跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/21 12:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游蕎鎂
研究生(外文):Chiao-Mei You
論文名稱:探討界面活性劑修飾之磁性生物炭作為複合型抗菌材料之抗菌活性
論文名稱(外文):Investigation of the Antimicrobial Activity of Magnetic Biochar Modified with Different Surfactants
指導教授:謝淑貞謝淑貞引用關係
指導教授(外文):Shuchen Hsieh
學位類別:碩士
校院名稱:國立中山大學
系所名稱:化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:112
語文別:中文
論文頁數:76
中文關鍵詞:磁性生物炭界面活性劑四氧化三鐵抗菌活性抗菌機制
外文關鍵詞:magnetic biocharsurfactant modifiedFe3O4antimicrobial activityantimicrobial mechanism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:33
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生物炭通常是利用來自於農畜業加工後所剩之殘渣,經過高溫碳化處理後獲得。科學家發現生物炭有相當高的比表面積,經過適當的純化及改質後,可應用於汙水中的有機汙染物吸附及作為有機氣體吸附劑。本團隊藉由生物炭具有高生物相容性這項優勢,開發出有效殺菌、便於回收的抗菌材料,同時有效保護水資源。實驗流程首先使用稻殼生物炭 (RBPs) 與四氧化三鐵 (Fe3O4) 結合形成磁性稻殼生物炭 (MRBPs) 。接著,以四種不同類型的界面活性劑(如:陽離子型、陰離子型、兩性離子型、非離子型)修飾到MRBPs上。接著,以大腸桿菌作為細菌病原體來探討不同界面活性劑修飾後MRBPs的抗菌活性。結果顯示,在四種不同類型的界面活性劑中,BS-12@MRBPs及DTAC@MRBPs有優異的的抗菌效果,在濃度1000 μg/mL 下的抑菌率分別達93.9 %、92.4 %。在相同條件下,SDS@MRBPs的抑菌率為71.1 %,LA@MRBPs則僅有24.5 %。希望藉此研究開發一項有助於清除廢水中細菌的方案,並提供過程中可能的抗菌機制,不僅能夠對環境更友善、資源永續,將水資源有更好的循環再利用。
Biochar is usually obtained from the residues of agricultural and livestock processing after high-temperature carbonization. Scientists have found that biochar has a high specific surface area and can be used as an adsorbent for organic pollutants in wastewater and as an organic gas adsorbent after appropriate purification and modification. The team took advantage of the high biocompatibility of biochar to develop an antibacterial material that is effective in killing bacteria, easy to recycle, and effective in protecting water resources. The experimental process began with the formation of magnetic rice husk biochar (MRBPs) by combining rice husk biochar (RBP) with ferric tetroxide (Fe3O4). Next, four different types of interfacial activators (e.g., cationic, anionic, amphoteric, and non-ionic) were used to modify the magnetic rice husk biochar. The antibacterial activity of the magnetic biochar was then investigated using Escherichia coli as the bacterial pathogen. The results demonstrate that among the four different types of surfactants, BS-12@MRBPs and DTAC@MRBPs showed relatively remarkable antibacterial effects, with antibacterial rates of 93.9 % and 92.4 %, respectively, at a concentration of 1000 μg/mL. Under the same conditions, SDS@MRBPs exhibited an inhibition rate of 71.1 %, while LA@MRBPs only showed an inhibition rate of 24.5 %. It is hoped that this research will develop a solution to help remove bacteria from wastewater that will be more environmentally friendly and allow for better recycling of water resources.
論文審定書 i
中文摘要 ii
Abstract iii
第1章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 生物炭的種類與特性 3
1-4 四氧化三鐵奈米粒子 (Magnetite, Fe3O4) 4
1-5 界面活性劑 5
1-6 細菌病原體 6
1-7 研究方法 7
第2章 儀器原理介紹 9
2-1 分光光度計 (Spectrophotometer) 9
2-2 衰減式全反射傅立葉轉換紅外線光譜儀 (Attenuated Total Reflectance Fourier transform infrared spectrometer, ATR-FTIR) 9
2-3 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 10
2-4 能量色散X射線譜 (Energy-dispersive X-ray spectroscopy, EDS) 12
2-5 接觸角量測儀 12
2-6 動態光散射粒徑暨電位分析儀 12
2-7 比表面積與孔隙度分析儀(Specific Surface Area and Porosimetry Analyzer,BET) 13
第3章 實驗部分 15
3-1 實驗藥品 15
3-2 細菌培養實驗材料 16
3-3 實驗步驟 18
3-3-1 製備磁性稻殼生物炭 18
3-3-2 界面活性劑修飾於磁性生物炭表面 18
3-3-3 大腸桿菌菌株培養實驗 19
3-3-4 抗菌實驗 19
3-3-5 抗菌活性分析 20
3-3-6 抗菌機制實驗 21
3-3-6-1 細菌細胞膜完整度測試 (Propidium Iodide Assay, PI Assay) 21
3-3-6-2 自由基清除能力 (2,2-Ddiphenyl-1-picrylhydrazyl Assay, DPPH Assay) 21
3-3-7 大腸桿菌表面官能基之ATR-FTIR分析 22
第4章 結果與討論 23
4-1 材料結構特徵分析 23
4-1-1 全反射傅立葉轉換紅外光譜分析 23
4-1-2 氮氣吸附實驗 27
4-1-3 穿透電子顯微鏡影像分析 29
4-1-4 以能量色散X射線譜分析材料元素分布 32
4-1-5 修飾界面活性劑前後的生物炭之親疏水性變化 38
4-1-6 抗菌劑在水溶液中的分散穩定性 40
4-2 抗菌活性分析 42
4-3 抗菌機制 44
4-3-1 細菌細胞膜完整度測試 (Propidium Iodide Assay) 44
4-3-2 自由基清除能力 (DPPH Assay) 47
4-4 材料重複抗菌測試 48
4-5 抗菌材料與大腸桿菌交互作用分析 50
第5章 結論 54
第6章 未來展望 56
第7章 參考文獻 57
(1) Africa, A. o. S. o. S. The 5th National Global Change Conference; Transformative Futures for Water Security Seminar. 2023.
(2) Soltani, F.; Javadi, S.; Roozbahani, A.; Massah Bavani, A. R.; Golmohammadi, G.; Berndtsson, R.; Ghordoyee Milan, S.; Maghsoudi, R. Assessing Climate Change Impact on Water Balance Components Using Integrated Groundwater–Surface Water Models (Case Study: Shazand Plain, Iran). Water 2023, 15 (4), 813.
(3) Manikandan, S.; Subbaiya, R.; Saravanan, M.; Ponraj, M.; Selvam, M.; Pugazhendhi, A. A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes. Chemosphere 2022, 289, 132867.
(4) Shahid, M. K.; Kashif, A.; Pathak, P.; Choi, Y.; Rout, P. R. Water reclamation, recycle, and reuse. In Clean Energy and Resource Recovery, Elsevier, 2022; pp 39-50.
(5) Al-Hazmi, H. E.; Mohammadi, A.; Hejna, A.; Majtacz, J.; Esmaeili, A.; Habibzadeh, S.; Saeb, M. R.; Badawi, M.; Lima, E. C.; Mąkinia, J. Wastewater treatment for reuse in agriculture: Prospects and challenges. Environmental Research 2023, 116711.
(6) Kumar, V.; Srinivas, G.; Wood, B.; Ramisetty, K.; Stewart, A.; Howard, C.; Brett, D. J. L.; Rodriguez-Reinoso, F. Characterization of adsorption site energies and heterogeneous surfaces of porous materials. Journal of Materials Chemistry A 2019, 7.
(7) Kim, J. S.; Kuk, E.; Yu, K. N.; Kim, J.-H.; Park, S. J.; Lee, H. J.; Kim, S. H.; Park, Y. K.; Park, Y. H.; Hwang, C.-Y. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, biology and medicine 2007, 3 (1), 95-101.
(8) Chen, N.-F.; Liao, Y.-H.; Lin, P.-Y.; Chen, W.-F.; Wen, Z.-H.; Hsieh, S. Investigation of the Characteristics and Antibacterial Activity of Polymer-Modified Copper Oxide Nanoparticles. International Journal of Molecular Sciences 2021, 22 (23), 12913.
(9) Siedenbiedel, F.; Tiller, J. C. Antimicrobial Polymers in Solution and on Surfaces: Overview and Functional Principles. Polymers 2012, 4 (1), 46-71.
(10) Falk, N. A. Surfactants as Antimicrobials: A Brief Overview of Microbial Interfacial Chemistry and Surfactant Antimicrobial Activity. J Surfactants Deterg 2019, 22 (5), 1119-1127.
(11) Gupta, A.; Mumtaz, S.; Li, C.-H.; Hussain, I.; Rotello, V. M. Combatting antibiotic-resistant bacteria using nanomaterials. Chemical Society Reviews 2019, 48 (2), 415-427.
(12) Inácio, Â. S.; Domingues, N. S.; Nunes, A.; Martins, P. T.; Moreno, M. J.; Estronca, L. M.; Fernandes, R.; Moreno, A. J. M.; Borrego, M. J.; Gomes, J. P.; et al. Quaternary ammonium surfactant structure determines selective toxicity towards bacteria: mechanisms of action and clinical implications in antibacterial prophylaxis. Journal of Antimicrobial Chemotherapy 2015, 71 (3), 641-654.
(13) Naseem, T.; Durrani, T. The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review. Environmental Chemistry and Ecotoxicology 2021, 3, 59-75.
(14) Jabbar, K. Q.; Barzinjy, A. A.; Hamad, S. M. Iron oxide nanoparticles: Preparation methods, functions, adsorption and coagulation/flocculation in wastewater treatment. Environmental Nanotechnology, Monitoring & Management 2022, 17, 100661.
(15) Sharma, P.; Vaiwala, R.; Parthasarathi, S.; Patil, N.; Verma, A.; Waskar, M.; Raut, J. S.; Basu, J. K.; Ayappa, K. G. Interactions of Surfactants with the Bacterial Cell Wall and Inner Membrane: Revealing the Link between Aggregation and Antimicrobial Activity. Langmuir 2022, 38 (50), 15714-15728.
(16) Chang, K.-H.; Lou, K.-R.; Ko, C.-H. Dataset of biomass waste of rice paddies and forest sectors supporting the assessment of the potential for bioenergy production in Taiwan. Data in Brief 2019, 27, 104613.
(17) Tsai, W.-T.; Lin, Y.-Q.; Huang, H.-J. Valorization of Rice Husk for the Production of Porous Biochar Materials. Fermentation 2021, 7 (2), 70.
(18) Wang, J.; Wang, S. Preparation, modification and environmental application of biochar: A review. Journal of Cleaner Production 2019, 227, 1002-1022.
(19) Singh Karam, D.; Nagabovanalli, P.; Sundara Rajoo, K.; Fauziah Ishak, C.; Abdu, A.; Rosli, Z.; Melissa Muharam, F.; Zulperi, D. An overview on the preparation of rice husk biochar, factors affecting its properties, and its agriculture application. Journal of the Saudi Society of Agricultural Sciences 2022, 21 (3), 149-159.
(20) Su, Y.; Liu, L.; Zhang, S.; Xu, D.; Du, H.; Cheng, Y.; Wang, Z.; Xiong, Y. A green route for pyrolysis poly-generation of typical high ash biomass, rice husk: Effects on simultaneous production of carbonic oxide-rich syngas, phenol-abundant bio-oil, high-adsorption porous carbon and amorphous silicon dioxide. Bioresource Technology 2020, 295, 122243.
(21) Wang, Y. J.; Lin, P. Y.; Hsieh, S. L.; Kirankumar, R.; Lin, H. Y.; Li, J. H.; Chen, Y. T.; Wu, H. M.; Hsieh, S. Utilizing Edible Agar as a Carrier for Dual Functional Doxorubicin-Fe(3)O(4) Nanotherapy Drugs. Materials (Basel) 2021, 14 (8). (22) Zhang, X.; Chen, S.; Wang, H.-M.; Hsieh, S.-L.; Wu, C.-H.; Chou, H.-H.; Hsieh, S. ROLE OF NÉEL AND BROWNIAN RELAXATION MECHANISMS FOR WATER-BASED Fe3O4 NANOPARTICLE FERROFLUIDS IN HYPERTHERMIA. Biomedical Engineering: Applications, Basis and Communications 2010, 22 (05), 393-399.
(23) Keshavarz, M. Coating of iron oxide nanoparticles with human and bovine serum albumins: A thermodynamic approach. Studies in Physical and Theoretical Chemistry 2011, 8, 85.
(24) Bai, Y.; Song, M.; Cui, Y.; Shi, C.; Wang, D.; Paoli, G. C.; Shi, X. A rapid method for the detection of foodborne pathogens by extraction of a trace amount of DNA from raw milk based on amino-modified silica-coated magnetic nanoparticles and polymerase chain reaction. Analytica Chimica Acta 2013, 787, 93-101. DOI: (25) Hu, X.; Nian, G.; Liang, X.; Wu, L.; Yin, T.; Lu, H.; Qu, S.; Yang, W. Adhesive Tough Magnetic Hydrogels with High Fe3O4 Content. ACS Applied Materials & Interfaces 2019, 11 (10), 10292-10300.
(26) Carlone, G. M.; Valadez, M. J.; Pickett, M. J. Methods for distinguishing gram-positive from gram-negative bacteria. Journal of Clinical microbiology 1982, 16 (6), 1157-1159.
(27) Ariyasu, S.; Too, P. C.; Mu, J.; Goh, C. C.; Ding, Y.; Tnay, Y. L.; Yeow, E. K. L.; Yang, L.; Ng, L. G.; Chiba, S.; et al. Glycopeptide antibiotic analogs for selective inactivation and two-photon imaging of vancomycin-resistant strains. Chemical Communications 2016, 52 (25), 4667-4670.
(28) Prabhu, Y. T.; Rao, K. V.; Kumari, B. S.; Kumar, V. S. S.; Pavani, T. Synthesis of Fe3O4 nanoparticles and its antibacterial application. International Nano Letters 2015, 5 (2), 85-92.
(29) Huang, Y.-F.; Wang, Y.-F.; Yan, X.-P. Amine-Functionalized Magnetic Nanoparticles for Rapid Capture and Removal of Bacterial Pathogens. Environmental Science & Technology 2010, 44 (20), 7908-7913.
(30) Salman, A.; Sharaha, U.; Rodriguez-Diaz, E.; Shufan, E.; Riesenberg, K.; Bigio, I. J.; Huleihel, M. Detection of antibiotic resistant Escherichia Coli bacteria using infrared microscopy and advanced multivariate analysis. Analyst 2017, 142 (12), 2136-2144.
(31) Grdadolnik, J. ATR-FTIR spectroscopy: Its advantage and limitations. Acta Chimica Slovenica 2002, 49 (3), 631-642.
(32) Glassford, S. E.; Byrne, B.; Kazarian, S. G. Recent applications of ATR FTIR spectroscopy and imaging to proteins. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 2013, 1834 (12), 2849-2858.
(33) Egerton, R.; Li, P.; Malac, M. Radiation damage in the TEM and SEM. Micron 2004, 35 (6), 399-409.
(34) Baruwati, B. Studies on the Synthesis, Characterization, Surface Modification and Application of Nanocrystalline Nickel Ferrite. 2023.
(35) Emelyanenko, A.; Ermolenko, N.; Boinovich, L. Contact angle and wetting hysteresis measurements by digital image processing of the drop on a vertical filament. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2004, 239 (1-3), 25-31.
(36) Erbil, H. Y.; McHale, G.; Newton, M. Drop evaporation on solid surfaces: constant contact angle mode. Langmuir 2002, 18 (7), 2636-2641.
(37) Xu, R.; Wu, C.; Xu, H. Particle size and zeta potential of carbon black in liquid media. Carbon 2007, 45 (14), 2806-2809.
(38) Alsharef, J.; Taha, M.; Khan, T. Physical dispersion of nanocarbons in composites – A review. Jurnal Teknologi 2017, 79.
(39) Mohd Omar, F.; Aziz, H.; Stoll, S. Nanoparticle Properties, Behavior, Fate in Aquatic Systems and Characterization Methods. Journal of Colloid Science and Biotechnology 2014, 3, 1-30.
(40) Jung, W. K.; Koo, H. C.; Kim, K. W.; Shin, S.; Kim, S. H.; Park, Y. H. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied and environmental microbiology 2008, 74 (7), 2171-2178.
(41) Balouiri, M.; Sadiki, M.; Ibnsouda, S. K. Methods for in vitro evaluating antimicrobial activity: A review. Journal of pharmaceutical analysis 2016, 6 (2), 71-79.
(42) Crowley, L. C.; Scott, A. P.; Marfell, B. J.; Boughaba, J. A.; Chojnowski, G.; Waterhouse, N. J. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry. Cold Spring Harb Protoc 2016, 2016 (7).
(43) Stiefel, P.; Schmidt-Emrich, S.; Maniura-Weber, K.; Ren, Q. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC microbiology 2015, 15, 1-9.
(44) Seixas, A. F.; Quendera, A. P.; Sousa, J. P.; Silva, A. F. Q.; Arraiano, C. M.; Andrade, J. M. Bacterial Response to Oxidative Stress and RNA Oxidation. Frontiers in Genetics 2022, 12, Mini Review.
(45) Vatansever, F.; de Melo, W. C.; Avci, P.; Vecchio, D.; Sadasivam, M.; Gupta, A.; Chandran, R.; Karimi, M.; Parizotto, N. A.; Yin, R.; et al. Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev 2013, 37 (6), 955-989.
(46) Lalitha, A.; Subbaiya, R.; Ponmurugan, P. Green synthesis of silver nanoparticles from leaf extract Azhadirachta indica and to study its anti-bacterial and antioxidant property. Int J Curr Microbiol App Sci 2013, 2 (6), 228-235.
(47) Trinh, P.-C.; Thao, L.-T.-T.; Ha, H.-T.-V.; Nguyen, T. DPPH-scavenging and antimicrobial activities of Asteraceae medicinal plants on uropathogenic bacteria. Evidence-Based Complementary and Alternative Medicine 2020, 2020.
(48) Nguyen, L.-T. T.; Thi Le, N.-H.; Thi Ta, H. K.; Dang Nguyen, K. Isolation of DNA from Arthrospira platensis and whole blood using magnetic nanoparticles (Fe3O4@OA and Fe3O4@OA@SiO2). Journal of Analytical Science and Technology 2022, 13 (1), 28.
(49) Eissa, D.; Hegab, R.; Abou-Shady, A.; Kotp, Y. Green synthesis of ZnO, MgO and SiO2 nanoparticles and its effect on irrigation water, soil properties, and Origanum majorana productivity. Scientific Reports 2022, 12.
(50) Chen, Y.; Liu, Y.; Liu, H.; Gao, Y. Preparation of Lauric Acid Modified High-Amylose Cornstarch by a Solvothermal Process and Its Pickering Emulsion. ACS Food Science & Technology 2021, 1 (5), 845-853.
(51) Soares, S.; Fernandes, T.; Trindade, T.; Daniel-da-Silva, A. L. Trimethyl Chitosan/Siloxane-Hybrid Coated Fe3O4 Nanoparticles for the Uptake of Sulfamethoxazole from Water. Molecules 2019, 24, 1958.
(52) Wang, Y.; Jia, X.; Zhang, Y. Study on Hydrolysis Properties and Mechanism of Poly(3-Methacrylamido Propyl Trimethyl Ammonium Chloride) Solution. Polymers 2022, 14 (14), 2811.
(53) Trinh, B.-S.; Le, P. T. K.; Werner, D.; Phuong, N. H.; Luu, T. L. Rice Husk Biochars Modified with Magnetized Iron Oxides and Nano Zero Valent Iron for Decolorization of Dyeing Wastewater. Processes 2019, 7 (10), 660.
(54) Calì, E.; Qi, J.; Preedy, O.; Chen, S.; Boldrin, D.; Branford, W. R.; Vandeperre, L.; Ryan, M. P. Functionalised magnetic nanoparticles for uranium adsorption with ultra-high capacity and selectivity. Journal of Materials Chemistry A 2018, 6 (7), 3063-3073.
(55) Samanta, A.; Wang, Q.; Shaw, S. K.; Ding, H. Roles of chemistry modification for laser textured metal alloys to achieve extreme surface wetting behaviors. Materials & Design 2020, 192, 108744.
(56) Kvítek, L.; Panáček, A.; Soukupová, J.; Kolář, M.; Večeřová, R.; Prucek, R.; Holecová, M.; Zbořil, R. Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs). The Journal of Physical Chemistry C 2008, 112 (15), 5825-5834.
(57) Amit; Ramana, E. Patents on Magnetoelectric Multiferroics and their Processing by Electrophoretic Deposition. Vol. 7; 2014; pp 109-130.
(58) Dengler, W. A.; Schulte, J.; Berger, D. P.; Mertelsmann, R.; Fiebig, H. H. Development of a propidium iodide fluorescence assay for proliferation and cytotoxicity assays. Anticancer Drugs 1995, 6 (4), 522-532.
(59) Lazar, G.; Ureche, D.; Ifrim, I.; Stamate, M.; Ureche, C.; Nedeff, V.; Nistor, I.-D.; Finaru, A.-L.; Iuliana, L. Effects of the environmental stress on two fish populations revealed by statistical and spectral analysis. Environmental Engineering and Management Journal 2012, 11, 109-124.
(60) Zhao, X.; Li, D.; Lu, Y.-H.; Rad, B.; Yan, C.; Bechtel, H. A.; Ashby, P. D.; Salmeron, M. B. In vitro investigation of protein assembly by combined microscopy and infrared spectroscopy at the nanometer scale. Proceedings of the National Academy of Sciences 2022, 119 (32), e2200019119.
(61) Mura, S.; Greppi, G.; Marongiu, M. L.; Roggero, P. P.; Ravindranath, S. P.; Mauer, L. J.; Schibeci, N.; Perria, F.; Piccinini, M.; Innocenzi, P.; et al. FTIR nanobiosensors for Escherichia coli detection. Beilstein Journal of Nanotechnology 2012, 3, 485-492. (62) Chen, C.; Jiang, C.; Tripp, C. P. Molecular dynamics of the interaction of anionic surfactants with liposomes. Colloids and Surfaces B: Biointerfaces 2013, 105, 173-179.
(63) Horn, A.; Jaiswal, J. K. Structural and signaling role of lipids in plasma membrane repair. Curr Top Membr 2019, 84, 67-98.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top