跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/22 16:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠綸
研究生(外文):Kuan-Lun Chen
論文名稱:薄層液相層析結合大氣質譜法於監控有機合成反應的進行
論文名稱(外文):Thin-Layer Chromatography Combined with Ambient Ionization Mass Spectrometry to Monitor Ongoing States of Organic Reactions
指導教授:謝建台
指導教授(外文):Jentaie Shiea
學位類別:碩士
校院名稱:國立中山大學
系所名稱:化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:112
語文別:中文
論文頁數:118
中文關鍵詞:薄層層析法大氣游離質譜法線導熱電噴灑游離法薄層層析質譜法反應監測
外文關鍵詞:Thin-layer chromatographyAmbient ionization mass spectrometryWire-Desorption Electrospray IonizationThin-Layer Chromatography/Mass SpectrometryReaction monitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:15
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
合成化學在各科學領域中扮演著重要角色,無論是生物化學、有機無機化學、材料化學或藥物合成等,都需要透過合成來獲得所需的產物。在這個領域中,產物的鑑定和反應機制的確認是至關重要。因此,科學家將各種量測儀器應用於合成化學領域,包括光譜儀、熱重分析儀等,其中質譜儀是最常用的工具之一。因為質譜儀能夠提供準確的分子量和結構信息。此外,通過樣品的分離純化,質譜儀還能發揮高靈敏度、高通量和準確分析的優勢,以更容易地獲取分析物的各種資訊。在眾多質譜檢測方法中,薄層層析質譜法(Thin-layer chromatography/mass spectrometry, TLC-MS)是一種常用的質譜分析方法。該方法利用薄層層析片對樣品進行簡單分離,然後通過質譜儀進行樣品分析。本研究結合了薄層層析法的直觀、簡單和低成本優勢,開發了一個簡單的分析流程,可用於有機反應的監測和分析,希望可以應用於大學、高中實驗課程中,該流程通過取樣管提取分析物,並進行有機溶劑萃取,然後進行質譜儀測試。本研究的第一部分利用線導熱電噴灑游離法(WD-ESI)對有機反應進行監測,探討起始物與產物之間的關係,並作為之後TLC-MS實驗結果的依據。在第二部分中,將薄層層析法與實驗結合,研究了各種涉及TLC的實驗條件並最佳化,制定了一套適合初學者也能操作的實驗流程,這套流程不但簡單且不需耗費太多時間就可以接觸到合成實驗、分離技術以及質譜儀操作的化學實驗技術,很適合應用於大學以下的實驗課程,加深學生於課堂中學習到的學科知識並能夠提升其學以致用的能力。
關鍵詞:薄層層析法、大氣游離質譜法、線導熱電噴灑游離法、薄層層析質譜法、反應監測
Synthetic chemistry plays a vital role in various scientific fields, including biochemistry, organic and inorganic chemistry, materials chemistry, and drug synthesis, among others, where the synthesis of desired products is essential. In this domain, the identification of products and confirmation of reaction mechanisms are of paramount importance. Therefore, scientists apply various measurement instruments in the field of synthetic chemistry, including spectrometers, thermal analyzers, and, notably, mass spectrometers, which are among the most commonly used tools. Mass spectrometry is particularly advantageous as it provides accurate molecular weights and structural information. Furthermore, through sample separation and purification, mass spectrometers enable high sensitivity, high throughput, and accurate analysis, facilitating the acquisition of diverse information about analytes. Among numerous mass spectrometric detection methods, Thin-Layer Chromatography/Mass Spectrometry (TLC-MS) stands as a prevalent analytical technique. This approach involves the simple separation of samples using thin-layer chromatography plates, followed by subsequent analysis using mass spectrometry. This study amalgamates the intuitive, straightforward, and cost-effective advantages of thin-layer chromatography with the development of a simplified analysis workflow, aimed at monitoring and analyzing organic reactions. The intention is to potentially apply this workflow in university and high school laboratory courses. The proposed process involves the extraction of analytes using sampling tubes, followed by organic solvent extraction, culminating in mass spectrometry testing. In the first part of this research, Wire-Desorption Electrospray Ionization (WD-ESI) is employed for monitoring organic reactions, investigating the relationship between reactants and products, and establishing a foundation for subsequent TLC-MS experimental outcomes. The second part of the study combines thin-layer chromatography with experimentation, delving into various experimental conditions involving TLC and optimizing them. This results in the formulation of a user-friendly experimental procedure suitable for beginners, offering an introduction to synthetic experimentation, separation techniques, and mass spectrometry operation within a relatively short timeframe. This approach is particularly fitting for laboratory courses at the university and pre-university levels, fostering deeper comprehension of subject matter among students and enhancing their ability to apply theoretical knowledge to practical scenarios.
Keywords:Thin-layer chromatography, Ambient ionization mass spectrometry, Wire-Desorption Electrospray Ionization, Thin-Layer Chromatography/Mass Spectrometry, Reaction monitor
目錄
論文審定書i
謝誌ii
摘要iv
目錄vii
圖目錄ix
表目錄xvi
第一章、緒論1
1、前言1
2、儀器分析在合成領域的應用3
2.1 分離技術3
2.2 結構分析7
2.3 熱分析法11
2.4 質譜法12
課程名稱:薄層層析 Thin layer chromatography31
課程名稱:層析法 Chromatography32
課程名稱:實驗九 Introduction of Chromatography; Thin Layer Chromatography33
3、論文目標35
第二章、實驗材料與方法36
1、 實驗材料36
2、儀器裝置與實驗參數37
3、實驗流程42
3.1 化學反應的合成步驟42
3.2 薄層層析質譜法實驗流程43
第三章、結果與討論44
1、 有機反應監測44
1.1 合成策略與實驗結果45
2、 薄層層析法55
2.1 展開溶劑對樣品點的探討55
2.2 點樣體積的探討60
3、 薄層層析質譜法對有機合成的應用63
3.1 取樣方法的比較63
3.2 產物鑑定與不純物分析74
3.3 反應監測的應用87
第四章、總結91
參考文獻92
(1) Jain, I.; Kumar, V.; Satyanarayana, T. Applicability of recombinant beta-xylosidase from the extremely thermophilic bacterium Geobacillus thermodenitrificans in synthesizing alkylxylosides. Bioresour. Technol. 2014, 170, 462-469, Article.
(2) Cardoso, A. L.; Lopes, S. M. M.; Grosso, C.; Pineiro, M.; Lemos, A.; Melo, T. One-Pot Synthetic Approach to Dipyrromethanes and Bis(indolyl)methanes via Nitrosoalkene Chemistry. J. Chem. Educ. 2021, 98 (8), 2661-2666, Article.
(3) Ouriques Brasileiro, I. L.; Madeira, V. S.; Lopes-Moriyama, A. L.; Rodrigues de Almeida Ramalho, M. L. Addition of g-C3N4 to ZnO and ZnFe2O4 to improve photocatalytic degradation of emerging organic pollutants. Ceramics International 2023, 49 (3), 4449-4459.
(4) Zhang, Z. M.; Liu, J. F.; Liu, R.; Sun, J. F.; Wei, G. H. Thin Layer Chromatography Coupled with Surface-Enhanced Raman Scattering as a Facile Method for On-Site Quantitative Monitoring of Chemical Reactions. Anal. Chem. 2014, 86 (15), 7286-7292, Article.
(5) He, L.; Hu, H.-C.; Chai, X.-S. A Real-Time Technique for Monitoring Cellulose Dissolution during the Xanthation Process. Industrial & Engineering Chemistry Research 2016, 55 (41), 10823-10828.
(6) Pang, Z.-F.; Xu, S.-Q.; Zhou, T.-Y.; Liang, R.-R.; Zhan, T.-G.; Zhao, X. Construction of Covalent Organic Frameworks Bearing Three Different Kinds of Pores through the Heterostructural Mixed Linker Strategy. J. Am. Chem. Soc. 2016, 138 (14), 4710-4713.
(7) Wang, C.-C.; Yi, W.-C.; Huang, Z.-L.; Chang, T.-W.; Chien, W.-C.; Tseng, Y.-Y.; Chen, B.-H.; Chuang, Y.-C.; Lee, G.-H. Synthesis, Structures, and Water Adsorption of Two Coordination Polymers Constructed by M(II) (M = Ni (1) and Zn (2)) with 1,3-Bis(4-Pyridyl)Propane (bpp) and 1,2,4,5-Benzenetetracarboxylate (BT4−) Ligands. Polymers 2020, 12 (10), 2222.
(8) Crivoi, D.-G.; Segarra, A. M.; Medina, F. Highly selective multifunctional nanohybrid catalysts for the one-pot synthesis of α,β-epoxy-chalcones. Journal of Catalysis 2016, 334, 120-128.
(9) Abella, C. A. M.; Benassi, M.; Santos, L. S.; Eberlin, M. N.; Coelho, F. The mechanism of Troger''s base formation probed by electrospray ionization mass spectrometry. J. Org. Chem. 2007, 72 (11), 4048-4054, Article.
(10) Wilson, I. D.; Poole, C. F. Planar chromatography – Current practice and future prospects. Journal of Chromatography B 2023, 1214, 123553.
(11) Wu, N.; Hall, A. O.; Phadke, S.; Zurcher, D. M.; Wallace, R. L.; Castaneda, C. A.; McNeil, A. J. Adapting Meaningful Learning Strategies for an Introductory Laboratory Course: Using Thin-Layer Chromatography to Monitor Reaction Progress. J. Chem. Educ. 2019, 96 (9), 1873-+, Article.
(12) Lin, S. Y.; Huang, M. Z.; Chang, H. C.; Shiea, J. Using electrospray-assisted laser desorption/ionization mass spectrometry to characterize organic compounds separated on thin-layer chromatography plates. Anal. Chem. 2007, 79 (22), 8789-8795, Article.
(13) Skoog, D. A. Principles of instrumental analysis; Fourth edition. Fort Worth : Saunders College Pub., [1992] ©1992, 1992.
(14) Ayala-Cabrera, J. F.; Montero, L.; Meckelmann, S. W.; Uteschil, F.; Schmitz, O. J. Review on atmospheric pressure ionization sources for gas chromatography-mass spectrometry. Part II: Current applications. Anal. Chim. Acta 2023, 1238, 340379.
(15) 台灣質譜學會. 質譜分析技術原理與應用; 全華圖書股份有限公司, 2015.
(16) Pavia, D.; Lampman, G.; Kriz, G.; Vyvyan, J. Introduction to spectroscopy/ Donald L. Pavia, Gary M. Lampman, George S. Kriz, and James R. Vyvyan; 2015.
(17) Wang, C.-C.; Yi, W.-C.; Huang, Z.-L.; Chien, W.-C.; Chuang, Y.-C.; Lee, G.-H. Reversible Water Ad-/Desorption Behavior of a 3D Polycatenation Network, [Zn(bpp)(BDC)]·1.5(H2O), Constructed by 2D Undulated Layered MOF. In Crystals, 2021; Vol. 11.
(18) Dorokhov, V. V.; Nyashina, G. S.; Strizhak, P. A. Thermogravimetric, kinetic study and gas emissions analysis of the thermal decomposition of waste-derived fuels. Journal of Environmental Sciences 2024, 137, 155-171.
(19) Yamashita, M.; Fenn, J. B. Electrospray ion source. Another variation on the free-jet theme. The Journal of Physical Chemistry 1984, 88 (20), 4451-4459.
(20) Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science 1989, 246 (4926), 64-71.
(21) Banerjee, S.; Mazumdar, S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. International Journal of Analytical Chemistry 2012, 2012, 282574.
(22) Konermann, L.; Metwally, H.; Duez, Q.; Peters, I. Charging and supercharging of proteins for mass spectrometry: recent insights into the mechanisms of electrospray ionization. Analyst 2019, 144 (21), 6157-6171, 10.1039/C9AN01201J.
(23) Carroll, D. I.; Dzidic, I.; Stillwell, R. N.; Haegele, K. D.; Horning, E. C. Atmospheric pressure ionization mass spectrometry. Corona discharge ion source for use in a liquid chromatograph-mass spectrometer-computer analytical system. Anal. Chem. 1975, 47 (14), 2369-2373.
(24) Molnar, B. T.; Shelley, J. T. MODERN PLASMA-BASED DESORPTION/IONIZATION: FROM ATOMS AND MOLECULES TO CHEMICAL SYNTHESIS. Mass Spectrometry Reviews 2021, 40 (5), 609-627.
(25) Chan, G. C. Y.; Shelley, J. T.; Wiley, J. S.; Engelhard, C.; Jackson, A. U.; Cooks, R. G.; Hieftje, G. M. Elucidation of Reaction Mechanisms Responsible for Afterglow and Reagent-Ion Formation in the Low-Temperature Plasma Probe Ambient Ionization Source. Anal. Chem. 2011, 83 (10), 3675-3686.
(26) Ayala-Cabrera, J. F.; Montero, L.; Meckelmann, S. W.; Uteschil, F.; Schmitz, O. J. Review on atmospheric pressure ionization sources for gas chromatography-mass spectrometry. Part I: Current ion source developments and improvements in ionization strategies. Anal. Chim. Acta 2023, 1238, 340353.
(27) Harper, J. D.; Charipar, N. A.; Mulligan, C. C.; Zhang, X.; Cooks, R. G.; Ouyang, Z. Low-Temperature Plasma Probe for Ambient Desorption Ionization. Anal. Chem. 2008, 80 (23), 9097-9104.
(28) Na, N.; Zhao, M.; Zhang, S.; Yang, C.; Zhang, X. Development of a dielectric barrier discharge ion source for ambient mass spectrometry. Journal of the American Society for Mass Spectrometry 2007, 18 (10), 1859-1862.
(29) Shelley, J. T.; Wiley, J. S.; Chan, G. C. Y.; Schilling, G. D.; Ray, S. J.; Hieftje, G. M. Characterization of direct-current atmospheric-pressure discharges useful for ambient desorption/ionization mass spectrometry. Journal of the American Society for Mass Spectrometry 2009, 20 (5), 837-844.
(30) Huang, M.-Z.; Cheng, S.-C.; Cho, Y.-T.; Shiea, J. Ambient ionization mass spectrometry: A tutorial. Anal. Chim. Acta 2011, 702 (1), 1-15.
(31) Takáts, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306 (5695), 471-473.
(32) Sandström, E.; Vettorazzo, C.; Mackay, C. L.; Troalen, L. G.; Hulme, A. N. Development and Application of Desorption Electrospray Ionization Mass Spectrometry for Historical Dye Analysis. Anal. Chem. 2023, 95 (11), 4846-4854.
(33) Feider, C. L.; Krieger, A.; DeHoog, R. J.; Eberlin, L. S. Ambient Ionization Mass Spectrometry: Recent Developments and Applications. Anal. Chem. 2019, 91 (7), 4266-4290.
(34) Tata, A.; Gribble, A.; Ventura, M.; Ganguly, M.; Bluemke, E.; Ginsberg, H. J.; Jaffray, D. A.; Ifa, D. R.; Vitkin, A.; Zarrine-Afsar, A. Wide-field tissue polarimetry allows efficient localized mass spectrometry imaging of biological tissues. Chemical Science 2016, 7 (3), 2162-2169, 10.1039/C5SC03782D.
(35) Cody, R. B.; Laramée, J. A.; Durst, H. D. Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Anal. Chem. 2005, 77 (8), 2297-2302.
(36) Monge, M. E.; Harris, G. A.; Dwivedi, P.; Fernández, F. M. Mass Spectrometry: Recent Advances in Direct Open Air Surface Sampling/Ionization. Chemical Reviews 2013, 113 (4), 2269-2308.
(37) Huang, M.-Z.; Zhou, C.-C.; Liu, D.-L.; Jhang, S.-S.; Cheng, S.-C.; Shiea, J. Rapid Characterization of Chemical Compounds in Liquid and Solid States Using Thermal Desorption Electrospray Ionization Mass Spectrometry. Anal. Chem. 2013, 85 (19), 8956-8963.
(38) Su, H.; Jiang, Z.-H.; Chiou, S.-F.; Shiea, J.; Wu, D.-C.; Tseng, S.-P.; Jain, S.-H.; Chang, C.-Y.; Lu, P.-L. Rapid Characterization of Bacterial Lipids with Ambient Ionization Mass Spectrometry for Species Differentiation. Molecules 2022, 27 (9), 2772.
(39) Su, H.; Huang, T. L.; Chi, C. T.; Cho, Y. T.; Lee, C. W.; Jeng, J.; Shiea, J. Molecular cartography of residue pesticides on grape surface in 3D by ambient ionization tandem mass spectrometry. J. Food Drug Anal. 2021, 29 (4), 751-763, Article.
(40) Jeng, J. Y.; Jiang, Z. H.; Cho, Y. T.; Su, H.; Lee, C. W.; Shiea, J. Obtaining molecular imagings of pesticide residues on strawberry surfaces with probe sampling followed by ambient ionization mass spectrometric analysis. J. Mass Spectrom. 2021, 56 (4), 9, Article.
(41) Wang, C. W.; Wu, D. W.; Chen, S. C.; Chen, H. C.; Lin, H. H.; Su, H.; Shiea, J. T.; Lin, W. Y.; Hung, C. H.; Kuo, C. H. Associations of dermal diethyl phthalate level with changes in lung function test value mediated by absolute eosinophil count: A panel study of adults in southern Taiwan. Environ. Res. 2021, 194, 8, Article.
(42) Su, H.; Huang, Y. J.; Huang, M. Z.; Lee, Y. T.; Chen, S. C.; Hung, C. H.; Kuo, C. H.; Wu, M. T.; Shiea, J. Using ambient mass spectrometry to explore the origins of phthalate contamination in a mass spectrometry laboratory. Anal. Chim. Acta 2020, 1105, 128-138, Article.
(43) Cho, Y. T.; Su, H.; Wu, C. Y.; Huang, T. L.; Jeng, J.; Huang, M. Z.; Wu, D. C.; Shiea, J. Molecular Mapping of Sebaceous Squalene by Ambient Mass Spectrometry. Anal. Chem. 2021, 93 (49), 16608-16617, Article.
(44) Hsu, Y. M.; Wu, C. F.; Huang, M. Z.; Shiea, J.; Pan, C. H.; Liu, C. C.; Chen, C. C.; Wang, Y. H.; Cheng, C. M.; Wu, M. T. Avatar-like body imaging of dermal exposure to melamine in factory workers analyzed by ambient mass spectrometry. Chemosphere 2022, 303, 8, Article.
(45) Su, H.; Huang, M.-Z.; Shiea, J.; Lee, C.-W. Thermal desorption ambient ionization mass spectrometry for emergency toxicology. Mass Spectrometry Reviews 2022, n/a (n/a), e21784.
(46) Lee, C.-W.; Su, H.; Shiea, J. Potential applications and challenges of novel ambient ionization mass spectrometric techniques in the emergency care for acute poisoning. TrAC Trends in Analytical Chemistry 2022, 157, 116742.
(47) Wang, C. H.; Su, H.; Chou, J. H.; Lin, J. Y.; Huang, M. Z.; Lee, C. W.; Shiea, J. Multiple solid phase microextraction combined with ambient mass spectrometry for rapid and sensitive detection of trace chemical compounds in aqueous solution. Anal. Chim. Acta 2020, 1107, 101-106, Article.
(48) Wang, Y.; Jin, Q.; Shiea, J.; Sun, W. Wire Desorption Combined with Electrospray Ionization Mass Spectrometry: Direct Analysis of Small Organic and Large Biological Compounds. Journal of the American Society for Mass Spectrometry 2020, 31 (8), 1656-1664.
(49) Bandelow, S.; Marx, G.; Schweikhard, L. The stability diagram of the digital ion trap. International Journal of Mass Spectrometry 2013, 336, 47-52.
(50) Kosuke Hosoi; Masaji Furuta; Hideharu Shichi; Shosei Yamauchi; Kiyoshi Watanabe; Makoto Hazama; Kei Kodera; Shinichi Iwamoto; Koichi Tanaka. The Development of Miniature MALDI Digital Ion Trap Mass Spectrometer. Shimadzu, Ed.; Kyoto, Japan, 2019.
(51) Cheng, S.-C.; Huang, M.-Z.; Shiea, J. Thin layer chromatography/mass spectrometry. Journal of Chromatography A 2011, 1218 (19), 2700-2711.
(52) Kawai, Y.; Miyoshi, M.; Moon, J.-H.; Terao, J. Detection of cholesteryl ester hydroperoxide isomers using gas chromatography–mass spectrometry combined with thin-layer chromatography blotting. Analytical Biochemistry 2007, 360 (1), 130-137.
(53) Ibrahim, H.; Caudron, E.; Kasselouri, A.; Prognon, P. Interest of Fluorescence Derivatization and Fluorescence Probe Assisted Post-column Detection of Phospholipids: A Short Review. Molecules 2010, 15 (1), 352-373.
(54) Engel, K. M.; Prabutzki, P.; Leopold, J.; Nimptsch, A.; Lemmnitzer, K.; Vos, D. R. N.; Hopf, C.; Schiller, J. A new update of MALDI-TOF mass spectrometry in lipid research. Progress in Lipid Research 2022, 86, 101145.
(55) Ghosh, P.; Krishna Reddy, M. M.; Ramteke, V. B.; Sashidhar Rao, B. Analysis and quantitation of diazepam in cream biscuits by high-performance thin-layer chromatography and its confirmation by mass spectrometry. Anal. Chim. Acta 2004, 508 (1), 31-35.
(56) Shiea, J.; Huang, M.-Z.; HSu, H.-J.; Lee, C.-Y.; Yuan, C.-H.; Beech, I.; Sunner, J. Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun. Mass Spectrom. 2005, 19 (24), 3701-3704.
(57) Cheng, S.-C.; Cheng, T.-L.; Chang, H.-C.; Shiea, J. Using Laser-Induced Acoustic Desorption/Electrospray Ionization Mass Spectrometry To Characterize Small Organic and Large Biological Compounds in the Solid State and in Solution Under Ambient Conditions. Anal. Chem. 2009, 81 (3), 868-874.
(58) Rizvi, W.; Khwaja, E.; Siddiqui, S.; Bhupathiraju, N.; Drain, C. M. Experimental Determination of Activation Energy of Nucleophilic Aromatic Substitution on Porphyrins. J. Chem. Educ. 2018, 95 (1), 164-168, Article.
(59) Gong, X.; Zhang, D.; Embile, I. B.; She, Y.; Shi, S.; Gamez, G. Low-Temperature Plasma Probe Mass Spectrometry for Analytes Separated on Thin-Layer Chromatography Plates: Direct vs Laser Assisted Desorption. Journal of the American Society for Mass Spectrometry 2020, 31 (9), 1981-1993.
(60) Jarne, C.; Membrado, L.; Savirón, M.; Vela, J.; Orduna, J.; Garriga, R.; Galbán, J.; Cebolla, V. L. Globotriaosylceramide-related biomarkers of fabry disease identified in plasma by high-performance thin-layer chromatography - densitometry- mass spectrometry. Journal of Chromatography A 2021, 1638, 461895.
(61) 佘瑞琳. 薄層層析 Thin layer chromatography. 2021. https://teaching.ch.ntu.edu.tw/gclab/ (accessed 2023 6/14).
(62) 佘瑞琳. 層析法 Chromatography. 2021. https://teaching.ch.ntu.edu.tw/gclab/lab-pres.html (accessed 2023 6/14).
(63) 東吳大學化學系. 實驗九 Introduction of Chromatography;Thin Layer Chromatography. 2021. https://web-ch.scu.edu.tw/chem/file/11470 (accessed 2023 6/14).
(64) 黃彥鈞. 以線導熱脫附電噴灑游離法應用於合成化學的反應監測. 國立中山大學, 高雄市, 2020. https://hdl.handle.net/11296/9qw64b.
(65) Perrin, C. L.; Chang, K.-L. The Complete Mechanism of an Aldol Condensation. The Journal of Organic Chemistry 2016, 81 (13), 5631-5635.
(66) He, J.; Qiang, Q.; Liu, S.; Song, K.; Zhou, X.; Guo, J.; Zhang, B.; Li, C. Upgrading of biomass-derived furanic compounds into high-quality fuels involving aldol condensation strategy. Fuel 2021, 306, 121765.
(67) Ishikawa, H.; Suzuki, T.; Hayashi, Y. High-Yielding Synthesis of the Anti-Influenza Neuramidase Inhibitor (−)-Oseltamivir by Three “One-Pot” Operations. Angewandte Chemie International Edition 2009, 48 (7), 1304-1307.
(68) Julia, S.; Masana, J.; Vega, J. C. SYNTHETIC ENZYMES - HIGHLY STEREOSELECTIVE EPOXIDATION OF CHALCONE IN A TRIPHASIC TOLUENE-WATER-POLY (S)-ALANINE SYSTEM. Angew. Chem.-Int. Edit. Engl. 1980, 19 (11), 929-931, Note.
(69) Tang, Z.; Xu, S.; Yin, N.; Yang, Y.; Deng, Q.; Shen, J.; Zhang, X.; Wang, T.; He, H.; Lin, X.; et al. Reaction Site Designation by Intramolecular Electric Field in Tröger''s-Base-Derived Conjugated Microporous Polymer for Near-Unity Selectivity of CO2 Photoconversion. Advanced Materials 2023, 35 (17), 2210693.
(70) Boeira, E. O.; Plá, C. B.; Rodembusch, F. S.; Moro, A. V. Suzuki Coupling in Tröger''s Bases: Overcoming Challenging Substrates through Aqueous Micellar Catalysis. ChemCatChem 2023, 15 (3), e202201355.
(71) Yang, Q.; Cai, Y. Y.; Zhu, Z. Y.; Sun, L.; Choo, Y. S. L.; Zhang, Q. G.; Zhu, A. M.; Liu, Q. L. Multiple Enhancement Effects of Crown Ether in Troger''s Base Polymers on the Performance of Anion Exchange Membranes. ACS Appl. Mater. Interfaces 2020, 12 (22), 24806-24816, Article.
(72) Abdulhamid, M. A. Tröger''s base-derived dianhydride as a promising contorted building block for polyimide-based membranes for gas separation. Separation and Purification Technology 2023, 310, 123208.
(73) Tröger, J. Ueber einige mittelst nascirenden Formaldehydes entstehende Basen; Dr. v. Metzger & Wittig, 1887.
(74) Didier, D.; Tylleman, B.; Lambert, N.; Vande Velde, C. M. L.; Blockhuys, F.; Collas, A.; Sergeyev, S. Functionalized analogues of Tröger''s base: scope and limitations of a general synthetic procedure and facile, predictable method for the separation of enantiomers. Tetrahedron 2008, 64 (27), 6252-6262.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top