跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/13 21:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳証傑
研究生(外文):CHEN,ZHEN-JIE
論文名稱:基材與強化材材料特性導入有限元素分析驗證碳纖維複材機械性能研究
論文名稱(外文):Introduce the material properties of matrix and reinforcement into finite element method to predict the mechanical properties of carbon fiber composite materials
指導教授:謝宗翰謝宗翰引用關係
指導教授(外文):HSIEH,TSUNG-HAN
口試委員:謝宗翰吳佳璟梁智翔
口試日期:2024-07-22
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:129
中文關鍵詞:碳纖維疊層板有限元素分析靜態負載性能
外文關鍵詞:Carbon fiber laminateFinite element analysis (FEA)Static load performanceAtair HyperWorks OptiStruct
相關次數:
  • 被引用被引用:0
  • 點閱點閱:20
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
碳纖維複合材料廣泛應用於現代工業中,其高比強度、高比模數、重量輕
為材料的最大特色,現代產品輕量化以改變幾何形狀減少材料使用,或是對結
構的材料進行更改使其更為輕巧,複合材料展現優異性能與質輕的特色,而複
合材料為層層堆疊後成型,角度改動會使產品的機械性質有所差異,本研究將
使用有限元素分析法對在靜態負載下碳纖維疊層板的性能進行分析並與實驗所
得之數據進行比較。
本研究以壓力釜法與真空樹脂轉注法製作[0]、[45]、[90]碳纖維疊層板,並
對疊層板的基材樹脂與補強材碳纖維進行拉伸試驗與壓縮試驗,將測得數據導
入至 Multiscale Designer 模組中建立材料參數並配合有限元素套裝軟體 Atair
HyperWorks OptiStruct2022.3 建構與碳纖維疊層板相同之疊構模型進行分析,最
後將分析結果與實驗結果進行比對,得出實驗與分析之間的差異性。
由實驗與分析比對結果得知,使用實驗測得之碳纖維與樹脂參數在[0]疊層
時可以同時在壓力釜製程與真空輔助樹脂轉注製程中,以 Normal X 結果能獲得
誤差在 3%內的拉伸模數結果與 6%內的極限應力分析結果,當纖維與負載產生
夾角,查看 von-Mises 結果在壓力釜極限應力的部分至[45]20、[90]20疊層誤差皆
在 2%內,真空輔樹脂轉注應力誤差則大於 10%,推測為碳纖維布內固定用玻璃
纖維造成影響。
以誤差 6%作為參考性標準,壓力釜法極限應力中各項分析結果具有參考性。

Carbon fiber composites are widely used in modern industry due to their high
specific strength, high specific modulus, and light weight. Modern product
lightweighting involves either changing geometric shapes to reduce material usage or
altering structural materials to make them lighter. Composite materials exhibit superior
performance and lightweight characteristics, and they are formed by stacking multiple
layers. Changing the angles of these layers can result in different mechanical properties.
This study aims to analyze the performance of carbon fiber laminates under static loads
using finite element analysis (FEA) and compare the results with experimental data.
In this research, autoclave and vacuum-assisted resin transfer molding (VARTM)
methods were used to form [0], [45], and [90] carbon fiber laminates. Tensile and
compression tests were conducted on the resin and carbon fiber of the laminates. The
experimental data were input into the Multiscale Designer module to derive material
parameters, and the finite element software Altair HyperWorks OptiStruct 2022.3was
used to develop models with the same laminate for analysis. Finally, the analysis results
were compared with the experimental results to determine the discrepancies between
the experiments and the analysis.
Based on the comparison between experimental and finite element analysis (FEA)
results, it was found that using the experimentally measured parameters for carbon fiber
and resin in [0] layups, both in the autoclave process and the vacuum-assisted resin
transfer molding process, achieved tensile modulus results with an error within 3% and
ultimate stress analysis results within 6% when viewed under Normal X. When there
was an angle between the fiber and the load, examining the von-Mises results showed
that the maximum stress error in the autoclave process for [45]20 and [90]20 layups was
within 2%, while the vacuum-assisted resin transfer molding process had stress errors
greater than 10%. This discrepancy is speculated to be caused by the glass fiber used
for fixing the carbon fiber fabric.
Using a 6% error margin as the reference, all analytical results in the autoclave
method's ultimate stress tests are considered reliable.

目錄
摘要 I
ABSTRACT II
致謝 IV
目錄 V
圖目錄 VII
表目錄 XII
符號說明 XIV
第 1 章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
第 2 章 理論介紹 4
2.1 複合材料概論 4
2.1.1 基材(Matrix) 5
2.1.2 補強材(Reinforcement) 6
2.1.3 高分子基複合材料預浸材(Prepreg) 7
2.1.4 高分子基複合材料成型製程 7
2.2 複合材料力學 11
2.3 ALTAIR HYPERWORKS 12
2.3.1 Altair Multiscale Designer 模組 13
第 3 章 實驗材料與設備 14
3.1 實驗材料 14
3.1.1 碳纖維複合材料 14
3.1.2 試片成型與製作相關耗材 17
3.2 實驗設備 23
3.2.1 研究試片成型與製作相關設備 23
3.2.2 研究相關設備 30
第 4 章 實驗程序與方法 39
4.1 實驗流程 39
4.2 試片製備 40
4.2.1 纖維試片 40
4.2.2 樹脂試片 42
4.2.3 碳纖維疊層板試片 46
4.3 參數量測 50
4.4 有限元素分析 58
4.4.1 Multiscale Designer 模組 59
4.4.2 幾何建立 64
4.4.3 網格建立 65
4.4.4 材料設定 68
4.4.5 邊界條件設定 72
4.4.6 非線性設定 76
4.4.7 求解設定 80
4.4.8 求解 81
第 5 章 結果與討論 83
5.1 纖維與樹脂量測結果 83
5.1.1 纖維試驗結果 83
5.1.2 樹脂試驗結果 85
5.2 碳纖維疊層板量測結果 88
5.3 有限元素分析疊層板設定參數表 93
5.4 疊層板拉伸與有限元素分析 94
5.4.1 Normal X 座標軸補正 95
5.4.2 疊層板 0 度拉伸 99
5.4.3 疊層板 45 度拉伸 107
5.4.4 疊層板 90 度拉伸 115
5.4.5 誤差比較 123
第 6 章 結論與未來工作 126
6.1 結論 126
6.2 未來工作 127
第 7 章 參考文獻 128
[1] W. Zhang and J. Xu, “Advanced lightweight materials for Automobiles: A review,”
Mater. Des., vol. 221, p. 110994, Sep. 2022, doi: 10.1016/j.matdes.2022.110994.
[2] M. R. Wisnom, “Size effects in the testing of fibre-composite materials,” Compos.
Sci. Technol., vol. 59, no. 13, pp. 1937–1957, doi: 10.1016/S0266-
3538(99)00053-6.
[3] M. Monti, M. Palenzona, F. Fiorino, F. Baudach, A. Onnis, and A. Romeo,
“Design, manufacturing and FEA prediction of the mechanical behavior of a
hybrid-molded polycarbonate / continuous carbon fiber reinforced composite
component,” Compos. Part B Eng., vol. 238, p. 109891, Jun. 2022, doi:
10.1016/j.compositesb.2022.109891.
[4] C. Kishore, V. Bhatt, R. Jaiswal, S. Jugran, D. Rawat, and D. Verma, “Analysis of
carbon fiber reinforced with resin epoxy using FEM analysis,” Mater. Today Proc.,
vol. 46, pp. 11129–11139, Jan. 2021, doi: 10.1016/j.matpr.2021.02.334.
[5] C. Kishore, R. Jaiswal, V. Bhatt, S. Jugran, D. Rawat, and D. Verma, “Analysis of
glass fiber reinforced with epoxy resin using FEM,” Mater. Today Proc., vol. 46,
pp. 11120–11128, Jan. 2021, doi: 10.1016/j.matpr.2021.02.273.
[6] K. Yang, Y. M. Yue, W. P. Zhao, Y. Liang, L. Mei, and J. J. Xue, “Influence of
resin content on mechanical properties of composite laminates,” IOP Conf. Ser.
Mater. Sci. Eng., vol. 770, no. 1, p. 012009, Feb. 2020, doi: 10.1088/1757-
899X/770/1/012009.
[7] V. R. Tamakuwala, “Manufacturing of fiber reinforced polymer by using VARTM
process: A review,” Mater. Today Proc., vol. 44, pp. 987–993, Jan. 2021, doi:
10.1016/j.matpr.2020.11.102.
[8] B. Yenilmez, M. Senan, and E. Murat Sozer, “Variation of part thickness and
compaction pressure in vacuum infusion process,” Compos. Sci. Technol., vol. 69,
no. 11, pp. 1710–1719, Sep. 2009, doi: 10.1016/j.compscitech.2008.05.009.
[9] A. E. Engelbrecht-Wiggans and A. L. Forster, “Analysis of strain correction
procedures for single fiber tensile testing,” Compos. Part Appl. Sci. Manuf., vol.
167, p. 107411, Apr. 2023, doi: 10.1016/j.compositesa.2022.107411.
[10] Z. C. He, C. F. Qin, Y. B. Wang, S. H. Li, E. Li, and R. Q. Li, “Tensile properties
of helical carbon fiber tows,” Int. J. Mech. Sci., vol. 280, p. 109521, Oct. 2024,
doi: 10.1016/j.ijmecsci.2024.109521.
[11] 顧宜, 林金福, and 林尚明, 複合材料. 新文京開發出版股份有限公司, 2017.
[12] P. Bernard Potyrala, “Use of fibre reinforced polymeromposites in bridge
construction. State of the art in hybrid and all-composite structures,” Master thesis,
Universitat Politècnica de Catalunya, 2011. Accessed: May. 06, 2024. [Online].
129
Available: https://upcommons.upc.edu/handle/2099.1/12353
[13] J. Gotro, “Polymers in Electronic Packaging: Thermoset Network Formation,”
Polymer Innovation Blog. Accessed: Jun. 30, 2024. [Online]. Available:
https://polymerinnovationblog.com/polymers-electronic-packaging-thermosetnetwork-formation/
[14] 許明發, 柯澤豪, 劉顯光, and 郭文雄, 複合材料入門. 中華民國尖端材料科技
協會, 2015.
[15] P. Hubert, G. Fernlund, and A. Poursartip, “13 - Autoclave processing for
composites,” in Manufacturing Techniques for Polymer Matrix Composites
(PMCs), S. G. Advani and K.-T. Hsiao, Eds., in Woodhead Publishing Series in
Composites Science and Engineering. , Woodhead Publishing, 2012, pp. 414–434.
doi: 10.1533/9780857096258.3.414.
[16] “Rule-of-Mixture-of-composites.pdf.” Accessed: Jul. 27, 2024. [Online].
Available: https://crescent.education/wp-content/uploads/2021/03/Rule-ofMixture-of-composites.pdf
[17] 瑞其科技, “【Multiscale Designer 介紹】多尺度材料模型 CAE 模擬,” 瑞其科
技有限公司. Accessed: Apr. 30, 2024. [Online]. Available:
https://www.richintech.com/product/Multiscale_Designer/
[18] 福懋興業股份有限公司“pdocument_210916163744.pdf.” Accessed: Jun. 30,
2024.[Online].Available:https://www.fpc.com.tw/fpcwuploads/pdocument/pdocu
ment_210916163744.pdf
[19] D30 Committee, D3039 Test Method for Tensile Properties of Polymer Matrix
Composite Materials. doi: 10.1520/D3039_D3039M-14.
[20] D20 Committee, D695 Test Method for Compressive Properties of Rigid Plastics.
doi: 10.1520/D0695-15.
[21] J. Gu, J. Cao, Y. Qiang, Z. Zhao, and C. Zhang, “Rate-dependent tensile behavior
and statistic strength model for fiber tow composites,” Polym. Test., vol. 122, p.
108021, May 2023, doi: 10.1016/j.polymertesting.2023.108021.
[22] D20 Committee, D638 Test Method for Tensile Properties of Plastics. doi:
10.1520/D0638-14.
[23] D30 Committee, D3171 Test Methods for Constituent Content of Composite
Materials. doi: 10.1520/D3171-15.
[24] A. Mehar, G. M. S. Ahmed, G. P. Kumar, Md. A. Rahman, and M. A. Qayum,
“Experimental Investigation and FE Analysis of CFRP Composites,” Mater. Today
Proc., vol. 2, no. 4, pp. 2831–2839, Jan. 2015, doi: 10.1016/j.matpr.2015.07.297.
[25] 沈煜霏, “利用實驗與有限元素分析進行不同纖維方向之碳纖維疊層板受靜
態負載性能研究,” National Kaohsiung University of Science and Technology,
2023.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top