跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/24 05:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳祐瑜
研究生(外文):Wu, You-Yu
論文名稱:臺灣中部大雪山地區森林植群演替量化之分析
論文名稱(外文):Quantitative Analysis of the Forest Vegetation Succession of Dasyueshan in Central Taiwan
指導教授:王志強王志強引用關係
指導教授(外文):Wang, Chih-Chiang
口試委員:楊智凱葉慶龍
口試委員(外文):Yang, Chih-KaiYeh, Ching-Long
口試日期:2024-01-30
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:森林系所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:83
中文關鍵詞:臺灣中部大雪山地區植群量化演替
外文關鍵詞:Central TaiwanDasyueshanVegetationQuantificationSuccession
相關次數:
  • 被引用被引用:0
  • 點閱點閱:6
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對臺灣中部大雪山地區進行植群調查,並分析、量化森林植群演替狀態。共計分析130個木本植物社會樣區,可區分為十種植群型。透過林分指數評估演替狀況結果顯示,紅檜型及高山新木薑子-臺灣杜鵑型分別為70.60及52.79%,為演替中前期及演替中期;長尾栲型、香杉-長葉木薑子型及日本楨楠-臺灣山香圓型分別為36.23、36.21及29.28%,屬演替中後期;透過演替指數評估演替狀況,紅檜型為1.9,為演替中期,高山新木薑子-臺灣杜鵑型、長尾栲型、香杉-長葉木薑子型及日本楨楠-臺灣山香圓型數值皆為2.0以上,為演替中後期;透過耐陰性指數之評估,紅檜型及高山新木薑子-臺灣杜鵑型耐陰性指數約為50%,為演替中期;香杉-長葉木薑子型及日本楨楠-臺灣山香圓型耐陰性指數皆為70%以上,則屬演替中後期。上述三種指數具有類似之評估結果,然屬高山植群之玉山圓柏型、玉山圓柏-玉山杜鵑型、臺灣冷杉-玉山圓柏型、臺灣冷杉型、臺灣鐵杉-臺灣冷杉型屬於地文極盛相,其量化方式評估顯示為演替前期,應不適用上述方式來評估演替階段。本研究進一步利用耐陰性指數推估臺灣北部之插天山地區及南部之出雲山地區植群演替階段,兩地區演替階段多為中期,若僅以計算耐陰性指數評估演替階段,則三地區間差異不大。耐陰性指數可依各物種耐陰屬性計算其植群可能演替階段,此一方式運用於監測同一地區長期之植群演替狀況、崩塌地演化復育狀態、火燒後(經歷過干擾)二次演替的樣區監測,或在同一海拔梯度且環境差異小的地區,演替量化指數應為一實用之評估演替階段之方式。然而在部分極端環境狀態下,仍必須考量其他環境因子扮演之角色。
This study conducted a vegetation survey, analysis, and quantification of forest vegetation succession in the Dasyueshan region of central Taiwan. A total of 130 woody plant plots were sampled and analyzed, which can be divided into ten vegetation type. Using stand index to evaluate the succession status, Chamaecyparis formosensis type, Neolitsea acuminatissima- Rhododendron type are 70.60 and 52.79%. It is the early stage and the middle stage of succession. Castanopsis cuspidata var. carlesii type, Cunninghamia konishii-Litsea acuminate type, Machilus japonica-Turpinia formosana are 36.23, 36.21 and 29.28%, which are in the middle and late stages of succession. Using successional index to evaluate the succession status. Chamaecyparis formosensis type is 1.9, which should be the middle stage of succession. The values of Neolitsea acuminatissima-Rhododendron formosanum type, Castanopsis cuspidata var. carlesii type, Cunninghamia konishii-Litsea acuminate type, Machilus japonica-Turpinia formosana are all above 2, that they are in the late stages of succession. Using shade tolerance index to evaluate the succession status. Chamaecyparis formosensis type and Neolitsea acuminatissima-Rhododendron formosanum type are about 50%, which are in the middle stage of succession. Cunninghamia konishii-Litsea acuminate type and Machilus japonica-Turpinia formosana type are over 70%, indicating late successional stages. The three indices produced similar results. For high-altitude vegetation types like Juniperus squamata type, Juniperus squamata-Rhododendron pseudochrysanthum type, Abies kawakamii -Juniperus squamata type, Abies kawakamii type, Tsuga chinensis var. formosana-Abies kawakamii type, which exhibit topographic climax features, the quantitative evaluation suggested an early successional stage, challenging the applicability of the aforementioned assessment approach. The study further applied the shade tolerance index to estimate the vegetation succession stages in the Chatianshan area in northern Taiwan and the Chuyunshan area in southern Taiwan, indicating that both regions were mostly in a mid-successional stage. If only the shade tolerance index is used to assess succession stages, the differences between these three regions are not significant. The shade tolerance index can be used to estimate the potential succession stages of plant communities based on the shade tolerance of each species. This approach is useful for monitoring long-term vegetation succession, post-landslide rehabilitation, and monitoring plots after disturbances like wildfires, especially in areas with similar elevation gradients and minimal environmental differences. In such cases, succession quantification indices can be a practical means of assessing succession stages. However, in extreme environmental conditions, other environmental factors must still be considered.
摘要 I
Abstract II
謝誌 IV
目錄 VI
圖目錄 VIII
表目錄 IX
壹、前言 1
貳、文獻回顧 3
一、演替階段及極盛相 3
二、演替階段量化之研究 7
三、臺灣中部山區植群相關研究 18
參、材料與方法 20
一、研究範圍 20
二、地形地質 21
三、氣候 21
四、研究方法 23
肆、結果 33
一、植物社會分類 33
二、演替相關量化指數計算 38
伍、討論 47
一、各植群型演替階段評估 47
二、演替相關指數比較 50
三、不同地區植群資料演替階段之差異 51
陸、結論 54
引用文獻 56
附錄一、本研究樣區維管束植物名錄(附耐陰程度) 65
附錄二、本研究植物社會TWINSPAN表 71
王志強. 2013. 雪霸自然保護區植物資源調查(二)志樂溪流域植相及植群調查期末報告. 行政院農業委員會林務局東勢林區管理處,119頁.
王志強. 2020. 出雲山自然保留區植相及植群調查研究(3/3). 行政院農業委員會林務局屏東林區管理處,179頁.
王偉、邱清安、蔡尚悳、許俊凱、曾喜育、呂金誠. 2010. 雪山主峰沿線植物社會調查研究. 林業研究季刊 32(3): 15-34.
何春蓀. 1986. 臺灣地質概論. 經濟部中央地質調查所,250頁.
吳宇凱. 2016. 雪山聖稜線植群生態之研究. 國立屏東科技大學森林系所碩士論文,89頁.
呂金誠. 1999. 武陵地區雪山主峰線植群調查與植栽應用之研究. 內政部營建署雪霸國家公園管理處,90頁.
呂福原、歐辰雄、曾彥學、王秋美. 2017. 台灣樹木誌. 中華易之森林植物研究協會,1271頁.
李文瑜. 2023. 插天山自然保留區森林植群生態之研究. 國立屏東科技大學森林系所碩士論文,200頁.
林志銓、曾喜育、蔡尚悳、王志強、王偉、呂金誠. 2011. 雪山翠池玉山圓柏林植物社會之研究. 林業研究季刊 33(4): 33-50.
林渭訪、章樂民、柳榗. 1968. 臺灣之森林植物. 中華林學季刊 1(2): 1-77.
林鴻志. 2005. 雪霸國家公園植群分類之研究. 國立中興大學森林學系所碩士論文,109頁.
柳榗、章樂民. 1962. 鹿場大山森林植物生態之調查. 臺灣省林業試驗所研究報告85號,52頁.
柳榗. 1961. 南坑溪流域森林植物生態之調查. 大雪山林業公司、臺灣省林業試驗所合作調查報告,65頁.
柳榗. 1963. 小雪山高山草原生態之研究. 臺灣省林業試驗所研究報告92號,16頁.
郭礎嘉. 2009. 七家灣溪濱岸植群動態. 國立中興大學森林學系所碩士論文,127頁.
郭耀綸、林倉億、楊宜穎、陳海琳、楊智凱、余尚鈺. 2021. 臺灣原生440種木本植物的光合作用性狀及耐陰性. 台灣林業科學 36(3): 189-22.
黃增泉、王震哲、楊國禎、黃星凡、湯惟新. 1987. 雪山—大霸尖山地區植物生態資源先期調查研究報告. 內政部營建署,164頁.
楊勝任、李政賢. 2005. 台東海岸山脈新港山東側植群生態研究. 台灣林業科學 20(4): 341-353.
劉和義、劉以誠、趙偉村、江友中、謝漢君. 2015. 104年壽山國家自然公園植群分類及生態空間分布研究計畫. 內政部營建署,122頁.
劉棠瑞、蘇鴻傑. 1978. 大甲溪上游臺灣二葉松天然林之群落組成及相關環境因子之研究. 台大實驗林研究報告 121: 207-239.
劉棠瑞、蘇鴻傑. 1983. 森林植物生態學. 台灣商務印書館,462頁.
歐辰雄、呂福原. 1997. 觀霧地區植群生態調查及植栽應用之研究. 內政部營建署雪霸國家公園管理處,129頁.
歐辰雄. 1996. 雪見地區步道沿線植群調查研究. 內政部營建署雪霸國家公園管理處,139頁.
歐辰雄. 2002. 雪霸國家公園植群生態調查—大雪山地區. 內政部營建署雪霸國家公園管理處,63頁.
歐辰雄. 2004. 雪霸國家公園植群生態調查—大小劍地區. 內政部營建署雪霸國家公園管理處,116頁.
應紹舜. 1976a. 大霸尖山高山植物群之研究. 台大實驗林研究報告 118: 217-238.
應紹舜. 1976b. 雪山地區高山植群之研究. 中華林學季刊 9(3): 119-136.
謝長富. 2007. 建構臺灣植群群系分類架構之探討. 第五屆臺灣植群多樣性研討會論文集,1-10頁.
鍾安晴、郭耀綸、周富三、林文智、陳永修. 2022. 臺灣南部多納崩塌地演替初期不同耐陰性樹種組成及優勢度的變化. 台灣林業科學 37(1): 41-60.
顏士閔、邱祈榮、張康聰、林建融. 2007. 臺灣鐵杉全島分布模式建立與評估. 中華林學季刊 40(3): 377-390.
蘇鴻傑、劉靜榆. 2004. 論植相社會學之植群分類法. 國立臺灣大學生物資源暨農學院實驗林研究報告 18(3): 129-151.
蘇鴻傑. 1987. 森林生育地因子及其定量評估. 中華林學季刊20(1): 1-14.
蘇鴻傑. 1988. 臺灣國有林自然保護區植群生態之調查研究—雪山香柏保護區植群生態之研究. 台灣省農林廳林務局保育研究系列,123頁.
蘇鴻傑. 1996. 植群生態多數分析法之研究IV.植群分類法及相關環境因子之分析. 台灣省立博物館年刊 39: 249-268.
蘇鴻傑. 2014. 十年樹木百年樹林:圖說森林植群演替. 林業研究專訊 21(5): 1-8.
Ashton, M. S., C. V. S. Gunatilleke, B. M. P. Singhakumara, and I. A. U. N. Gunatilleke. 2001. Restoration pathways for rain forest in southwest Sri Lanka: a review of concepts and models. Forest ecology and management 154(3): 409-430.
Avalos, G. 2019. Shade tolerance within the context of the successional process in tropical rain forests. Rev Biol Trop 67(2): S53-77.
Boufford, D. E., C. F. Hsieh, T. C. Huang, C. S. Kuoh, H. Ohashi, C. I Peng, J.-L. Tsai and K. C. Yang .2003. Flora of Taiwan Edi. 2nd vol. 6 Department Botany, National Taiwan University. 343 pp.
Buell, M. F., A. N. Langford, D. W. Davidson, and L. F. Ohmann. 1966. The upland forest continuum in northern New Jersey. Ecology 47(3): 416-432.
Burns, N., and S. K. Grove. 2005. The Practice of Nursing Research, Conduct, Critique, and Utilization (5th Ed.). St Louis: Elsevier. 864 pp.
Caswell, H., and J. E. Cohen. 1991. Disturbance, interspecific interaction and diversity in metapopulations. Biological Journal of the Linnean Society, 42(1-2): 193-218.
Chang, L. M. 1963. Ecological studies of Chamaecyparis formosensis and Chamaecyparis taiwanesis mixed forest in Taiwan. Taiwan Forest Research Institute. 91:1-23.
Clements, F. E. 1916. Plant Succession: Analysis of the development of vegetation. Carnegie institution of Washington publication sciences 242: 1-512.
Connell, J. H., and R. O.Slatyer. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. The american naturalist 111(982): 1119-1144.
Cowles, H. C. 1911. The causes of vegetational cycles. Annals of the Association of American Geographers 1(1): 3-20.
Creswell, J. W. 2014. Research Design: Qualitative, Quantitative and Mixed Method Approaches (4th Ed.). Los Angeles: Sage Publications. 273 pp.
Curtis, J. T., and R. P. McIntosh. 1951. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32: 476-496.
Daubenmire, R. 1968. Plant communities: A textbook of plant syn ecology. Harper & Row, New York. 300 pp.
Drury, W., and I. Nisbet. 1973. Succession. Journal of the Arnold Arboretum 54: 331-368.
Egler, F. E. 1954. Vegetation science concepts I. Initial floristic composition, a factor in old-field vegetation development with 2 figs. Vegetatio Acta Geobot 4: 412-417.
Frelich, L. E., and P. B. Reich. 1999. Minireviews: neighborhood effects, disturbance severity, and community stability in forests. Ecosystems 2(2): 151-166.
Gauch, H. G. 1982. Noise Reduction By Eigenvector Ordinations. Ecology 63(6): 1643-1649.
Glenn-Lewin, D. C., R. K. Peet, and T. T. Veblen. 1993. Plant Succession: Theory and Prediction. Chapman & Hall, London. 352 pp.
Guariguata, M. R. 1990. Landslide disturbance and forest regeneration in the upper Luquillo Mountains of Puerto Rico. J Ecol 78: 814-32.
Hallik, L., Ü. Niinemets, and I. J. Wright. 2009. Are species shade and drought tolerance reflected in leaf‐level structural and functional differentiation in Northern Hemisphere temperate woody flora?. New Phytologist 184(1): 257-274.
Hunter, M. L. 1999. Maintaining biodiversity in forest ecosystems. Cambridge university press. Cambridge University Press, Cambridge. 698 pp.
Huston, M., and T. Smith. 1987. Plant succession: life history and competition. The American Naturalist 130(2): 168-198.
Johnstone, J. F., and F. S. Chapin. 2006. Fire interval effects on successional trajectory in boreal forests of northwest Canada. Ecosystems 9(2): 268-277.
Klein, R. M. 1990. Estrutura, composição florística, dinamismo e manejo da "Mata Atlântica" (Floresta ombrófila densa) no sul do Brasil. In: II Simpósio de Ecossistemas da Costa Sul e Sudeste Brasileira, Estrutura, Função e Manejo. 259-286 pp.
Lee, S. C. 1962. Taiwan red- and yellow-cypress and their conservation. Taiwania 8: 1-15.
Lepš, J. 1988. Mathematical modelling of ecological succesion—A review. Folia Geobotanica & Phytotaxonomica 23(1): 79-94.
Li, C. F., D. Zelený, M. Chytrý, M. Y. Chen, T. Y. Chen, C. R. Chiou, Y. J. Hsia, H. Y. Liu, S. Z. Yang, C. L. Yeh, J. C. Wang, C. F. Yu, Y. J. Lai, K. Guo and C. F. Hsieh. 2015. Chamaecyparis montane cloud forest in Taiwan: ecology and vegetation classification. Ecological Research 30(5): 771- 791.
Li, C. F., M. Chytrý, D. Zelený; M. Y. Chen, T. Y. Chen, C. R. Chiou, Y. J. Hsia, H. Y. Liu; S. Z. Yang, C. L. Yeh, J. C. Wang, C. F. Yu., Y. J. Lai, W. C. Chao, C. F. Hsieh and H. Bruelheide. 2013. Classification of Taiwan forest vegetation. Applied Vegetation Science 16(4): 698-719.
Lienard, J., I. Florescu, and N. Strigul. 2015. An appraisal of the classic forest succession paradigm with the shade tolerance index. PLoS One 10(2): e0117138.
Mantovani, W. 1993. Estrutura e dinâmica da floresta atlântica na Juréia, Iguape-SP. Tese de Livre-docência, Dissertação de Mestrado, IB USP, São Paulo. 126pp.
McCune, B., and G. Cottam. 1985. The successional status of a southern Wisconsin oak woods. Ecology 38: 29-37.
Mueller-Dombois, D., and H. Ellenberg. 1974. Vegetation types: a consideration of available methods and their suitability for various purposes. Island Ecosystems IRP 49: 1-47.
Nichols, G. E. 1917. The interpretation and application of certain terms and concepts in the ecological classification of plant com-munities. Plant World 20: 305-319, 341-353.
Nichols, G. E. 1923. A working basis for the ecological classification of plant communities. Ecology 4: 11-23, 154-179.
Niinemets, Ü., and F. Valladares. 2006. Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecological monographs 76(4): 521-547.
Parrish, J. A. D., and F. A. Bazzaz. 1982. Niche responses of early and late successional tree seedlings on three resource gradients. Bulletin of the Torrey Botanical Club 109(4): 451-456.
Petrere, M. J., L. C. Giordano, and P. D. J. Marco. 2004. Empirical diversity indices applied to forest communities in different succession stages. Brazilian Journal of Biology 64: 841-851.
Platt, W. J., and J. H. Connell. 2003. Natural disturbances and directional replacement of species. Ecological monographs 73(4): 507-522.
Pickett, S. T. A., S. L. Collins, and J. J. Armesto. 1987. Models, mechanisms and pathways of succession. The botanical review 53(3): 335-371.
Pickett, S. T. A., M. L. Cadenasso, and S. J. Meiners. 2013. Vegetation dynamic. Wiley, Hoboken. 107 pp.
Pielou, E. C. 1976. Mathematical Ecology. Wiley - Interscience, New York, 385 pp.
Saito, K. and H. Tachibana. 1969. Influences of human impact on the forest vegetation in Japan. I. Changes in forest vegetation and soil due to human impact in the Sendai area, Miyagi prefecture, northeast Japan. Ecological Review 17(3): 131-152.
Schulze, E. D., E. Beck, and K. Muller-Hohenstein. 2005. Plant Ecology. Springer, Berlin. 700 pp.
Shirley, H. L. 1943. Is tolerance the capacity to endure shade? Journal of Forestry 41(5): 339-345.
Spurr, S. H., and B. V. Barnes. 1973. Forest Ecology. 2nd ed. Ronald Press, New York. 571 pp.
Spurr, S. H., and B. V. Barnes. 1980. Forest Ecology. Wiley, New York. 352 pp.
Su, H. J. 1984. Studies on the climate and vegetation types of the natural forests in Taiwan (II) Latitudinal vegetation zones in relation to temperature gradient. Quarterly Journal of Chinese Forestry 17(4): 57-73.
Sukatschew, W. 1928 Plant communities: Introduction to phytosociology. (In Russian). Book, Leningrad-Moskow, USSR, 4 edition. 232 pp.
Tansley, A. G. 1935. The use and abuse of vegetational concepts and terms. Ecology 16: 184-307.
Valladares, F., and Ü. Niinemets. 2008. Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics 39: 237-257.
Walker, L. R. 1994. Effects of fern thickets on woodland development on landslides in Puerto Rico. J Veg Sci 5:525-32.
Walters, M. B., and P. B. Reich. 1996. Are shade tolerance, survival, and growth linked? Low light and nitrogen effects on hardwood seedlings. Ecology 77(3): 841-853.
White, P. S. 1979. Pattern, Process and natural disturbance in vegetation. The botanical review 45: 229-299
White, L., and R. B. Millar. 2014. Quantitative Approaches. In V. Wright-St Clair, D. Reid, S. Shaw, & J. Ramsbotham (Eds.), Evidence-based Health Practice. South Melbourne: Oxford University Press. 526 pp.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top