|
Balci, G., Cetin, I. B., & Tanyeri, M. (2018). Differentiation of container shipping services in Turkey. Transport Policy, 61, 26-35. Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. Peerj computer science, 7, e623. Chiraphadhanakul, S., Dangprasert, P., & Avatchanakorn, V. (1997, October). Genetic algorithms in forecasting commercial banks deposit. In 1997 IEEE International Conference on Intelligent Processing Systems (Cat. No. 97TH8335) (Vol. 1, pp. 116-121). IEEE. Chou, C. C., Chu, C. W., & Liang, G. S. (2008). A modified regression model for forecasting the volumes of Taiwan’s import containers. Mathematical and Computer Modelling, 47(9-10), 797-807. Eckerson, W. W. (2007). Predictive analytics. Extending the Value of Your Data Warehousing Investment. TDWI Best Practices Report, 1, 1-36. Feng, H., Grifoll, M., & Zheng, P. (2019). From a feeder port to a hub port: The evolution pathways, dynamics and perspectives of Ningbo-Zhoushan port (China). Transport Policy, 76, 21-35. Forrest, S. (1996). Genetic algorithms. ACM computing surveys (CSUR), 28(1), 77-80. Gao, Y., Luo, M., & Zou, G. (2016). Forecasting with model selection or model averaging: a case study for monthly container port throughput. Transportmetrica A: Transport Science, 12(4), 366-384. Grifoll, M., Karlis, T., & Ortego, M. I. (2018). Characterizing the evolution of the container traffic share in the Mediterranean Sea using hierarchical clustering. Journal of Marine Science and Engineering, 6(4), 121. Ha, M. H., Yang, Z., & Lam, J. S. L. (2019). Port performance in container transport logistics: A multi-stakeholder perspective. Transport Policy, 73, 25-40. Holland, J. H. (1975). University of Michigan Press. Ann Arbor. Hsu, H. P. (2016). Solving feeder assignment and component sequencing problems for printed circuit board assembly using particle swarm optimization. IEEE Transactions on Automation Science and Engineering, 14(2), 881-893. Huang, J., Chu, C. W., & Tsai, Y. C. (2020). Container throughput forecasting for international ports in Taiwan. Journal of Marine Science and Technology, 28(5), 15. Huang, W. C., Chang, H. H., & Wu, C. T. (2008). A model of container transshipment port competition: an empirical study of international ports in Taiwan. Journal of Marine Science and technology, 16(1), 3. Jeong, B., Jung, H. S., & Park, N. K. (2002). A computerized causal forecasting system using genetic algorithms in supply chain management. Journal of Systems and Software, 60(3), 223-237. Ju, Y. J., Kim, C. E., & Shim, J. C. (1997). Genetic-based fuzzy models: interest rate forecasting problem. Computers & industrial engineering, 33(3-4), 561-564. Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp. 1942-1948). ieee. Kim, D., & Kim, C. (1997). Forecasting time series with genetic fuzzy predictor ensemble. IEEE Transactions on Fuzzy systems, 5(4), 523-535. Kim, D. H., & Lee, K. (2020). Forecasting the Container volumes of Busan port USING LSTM. Journal of Korea Port Economic Association, 36(2), 53-62. Laurikkala, J. (2001). Improving identification of difficult small classes by balancing class distribution. In Artificial Intelligence in Medicine: 8th Conference on Artificial Intelligence in Medicine in Europe, AIME 2001 Cascais, Portugal, July 1–4, 2001, Proceedings 8 (pp. 63-66). Springer Berlin Heidelberg. Lee Rodgers, J., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 59-66. Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR). [Internet], 9(1), 381-386. Marill, K. A. (2004). Advanced statistics: linear regression, part I: simple linear regression. Academic emergency medicine, 11(1), 87-93. Munim, Z. H., Fiskin, C. S., Nepal, B., & Chowdhury, M. M. H. (2023). Forecasting container throughput of major Asian ports using the Prophet and hybrid time series models. The Asian Journal of Shipping and Logistics, 39(2), 67-77. Ng, S. T., Skitmore, M., & Wong, K. F. (2008). Using genetic algorithms and linear regression analysis for private housing demand forecast. Building and Environment, 43(6), 1171-1184. Onut, S., Tuzkaya, U. R., & Torun, E. (2011). Selecting container port via a fuzzy ANP-based approach: A case study in the Marmara Region, Turkey. Transport Policy, 18(1), 182-193. Peng, W. Y., & Chu, C. W. (2009). A comparison of univariate methods for forecasting container throughput volumes. Mathematical and computer modelling, 50(7-8), 1045-1057. Rawson, A., Brito, M., Sabeur, Z., & Tran-Thanh, L. (2021). A machine learning approach for monitoring ship safety in extreme weather events. Safety science, 141, 105336. Shankar, S., Ilavarasan, P. V., Punia, S., & Singh, S. P. (2020). Forecasting container throughput with long short-term memory networks. Industrial management & data systems, 120(3), 425-441. Stavroulakis, P. J., & Papadimitriou, S. (2017). Situation analysis forecasting: the case of European maritime clusters. Maritime Policy & Management, 44(6), 779-789. Twrdy, E., & Batista, M. (2016). Modeling of container throughput in Northern Adriatic ports over the period 1990–2013. Journal of Transport Geography, 52, 131-142. Wiegand, J. (2004). Eclipse: A platform for integrating development tools. IBM Systems Journal, 43(2), 371-383. Yap, W. Y., & Ho, J. (2023). Port strategy and performance: empirical evidence from major container ports and implications for the role of data analytics. Maritime Policy & Management, 50(5), 608-628. Yeom, C. U., & Kwak, K. C. (2019). Incremental granular model improvement using particle swarm optimization. Symmetry, 11(3), 390. Zheng, D. X., Ng, S. T., & Kumaraswamy, M. M. (2004). Applying a genetic algorithm-based multiobjective approach for time-cost optimization. Journal of Construction Engineering and management, 130(2), 168-176. Ziran, J., Chunfang, P., Huayou, Z., Chengjin, W., & Shilin, Y. (2022). Temporal and spatial evolution and influencing factors of the port system in Yangtze River Delta Region from the perspective of dual circulation: Comparing port domestic trade throughput with port foreign trade throughput. Transport Policy, 118, 79-90.
|