2. Value-based Adoption Model (VAM) 10
2.2.3. Technology Continuance Theory (TCT) 17
2.3. Conceptual Framework and Hypotheses Development  19
2.3.1. Relationship Between Perceived Sacrifices, Perceived Benefits, and Perceived Value 19
2.3.2. Relationship Between Confirmation, Satisfaction, and Perceived Value 20
2.3.3. Relationships Between Perceived Value, Satisfaction, Attitude, and Continuance Usage Intention 21
2.3.4. Relationships Between Satisfaction, Attitude, and Continuance Usage Intention 23
CHAPTER 3. RESEARCH METHODOLOGY 27
3.1. Measurement Scale Development 27
3.2. Sampling Design 30
3.3. Questionnaire Design 31
3.4. Data Collection 31
3.5. Data Analysis 32
3.5.1. Data Examination 32
3.5.2. Measurement Model Evaluation 33
3.5.3. Structural model evaluation 37
CHAPTER 4. RESEARCH FINDINGS 39
4.1. Data Screening 39
4.1.1. Unengaged Responses 39
4.1.2. Outliers 39
4.1.3. Normality 39
4.2. Profile of Respondents 43
4.3. The Evaluation of First-order Measurement Model 45
4.4. The Assessment of Second-order Measurement Model 50
4.5. Structural Model Evaluation 52
4.5.1. Collinearity Issues Evaluation 52
4.5.2. Path Relationship Evaluation 52
4.5.3. Evaluation of Model’s Explanatory Power 54
4.5.4. Evaluation of Model’s Predictive Power 54
CHAPTER 5. DISCUSSION AND CONCLUSION 56
5.1. Theoretical Implications 56
5.2. Managerial Implications 58
5.3. Limitations and Future Research 59
REFERENCE 61



Abdul-Halim, N.-A., Vafaei-Zadeh, A., Hanifah, H., Teoh, A. P., & Nawaser, K. (2022). Understanding the determinants of e-wallet continuance usage intention in Malaysia. Quality & Quantity, 56(5), 3413-3439.

Ahn, J. (2022). Impact of cognitive aspects of food mobile application on customers’ behaviour. Current Issues in Tourism, 25(4), 516-523.

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211.

Al Amin, M., Arefin, M. S., Sultana, N., Islam, M. R., Jahan, I., & Akhtar, A. (2020). Evaluating the customers' dining attitudes, e-satisfaction and continuance intention toward mobile food ordering apps (MFOAs): evidence from Bangladesh. European Journal of Management and Business Economics, 30(2), 211-229.

Al-Debei, M. M., Al-Lozi, E., & Papazafeiropoulou, A. (2013, 2013/04/01/). Why people keep coming back to Facebook: Explaining and predicting continuance participation from an extended theory of planned behaviour perspective. Decision Support Systems, 55(1), 43-54. https://doi.org/https://doi.org/10.1016/j.dss.2012.12.032

Alalwan, A. A. (2020). Mobile food ordering apps: An empirical study of the factors affecting customer e-satisfaction and continued intention to reuse. International Journal of Information Management, 50, 28-44.

Alhassan, M. D., Kolog, E. A., & Boateng, R. (2020). Effect of gratification on user attitude and continuance use of mobile payment services: a developing country context. Journal of Systems and Information Technology, 22(4), 351-378.

Almeida Lucas, G., Lunardi, G. L., & Bittencourt Dolci, D. (2023, 2023/03/01/). From e-commerce to m-commerce: An analysis of the user’s experience with different access platforms. Electronic Commerce Research and Applications, 58, 101240. https://doi.org/https://doi.org/10.1016/j.elerap.2023.101240

Ambalov, I. A. (2018). A meta-analysis of IT continuance: An evaluation of the expectation-confirmation model. Telematics and Informatics, 35(6), 1561-1571.

Aprilia, C., & Amalia, R. (2023). Perceived Security and Technology Continuance Theory: An Analysis Of Mobile Wallet Users’ Continuance Intention. Global Business Review, 09721509221145831.

Arora, T., & Agarwal, B. (2019). Empirical study on perceived value and attitude of millennials towards social media advertising: a structural equation modelling approach. Vision, 23(1), 56-69.

Ashfaq, M., Yun, J., Yu, S., & Loureiro, S. M. C. (2020, 2020/11/01/). I, Chatbot: Modeling the determinants of users’ satisfaction and continuance intention of AI-powered service agents. Telematics and Informatics, 54, 101473. https://doi.org/https://doi.org/10.1016/j.tele.2020.101473

Asnakew, Z. S. (2020, 2020/04/01). Customers’ Continuance Intention to Use Mobile Banking: Development and Testing of an Integrated Model. The Review of Socionetwork Strategies, 14(1), 123-146. https://doi.org/10.1007/s12626-020-00060-7

Babin, B. J., Gonzalez, C., & Watts, C. (2007). Does Santa have a great job? Gift shopping value and satisfaction. Psychology & Marketing, 24(10), 895-917.

Bao, Z., & Zhu, Y. (2022). Why customers have the intention to reuse food delivery apps: evidence from China. British Food Journal, 124(1), 179-196.

Becker, J.-M., Klein, K., & Wetzels, M. (2012). Hierarchical latent variable models in PLS-SEM: guidelines for using reflective-formative type models. Long Range Planning, 45(5-6), 359-394.

Bello-Pintado, A., Kaufmann, R., & Merino Diaz de Cerio, J. (2018). Firms’ entrepreneurial orientation and the adoption of quality management practices: Empirical evidence from a Latin American context. International Journal of Quality & Reliability Management, 35(9), 1734-1754.

Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 351-370.

Bhattacherjee, A., & Lin, C.-P. (2015). A unified model of IT continuance: three complementary perspectives and crossover effects. European Journal of Information Systems, 24(4), 364-373.

Burlea-Schiopoiu, A., Puiu, S., & Dinu, A. (2022). The impact of food delivery applications on Romanian consumers’ behaviour during the COVID-19 pandemic. Socio-Economic Planning Sciences, 82, 101220.

Caruana, A., & Fenech, N. (2005). The effect of perceived value and overall satisfaction on loyalty: A study among dental patients. Journal of Medical Marketing, 5(3), 245-255.

Charni, H., Brun, I., & Ricard, L. (2020). Impact of employee job satisfaction and commitment on customer perceived value: An original perspective. International Journal of Bank Marketing, 38(3), 737-755.

Chaulagain, S., Jahromi, M. F., Hua, N., & Wang, Y. (2023, 2023/07/01/). Understanding the determinants of intention to stay at medical hotels: A customer value perspective. International Journal of Hospitality Management, 112, 103464. https://doi.org/https://doi.org/10.1016/j.ijhm.2023.103464

Cheah, I., Phau, I., & Liang, J. (2015). Factors influencing consumers’ attitudes and purchase intentions of e-deals. Marketing Intelligence & Planning, 33(5), 763-783.

Chebat, J.-C., Michon, R., Haj-Salem, N., & Oliveira, S. (2014). The effects of mall renovation on shopping values, satisfaction and spending behaviour. Journal of Retailing and Consumer Services, 21(4), 610-618.

Chen, C.-F. (2008, 2008/05/01/). Investigating structural relationships between service quality, perceived value, satisfaction, and behavioral intentions for air passengers: Evidence from Taiwan. Transportation Research Part A: Policy and Practice, 42(4), 709-717. https://doi.org/https://doi.org/10.1016/j.tra.2008.01.007

Chen, C.-F., & Chen, F.-S. (2010, 2010/02/01/). Experience quality, perceived value, satisfaction and behavioral intentions for heritage tourists. Tourism Management, 31(1), 29-35. https://doi.org/https://doi.org/10.1016/j.tourman.2009.02.008

Cheng, P., OuYang, Z., & Liu, Y. (2019, 2019/06/01/). Understanding bike sharing use over time by employing extended technology continuance theory. Transportation Research Part A: Policy and Practice, 124, 433-443. https://doi.org/https://doi.org/10.1016/j.tra.2019.04.013

Dai, H. M., Teo, T., Rappa, N. A., & Huang, F. (2020, 2020/06/01/). Explaining Chinese university students’ continuance learning intention in the MOOC setting: A modified expectation confirmation model perspective. Computers & Education, 150, 103850. https://doi.org/https://doi.org/10.1016/j.compedu.2020.103850

Eastin, M. S. (2002). Diffusion of e-commerce: an analysis of the adoption of four e-commerce activities. Telematics and Informatics, 19(3), 251-267.

Eggert, A., & Ulaga, W. (2002). Customer perceived value: a substitute for satisfaction in business markets? Journal of Business & Industrial Marketing, 17(2/3), 107-118.

El-Adly, M. I., & Eid, R. (2016, 2016/07/01/). An empirical study of the relationship between shopping environment, customer perceived value, satisfaction, and loyalty in the UAE malls context. Journal of Retailing and Consumer Services, 31, 217-227. https://doi.org/https://doi.org/10.1016/j.jretconser.2016.04.002

Erdmann, A., Mas, J. M., & Arilla, R. (2023). Value‐based adoption of augmented reality: A study on the influence on online purchase intention in retail. Journal of Consumer Behaviour, 22(4), 912-932.

Fakfare, P. (2021, 2021/10/01/). Influence of service attributes of food delivery application on customers' satisfaction and their behavioural responses: The IPMA approach. International Journal of Gastronomy and Food Science, 25, 100392. https://doi.org/https://doi.org/10.1016/j.ijgfs.2021.100392

Field, A. (2013). Discovering statistics using IBM SPSS statistics. Sage.

Fornell, C., Johnson, M. D., Anderson, E. W., Cha, J., & Bryant, B. E. (1996). The American customer satisfaction index: nature, purpose, and findings. Journal of Marketing, 60(4), 7-18.

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.

Foroughi, B., Iranmanesh, M., & Hyun, S. S. (2019). Understanding the determinants of mobile banking continuance usage intention. Journal of Enterprise Information Management, 32(6), 1015-1033.

Foroughi, B., Sitthisirinan, S., Iranmanesh, M., Nikbin, D., & Ghobakhloo, M. (2023). Determinants of travel apps continuance usage intention: extension of technology continuance theory. Current Issues in Tourism, 1-17.

Forsythe, S., Liu, C., Shannon, D., & Gardner, L. C. (2006). Development of a scale to measure the perceived benefits and risks of online shopping. Journal of Interactive Marketing, 20(2), 55-75.

Franque, F. B., Oliveira, T., Tam, C., & Santini, F. d. O. (2021). A meta-analysis of the quantitative studies in continuance intention to use an information system. Internet Research, 31(1), 123-158.

Friederich, F., Palau-Saumell, R., Matute, J., & Meyer, J.-H. (2023). Digital natives and streaming TV platforms: an integrated perspective to explain continuance usage of over-the-top services. Online Information Review.

García-Monleón, F., Erdmann, A., & Arilla, R. (2023). A value-based approach to the adoption of cryptocurrencies. Journal of Innovation & Knowledge, 8(2), 100342.

Gong, X., Lee, M. K., Liu, Z., & Zheng, X. (2020). Examining the role of tie strength in users’ continuance intention of second-generation mobile instant messaging services. Information Systems Frontiers, 22, 149-170.

Hair, J., Black, W., Babin, B., & Anderson, R. (2014). Multivariate data analysis. Pearson Education Limited.

Hair, J., Black, W. C., Babin, B., Anderson, R., & Tatham, R. (2014). Pearson new international edition. In Multivariate data analysis, Seventh Edition. Pearson Education Limited Harlow, Essex.

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2022). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). Sage.

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2), 139-152.

Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24.

Hair, J. F., Sarstedt, M., Hopkins, L., & G. Kuppelwieser, V. (2014). Partial least squares structural equation modeling (PLS-SEM) An emerging tool in business research. European Business Review, 26(2), 106-121.

Hajiha, A., Shahriari, M., & Vakilian, N. (2014). The role of perceived value on customer E-shopping intention using technology acceptance model (TAM). 2014 IEEE International Conference on Industrial Engineering and Engineering Management, Malaysia.

Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial Management & Data Systems, 116(1), 2-20.

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015, 2015/01/01). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of The Academy of Marketing Science, 43(1), 115-135. https://doi.org/10.1007/s11747-014-0403-8

Hong, C., Choi, H., Choi, E.-K., & Joung, H.-W. (2021, 2021/09/01/). Factors affecting customer intention to use online food delivery services before and during the COVID-19 pandemic. Journal of Hospitality and Tourism Management, 48, 509-518. https://doi.org/https://doi.org/10.1016/j.jhtm.2021.08.012

Hsu, C.-L., & Lin, J. C.-C. (2015, 2015/01/01/). What drives purchase intention for paid mobile apps? – An expectation confirmation model with perceived value. Electronic Commerce Research and Applications, 14(1), 46-57. https://doi.org/https://doi.org/10.1016/j.elerap.2014.11.003

Hsu, M.-H., Chang, C.-M., & Chuang, L.-W. (2015, 2015/02/01/). Understanding the determinants of online repeat purchase intention and moderating role of habit: The case of online group-buying in Taiwan. International Journal of Information Management, 35(1), 45-56. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2014.09.002

Hsu, S. Y., Chang, C.-C., & Lin, T. T. (2019). Triple bottom line model and food safety in organic food and conventional food in affecting perceived value and purchase intentions. British Food Journal, 121(2), 333-346.

Huang, Y., & Moon, T. (2020). Perceived value of car sharing service and Chinese consumer’s continuous usage intention. ICIC Express Letters. Part B, Applications: An International Journal of Research and Surveys, 11(11), 1053-1059.

Hung, S.-W., Chang, C.-W., & Ma, Y.-C. (2021, 2021/11/01/). A new reality: Exploring continuance intention to use mobile augmented reality for entertainment purposes. Technology in Society, 67, 101757. https://doi.org/https://doi.org/10.1016/j.techsoc.2021.101757

Jain, N. K., Kaul, D., & Sanyal, P. (2022). What drives customers towards mobile shopping? An integrative technology continuance theory perspective. Asia Pacific Journal of Marketing and Logistics, 34(5), 922-943.

Jin, N., Lee, S., & Lee, H. (2015). The effect of experience quality on perceived value, satisfaction, image and behavioral intention of water park patrons: New versus repeat visitors. International Journal of Tourism Research, 17(1), 82-95.

Joo, Y. J., Park, S., & Shin, E. K. (2017). Students' expectation, satisfaction, and continuance intention to use digital textbooks. Computers in Human Behavior, 69, 83-90.

Jun, J., Cho, I., & Park, H. (2018). Factors influencing continued use of mobile easy payment service: an empirical investigation. Total Quality Management & Business Excellence, 29(9-10), 1043-1057.

Karjaluoto, H., Shaikh, A. A., Saarijärvi, H., & Saraniemi, S. (2019, 2019/08/01/). How perceived value drives the use of mobile financial services apps. International Journal of Information Management, 47, 252-261. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2018.08.014

Kaur, P., Dhir, A., Talwar, S., & Ghuman, K. (2021). The value proposition of food delivery apps from the perspective of theory of consumption value. International Journal of Contemporary Hospitality Management, 33(4), 1129-1159.

Khayer, A., & Bao, Y. (2019). The continuance usage intention of Alipay: Integrating context-awareness and technology continuance theory (TCT). The Bottom Line, 32(3), 211-229.

Kim, D. J., Ferrin, D. L., & Rao, H. R. (2008). A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision Support Systems, 44(2), 544-564.

Kim, H.-W., Chan, H. C., & Gupta, S. (2007). Value-based adoption of mobile internet: an empirical investigation. Decision Support Systems, 43(1), 111-126.

Kim, M.-K., Oh, J., Park, J.-H., & Joo, C. (2018). Perceived value and adoption intention for electric vehicles in Korea: Moderating effects of environmental traits and government supports. Energy, 159, 799-809.

Kim, Y., Park, Y., & Choi, J. (2017). A study on the adoption of IoT smart home service: using Value-based Adoption Model. Total Quality Management & Business Excellence, 28(9-10), 1149-1165.

Kleijnen, M., de Ruyter, K., & Wetzels, M. (2007, 2007/01/01/). An assessment of value creation in mobile service delivery and the moderating role of time consciousness. Journal of Retailing, 83(1), 33-46. https://doi.org/https://doi.org/10.1016/j.jretai.2006.10.004

Kline, R. B. (2023). Principles and practice of structural equation modeling. Guilford publications.

Kumar, P., Maiti, J., & Gunasekaran, A. (2018). Impact of quality management systems on firm performance. International Journal of Quality & Reliability Management, 35(5), 1034-1059.

Kumar, S., & Shah, A. (2021). Revisiting food delivery apps during COVID-19 pandemic? Investigating the role of emotions. Journal of Retailing and Consumer Services, 62, 102595.

Kwun, D. J.-W. (2011, 2011/06/01/). Effects of campus foodservice attributes on perceived value, satisfaction, and consumer attitude: A gender-difference approach. International Journal of Hospitality Management, 30(2), 252-261. https://doi.org/https://doi.org/10.1016/j.ijhm.2010.09.001

Lahap, J., Saupi, N. J., Said, N. M., Abdullah, D., & Kamal, S. B. M. (2023). Factors Influencing Consumers’ Continuance Usage Intention towards Food Delivery Application: A Case Study in Kuang, Selangor, Malaysia. International Journal of Academic Research in Business and Social Sciences, 13(5), 259-273.

Lai, W.-T., & Chen, C.-F. (2011, 2011/03/01/). Behavioral intentions of public transit passengers—The roles of service quality, perceived value, satisfaction and involvement. Transport Policy, 18(2), 318-325. https://doi.org/https://doi.org/10.1016/j.tranpol.2010.09.003

Lam, S. Y., Shankar, V., Erramilli, M. K., & Murthy, B. (2004). Customer value, satisfaction, loyalty, and switching costs: an illustration from a business-to-business service context. Journal of The Academy of Marketing Science, 32(3), 293-311.

Lapierre, J. (2000). Customer‐perceived value in industrial contexts. Journal of Business & Industrial Marketing, 15(2/3), 122-145.

Law, M. (2020). Continuance intention to use Facebook: understanding the roles of attitude and habit. Young Consumers, 21(3), 319-333.

Lee, C., Yun, H., Lee, C., & Lee, C. C. (2015). Factors affecting continuous intention to use mobile wallet: Based on value-based adoption model. Journal of Society for e-Business Studies, 20(1).

Lee, Y., & Kwon, O. (2011). Intimacy, familiarity and continuance intention: An extended expectation–confirmation model in web-based services. Electronic Commerce Research and Applications, 10(3), 342-357.

Leung, L. (2013). Generational differences in content generation in social media: The roles of the gratifications sought and of narcissism. Computers in Human Behavior, 29(3), 997-1006.

Li, H., Kuo, C., & Rusell, M. G. (1999). The impact of perceived channel utilities, shopping orientations, and demographics on the consumer's online buying behavior. Journal of Computer-Mediated Communication, 5(2), JCMC521.

Liang, T.-P., Lin, Y.-L., & Hou, H.-C. (2021, 2021/06/01/). What drives consumers to adopt a sharing platform: An integrated model of value-based and transaction cost theories. Information & Management, 58(4), 103471. https://doi.org/https://doi.org/10.1016/j.im.2021.103471

Liao, C., Palvia, P., & Chen, J.-L. (2009). Information technology adoption behavior life cycle: Toward a Technology Continuance Theory (TCT). International Journal of Information Management, 29(4), 309-320.

Limayem, M., & Cheung, C. M. K. (2008, 2008/06/01/). Understanding information systems continuance: The case of Internet-based learning technologies. Information & Management, 45(4), 227-232. https://doi.org/https://doi.org/10.1016/j.im.2008.02.005

Lin, H.-H., & Wang, Y.-S. (2006). An examination of the determinants of customer loyalty in mobile commerce contexts. Information & Management, 43(3), 271-282.

Lin, K.-M. (2011). e-Learning continuance intention: Moderating effects of user e-learning experience. Computers & Education, 56(2), 515-526.

Lin, K.-Y., Wang, Y.-T., & Huang, T. K. (2020). Exploring the antecedents of mobile payment service usage: Perspectives based on cost–benefit theory, perceived value, and social influences. Online Information Review, 44(1), 299-318.

Lin, T.-C., Wu, S., Hsu, J. S.-C., & Chou, Y.-C. (2012). The integration of value-based adoption and expectation–confirmation models: An example of IPTV continuance intention. Decision Support Systems, 54(1), 63-75.

Lin, Y.-T., Tseng, T. H., Chang, A., & Yang, C.-C. (2022). A value adoption approach to sustainable consumption in retail stores. International Journal of Retail & Distribution Management, 50(11), 1412-1435.

Liu, F., Zhao, X., Chau, P. Y., & Tang, Q. (2015). Roles of perceived value and individual differences in the acceptance of mobile coupon applications. Internet Research, 25(3), 471-495.

Mathavan, B., Vafaei-Zadeh, A., Hanifah, H., Ramayah, T., & Kurnia, S. (2022). Understanding the purchase intention of fitness wearables: using value-based adoption model. Asia-Pacific Journal of Business Administration(ahead-of-print).

McCarty, J. A., & Shrum, L. (1994). The recycling of solid wastes: Personal values, value orientations, and attitudes about recycling as antecedents of recycling behavior. Journal of Business Research, 30(1), 53-62.

Nabavi, A., Taghavi-Fard, M. T., Hanafizadeh, P., & Taghva, M. R. (2016). Information technology continuance intention: A systematic literature review. International Journal of E-Business Research (IJEBR), 12(1), 58-95.

Nguyen, D. M., Chiu, Y. T. H., Vu, H. Q., & Nguyen, T. (2022). Toward a unified theory of technology continuance: Effects of conscious versus unconscious factors. Journal of Consumer Behaviour, 21(5), 1219-1235.

Nguyen, M. N. (2022). Online food delivery usage intention Vietnam 2022. Retrieved March 10 from https://www.statista.com/statistics/1344601/vietnam-online-food-delivery-usage-intention/

Nguyen, M. N. (2023a). Online food delivery in Vietnam - statistics & facts. Retrieved 10 March from https://www.statista.com/topics/8508/online-food-delivery-in-vietnam/#topicOverview

Nguyen, M. N. (2023b). Revenue of the food delivery market in Vietnam from 2016 to 2022. Retrieved 10 March from https://www.statista.com/statistics/1361145/vietnam-food-delivery-revenue/#statisticContainer

Nie, L., Oldenburg, B., Cao, Y., & Ren, W. (2023). Continuous usage intention of mobile health services: model construction and validation. BMC Health Services Research, 23(1), 442.

Okumus, B., & Bilgihan, A. (2014). Proposing a model to test smartphone users' intention to use smart applications when ordering food in restaurants. Journal of Hospitality and Tourism Technology, 5(1), 31-49.

Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), 460-469.

Pekerti, R. I., & Briliana, V. (2016). Pengaruh perceived benefits, perceived risks, hedonic motivations, psychological factors dan website design terhadap online buying behavior. Jurnal Bisnis Dan Akuntansi, 18(2), 147-158.

Perri, J. (2023). Which company is winning the restaurant food delivery war? Retrieved 1 April from https://secondmeasure.com/datapoints/food-delivery-services-grubhub-uber-eats-doordash-postmates/

Petrick, J. F., & Backman, S. J. (2002). An examination of the construct of perceived value for the prediction of golf travelers’ intentions to revisit. Journal of Travel Research, 41(1), 38-45.

Pigatto, G., Machado, J. G. d. C. F., Negreti, A. d. S., & Machado, L. M. (2017). Have you chosen your request? Analysis of online food delivery companies in Brazil. British Food Journal, 119(3), 639-657.

Rahi, S., Khan, M. M., & Alghizzawi, M. (2021). Extension of technology continuance theory (TCT) with task technology fit (TTF) in the context of Internet banking user continuance intention. International Journal of Quality & Reliability Management, 38(4), 986-1004.

Rahman, M. F., Talukder, M. S., Lanrong, Y., & Khayer, A. (2020). Why do citizens use e-tax system? Extending the technology continuance theory. International Journal of Research in Business and Social Science (2147-4478), 9(7), 177-189.

Rajkumar, N., Vishwakarma, P., & Gangwani, K. K. (2020). Investigating consumers' path to showrooming: a perceived value-based perspective. International Journal of Retail & Distribution Management, 49(2), 299-316.

Ramos, K. (2022). Factors influencing customers' continuance usage intention of food delivery apps during COVID-19 quarantine in Mexico. British Food Journal, 124(3), 833-852.

Ray, A., & Bala, P. K. (2021). User generated content for exploring factors affecting intention to use travel and food delivery services. International Journal of Hospitality Management, 92, 102730.

Ray, A., Dhir, A., Bala, P. K., & Kaur, P. (2019). Why do people use food delivery apps (FDA)? A uses and gratification theory perspective. Journal of Retailing and Consumer Services, 51, 221-230.

Rihidima, L. V. C., Abdillah, Y., & Rahimah, A. (2022). Adoption of Cash on Delivery Payment Method in E-commerce Shopping: A Value-based Adoption Model Approach. Jurnal Manajemen Teori dan Terapan, 15(3).

Rita, P., Eiriz, V., & Conde, B. (2022). The role of information for the customer journey in mobile food ordering apps. Journal of Services Marketing, 37(5), 574-591.

Roostika, R. (2012). Mobile internet acceptance among university students: A value-based adoption model. International Journal of Research in Management & Technology, 2(1), 21-28.

Ruiz-Molina, M.-E., & Gil-Saura, I. (2008). Perceived value, customer attitude and loyalty in retailing. Journal of Retail & Leisure Property, 7, 305-314.

Saad, A. T. (2021). Factors affecting online food delivery service in Bangladesh: an empirical study. British Food Journal, 123(2), 535-550.

Sandhu, R. K., Vasconcelos-Gomes, J., Thomas, M. A., & Oliveira, T. (2023, 2023/02/01/). Unfolding the popularity of video conferencing apps – A privacy calculus perspective. International Journal of Information Management, 68, 102569. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2022.102569

Santhanamery, T., & Ramayah, T. (2018). Explaining and predicting users' continuance usage intention toward e-filing utilizing technology continuance theory. In Encyclopedia of Information Science and Technology, Fourth Edition (pp. 831-846). IGI Global.

Sarmah, H. K., & Hazarika, B. B. (2012). Importance of the size of Sample and its determination in the context of data related to the schools of greater Guwahati. Bull. Gauhati Univ. Math. Assoc, 12, 55-76.

Shang, D., & Wu, W. (2017). Understanding mobile shopping consumers’ continuance intention. Industrial Management & Data Systems, 117(1), 213-227.

Shanshan, S., & Wenfei, L. (2022, 2022/09/01). Understanding the impact of quality elements on MOOCs continuance intention. Education and Information Technologies, 27(8), 10949-10976. https://doi.org/10.1007/s10639-022-11063-y

Sharma, P. N., Liengaard, B. D., Hair, J. F., Sarstedt, M., & Ringle, C. M. (2022). Predictive model assessment and selection in composite-based modeling using PLS-SEM: extensions and guidelines for using CVPAT. European Journal of Marketing(ahead-of-print).

Shelvia, O., Prayitno, A. T., Kartono, R., & Sundjaja, A. M. (2020). Analysis of factors affecting Consumer’s continuance intention to use mobile payments with a value-based adoption model (Vam) approach. Psychology And Education, 57(9), 2883-2898.

Shmueli, G., Sarstedt, M., Hair, J. F., Cheah, J.-H., Ting, H., Vaithilingam, S., & Ringle, C. M. (2019). Predictive model assessment in PLS-SEM: guidelines for using PLSpredict. European Journal of Marketing, 53(11), 2322-2347.

Silva, G. M., Dias, Á., & Rodrigues, M. S. (2022). Continuity of Use of Food Delivery Apps: An Integrated Approach to the Health Belief Model and the Technology Readiness and Acceptance Model. Journal of Open Innovation: Technology, Market, and Complexity, 8(3), 114.

Snoj, B., Korda, A. P., & Mumel, D. (2004). The relationships among perceived quality, perceived risk and perceived product value. Journal of Product & Brand Management, 13(3), 156-167.

Song, H., Ruan, W. J., & Jeon, Y. J. J. (2021). An integrated approach to the purchase decision making process of food-delivery apps: Focusing on the TAM and AIDA models. International Journal of Hospitality Management, 95, 102943.

Statista. (2023). Online Food Delivery - Worldwide. Retrieved 1 April from https://www.statista.com/outlook/dmo/online-food-delivery/worldwide

Su, D. N., Nguyen, N. A. N., Nguyen, L. N. T., Luu, T. T., & Nguyen-Phuoc, D. Q. (2022). Modeling consumers’ trust in mobile food delivery apps: Perspectives of technology acceptance model, mobile service quality and personalization-privacy theory. Journal of Hospitality Marketing & Management, 31(5), 535-569.

Suhartanto, D., Clemes, M., & Dean, D. (2013). Analyzing the complex and dynamic nature of brand loyalty in the hotel industry. Tourism Review International, 17(1), 47-61.

Suhartanto, D., Clemes, M., Februadi, A., Suhaeni, T., & Loveldy, Z. A. C. (2020). Modelling passenger loyalty towards app-based motorcycle taxi. Asian Academy of Management Journal, 25(1).

Suhartanto, D., Helmi Ali, M., Tan, K. H., Sjahroeddin, F., & Kusdibyo, L. (2019). Loyalty toward online food delivery service: the role of e-service quality and food quality. Journal of Foodservice Business Research, 22(1), 81-97.

Susanto, A., Chang, Y., & Ha, Y. (2016). Determinants of continuance intention to use the smartphone banking services: An extension to the expectation-confirmation model. Industrial Management & Data Systems, 116(3), 508-525.

Sweeney, J. C., & Soutar, G. N. (2001). Consumer perceived value: The development of a multiple item scale. Journal of Retailing, 77(2), 203-220.

Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2013). Using Multivariate Statistics (Vol. 6). Pearson Boston, MA.

Timur, B., Oğuz, Y. E., & Yilmaz, V. (2023). Consumer behavior of mobile food ordering app users during COVID-19: dining attitudes, e-satisfaction, perceived risk, and continuance intention. Journal of Hospitality and Tourism Technology, 14(3), 460-475.

Troise, C., O'Driscoll, A., Tani, M., & Prisco, A. (2021). Online food delivery services and behavioural intention–a test of an integrated TAM and TPB framework. British Food Journal, 123(2), 664-683.

Um, J., & Yoon, S. (2021). Evaluating the relationship between perceived value regarding tourism gentrification experience, attitude, and responsible tourism intention. Journal of Tourism and Cultural Change, 19(3), 345-361.

Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2), 186-204.

Wang, C., Teo, T. S., & Liu, L. (2020). Perceived value and continuance intention in mobile government service in China. Telematics and Informatics, 48, 101348.

Wang, H.-Y., & Wang, S.-H. (2010). Predicting mobile hotel reservation adoption: Insight from a perceived value standpoint. International Journal of Hospitality Management, 29(4), 598-608.

Wang, Y., Gu, J., Wang, S., & Wang, J. (2019, 2019/08/01/). Understanding consumers’ willingness to use ride-sharing services: The roles of perceived value and perceived risk. Transportation Research Part C: Emerging Technologies, 105, 504-519. https://doi.org/https://doi.org/10.1016/j.trc.2019.05.044

Wang, Y., Wang, Y., Ettema, D., Mao, Z., Charlton, S. G., & Zhou, H. (2020, 2020/09/01/). Commuter value perceptions in peak avoidance behavior: An empirical study in the Beijing subway system. Transportation Research Part A: Policy and Practice, 139, 70-84. https://doi.org/https://doi.org/10.1016/j.tra.2020.07.001

Wang, Y. S. (2008). Assessing e‐commerce systems success: a respecification and validation of the DeLone and McLean model of IS success. Information Systems Journal, 18(5), 529-557.

Wang, Y. S., Tseng, T. H., Wang, W. T., Shih, Y. W., & Chan, P. Y. (2019, 2019/01/01/). Developing and validating a mobile catering app success model. International Journal of Hospitality Management, 77, 19-30. https://doi.org/https://doi.org/10.1016/j.ijhm.2018.06.002

Weng, G. S., Zailani, S., Iranmanesh, M., & Hyun, S. S. (2017, 2017/12/01/). Mobile taxi booking application service’s continuance usage intention by users. Transportation Research Part D: Transport and Environment, 57, 207-216. https://doi.org/https://doi.org/10.1016/j.trd.2017.07.023

Wetzels, M., Odekerken-Schröder, G., & Van Oppen, C. (2009). Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration. MIS Quarterly, 177-195.

Woodruff, R. B. (1997). Customer value: the next source for competitive advantage. Journal of The Academy of Marketing Science, 25, 139-153.

Wu, S. I. (2003). The relationship between consumer characteristics and attitude toward online shopping. Marketing Intelligence & Planning, 21(1), 37-44.

Yang, Z., & Peterson, R. T. (2004). Customer perceived value, satisfaction, and loyalty: The role of switching costs. Psychology & Marketing, 21(10), 799-822.

Yen, Y.-S. (2023). Channel integration affects usage intention in food delivery platform services: The mediating effect of perceived value. Asia Pacific Journal of Marketing and Logistics, 35(1), 54-73.

Yeo, V. C. S., Goh, S.-K., & Rezaei, S. (2017, 2017/03/01/). Consumer experiences, attitude and behavioral intention toward online food delivery (OFD) services. Journal of Retailing and Consumer Services, 35, 150-162. https://doi.org/https://doi.org/10.1016/j.jretconser.2016.12.013

Yoon, S., & Oh, J. (2022, 2022/02/01/). A theory-based approach to the usability of augmented reality technology: A cost-benefit perspective. Technology in Society, 68, 101860. https://doi.org/https://doi.org/10.1016/j.techsoc.2022.101860

Yu, H., Seo, I., & Choi, J. (2019). A study of critical factors affecting adoption of self-customisation service–focused on value-based adoption model. Total Quality Management & Business Excellence, 30(sup1), S98-S113.

Yuan, S., Liu, Y., Yao, R., & Liu, J. (2016). An investigation of users’ continuance intention towards mobile banking in China. Information Development, 32(1), 20-34.

Yuan, Y., Lai, F., & Chu, Z. (2019). Continuous usage intention of Internet banking: a commitment-trust model. Information Systems and e-Business Management, 17, 1-25.

Zanetta, L. D. A., Hakim, M. P., Gastaldi, G. B., Seabra, L. M. A. J., Rolim, P. M., Nascimento, L. G. P., Medeiros, C. O., & da Cunha, D. T. (2021). The use of food delivery apps during the COVID-19 pandemic in Brazil: The role of solidarity, perceived risk, and regional aspects. Food Research International, 149, 110671.

Zeithaml, V. A. (1988). Consumer perceptions of price, quality, and value: a means-end model and synthesis of evidence. Journal of Marketing, 52(3), 2-22.

Zeithaml, V. A., Verleye, K., Hatak, I., Koller, M., & Zauner, A. (2020). Three decades of customer value research: paradigmatic roots and future research avenues. Journal of Service Research, 23(4), 409-432.

Zhang, C.-B., Li, Y.-N., Wu, B., & Li, D.-J. (2017, 2017/04/01/). How WeChat can retain users: Roles of network externalities, social interaction ties, and perceived values in building continuance intention. Computers in Human Behavior, 69, 284-293. https://doi.org/https://doi.org/10.1016/j.chb.2016.11.069

Zhang, H., Lu, Y., Gupta, S., & Gao, P. (2015). Understanding group-buying websites continuance: An extension of expectation confirmation model. Internet Research, 25(5), 767-793.

Zhang, Y., Xiao, C., & Zhou, G. (2020, 2020/01/01/). Willingness to pay a price premium for energy-saving appliances: Role of perceived value and energy efficiency labeling. Journal of Cleaner Production, 242, 118555. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.118555

Zhao, H., Su, C., & Hua, Z. (2016). Investigating continuance intention to follow a brand micro-blog: Perceived value and social identification. Information Development, 32(5), 1428-1441.

Zhao, Y., & Bacao, F. (2020). What factors determining customer continuingly using food delivery apps during 2019 novel coronavirus pandemic period? International Journal of Hospitality Management, 91, 102683.

Zhong, J., & Chen, T. (2023, 2023/05/01/). Antecedents of mobile payment loyalty: An extended perspective of perceived value and information system success model. Journal of Retailing and Consumer Services, 72, 103267. https://doi.org/https://doi.org/10.1016/j.jretconser.2023.103267

Zhou, W., Tsiga, Z., Li, B., Zheng, S., & Jiang, S. (2018). What influence users’e-finance continuance intention? The moderating role of trust. Industrial Management & Data Systems, 118(8), 1647-1670.



電子全文 電子全文(網際網路公開日期:20290104)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊