跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/15 01:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李盈瑩
研究生(外文):Ying-Ying Lee
論文名稱:利用單分子螢光技術分析蛋白質和DNA的交互作用及粒線體解旋酶的生物學特性
論文名稱(外文):Single-Molecule Fluorescence Technique Identified Protein-DNA Interaction and Characterized the Biological Properties of Mitochondrial Helicase
指導教授:范秀芳
指導教授(外文):Hsiu-Fang Fan
學位類別:碩士
校院名稱:國立中山大學
系所名稱:化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:112
語文別:中文
論文頁數:118
中文關鍵詞:單分子螢光技術蛋白質誘導螢光增強或淬滅螢光共振能量轉移RecAHDGF粒線體解旋酶
外文關鍵詞:single-molecule Fluorescence techniqueProtein Induced Fluorescence Enhance or QuenchingFluorescence Resonance Energy TransferRecAHDGFTwinkle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:31
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
螢光是研究生物物理和生物化學有力的工具,其可應用的範圍非常廣,螢光檢測的高靈敏性,可以對細胞內的分子進行測量和定位,也能夠對單一個分子進行檢測。單分子的螢光技術可以在複雜的樣品中同時偵測單一個分子,並具有良好的時間和空間解析度。本研究第一部分利用蛋白質誘導螢光強度增強或淬滅(Protein-induced Fluorescence Enhancement or Quenching, PIFE/PIFQ)的技術,觀察當蛋白質結合至修飾有螢光分子Cy3與DNA受質前後的螢光強度變化,更進一步利用擬合公式求得蛋白質與DNA的解離平衡常數。我們使用DNA同源重組修復時會和單股DNA結合形成核蛋白絲的RecA,觀察不同種類的RecA其C端結構域所帶電荷不同時和單雙股DNA的交互作用。我們結果發現當C端末端結構域所帶負電荷較少時,可以較穩定與DNA結合。另外,我們也使用肝癌衍生生長因子(HDGF)不同結構域或突變的情況下觀察和其特異性序列結合的SMYD1,以及相同長度但組成鹼基含量不同的DNA序列之間的交互作用,並觀察肝癌衍生生長因子辨識序列的能力,發現C140結構域具有調節HDGF序列特異性結合的功能。
第二部分實驗利用螢光共振能量轉移(Fluorescence Resonance Energy Transfer, FRET)技術,觀察粒線體基因組複製當中所需蛋白質——粒線體DNA解旋酶Twinkle解旋雙股DNA的過程。FRET技術可以觀察蛋白質、細胞膜等級的距離變化,因此實驗中設計修飾Cy3和Cy5螢光分子的DNA受質,透過DNA單股和雙股兩者軟硬度不同來觀察DNA解旋酶解旋單一個DNA分子前後兩者螢光分子之間空間上距離的變化,進一步計算解旋酶解旋DNA受質的速率,並且將Twinkle隨時間變化FRET數值軌跡圖進行分類,藉此觀察Twinkle解旋的行為模式。此外,實驗中也設計錯配的序列於間隔20個鹼基對的Cy3、Cy5螢光分子之間,觀察Twinkle是否會因為錯配的片段而改變其解旋速率和解旋行為。
Fluorescence is a sensitive and non-radioactive tool used in biophysics and biochemistry. There has been dramatic growth in the use of fluorescence for cellular and molecular imaging. Fluorescence detection can reveal the localization and interactions of intracellular molecules, sometimes at the level of single-molecule detection with good temporal and spatial resolution. In the first part of the study, the technique of protein-induced fluorescence enhancement or quenching (PIFE/PIFQ) was used to investigate interactions between protein and its DNA substrate labeled with Cy3 fluorophore. The dissociation equilibrium constant can be obtained by fitting bound fraction curve to binding model. RecA forms nucleoprotein filaments with single-stranded DNA during homologous recombination, which is an essential step for repairing DNA double-stranded breaks. The interactions between different RecA proteins with varying negative-charged residues in the C-terminal domain and single/double-stranded DNA was investigated here. We found that fewer negative-charged residues in the RecA C-terminal domain resulted in the formation of stable nucleoprotein filament. Hepatoma-derived growth factor (HDGF) has been reported that it can bind SMYD1 specifically. PIFQ was used to verify the sequence specificity of HDGF, PWWP and C140 sequentially, we found that C140 module can regulated the sequence-specific binding capability of HDGF on SMYD1.
In the second part, we used fluorescence resonance energy transfer (FRET) technique to investigated the DNA unwinding behaviors of mitochondrial DNA helicase Twinkle. A Cy3-Cy5 pair labeled substrate was used to probe distance change during Twinkle-mediated DNA unwinding process. The distance between the two fluorophores changed after helicase unwind dsDNA due to the change in persistent length of DNA substrate. The unwinding rate and behaviors of the helicase were analyzed. In addition, DNA substrate with consecutive mismatches were designed to examine whether the unwinding rate and behavior of Twinkle would be affected.
論文審定書 i
摘要 ii
Abstract iii
目錄 v
圖次 vii
表次 x
中英對照表 xi
第1章 緒論 1
1.1 螢光理論 1
1.2 蛋白質誘導螢光強度變化 2
1.3 FRET 螢光共振能量轉移 4
1.4 RecA 5
1.5 肝癌衍生生長因子(HDGF) 9
1.6 粒線體DNA(mitochondrial DNA) 14
1.7 研究動機 21
第2章 實驗方法與材料製備 23
2.1 實驗蛋白質樣品來源 23
2.2 去氧核醣核酸序列設計方式 23
2.3 螢光顯微鏡架設 27
2.4 聚乙二醇玻片製備 29
2.5 溶液除氧系統 31
2.6 蛋白質誘導螢光強度變化(PIFE/PIFQ)實驗流程 33
2.7 蛋白質誘導螢光強度變化(PIFE/PIFQ)實驗分析步驟 34
2.8 利用單分子實驗方法觀察Twinkle 解旋雙股DNA實驗流程 36
2.9 利用單分子實驗方法觀察Twinkle解旋雙股DNA實驗分析步驟 39
第3章 實驗結果-利用PIFE/PIFQ觀察蛋白質和DNA樣品的交互作用 43
3.1 利用PIFE觀察RecA和DNA樣品結合之情形 43
3.2 利用PIFQ觀察 HDGF和其他結構域和DNA序列結合之情形 48
第4章 實驗結果-利用FRET觀察粒線體解旋酶之行為 57
4.1 利用螢光共振能量轉移實驗確認系統可行性之分析 57
4.2 Twinkle 反應活性測試及動力學特性之結果 58
第5章 結論與未來展望 85
5.1 利用PIFE/PIFQ觀察蛋白質與DNA的交互作用 85
5.2 利用FRET觀察Twinkle解旋特性與過程 86
5.3 Twinkle 和其他參與粒線體DNA複製的蛋白質共同參與反應 95
參考文獻 97
1.Introduction to Fluorescence. In Principles of Fluorescence Spectroscopy, Lakowicz, J. R., Ed. Springer US: Boston, MA, 2006; pp 1-26.
2.Stennett, E. M.; Ciuba, M. A.; Lin, S.; Levitus, M., Demystifying PIFE: The Photophysics Behind the Protein-Induced Fluorescence Enhancement Phenomenon in Cy3. The journal of physical chemistry letters 2015, 6 (10), 1819-23.
3.Jia, K.; Wan, Y.; Xia, A.; Li, S.; Gong, F.; Yang, G., Characterization of photoinduced isomerization and intersystem crossing of the cyanine dye Cy3. The journal of physical chemistry. A 2007, 111 (9), 1593-7.
4.Ploetz, E.; Lerner, E.; Husada, F.; Roelfs, M.; Chung, S.; Hohlbein, J.; Weiss, S.; Cordes, T. J. S. r., Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers. 2016, 6 (1), 33257.
5.Aramendia, P. F.; Negri, R. M.; Roman, E. S. J. T. J. o. P. C., Temperature dependence of fluorescence and photoisomerization in symmetric carbocyanines. Influence of medium viscosity and molecular structure. 1994, 98 (12), 3165-3173.
6.Spiriti, J.; Binder, J. K.; Levitus, M.; Van Der Vaart, A. J. B. j., Cy3-DNA stacking interactions strongly depend on the identity of the terminal basepair. 2011, 100 (4), 1049-1057.
7.Ponterini, G.; Momicchioli, F. J. C. p., Trans-cis photoisomerization mechanism of carbocyanines: experimental check of theoretical models. 1991, 151 (1), 111-126.
8.Levitus, M.; Ranjit, S. J. Q. r. o. b., Cyanine dyes in biophysical research: the photophysics of polymethine fluorescent dyes in biomolecular environments. 2011, 44 (1), 123-151.
9.Harvey, B. J.; Perez, C.; Levitus, M. J. P.; Sciences, P., DNA sequence-dependent enhancement of Cy3 fluorescence. 2009, 8 (8), 1105-1110.
10.Rashid, F.; Raducanu, V.-S.; Zaher, M. S.; Tehseen, M.; Habuchi, S.; Hamdan, S. M. J. N. c., Initial state of DNA-Dye complex sets the stage for protein induced fluorescence modulation. 2019, 10 (1), 2104.
11.Berezin, M. Y.; Achilefu, S. J. C. r., Fluorescence lifetime measurements and biological imaging. 2010, 110 (5), 2641-2684.
12.Clegg, R. M. J. F. i. s.; microscopy, Fluorescence resonance energy transfer. 1996, 137, 179-251.
13.Förster, T. J. A. P., Intermolecular energy migration and fluroescence. 1948, 2, 55-75.
14.Ma, L.; Yang, F.; Zheng, J. J. J. o. m. s., Application of fluorescence resonance energy transfer in protein studies. 2014, 1077, 87-100.
15.Niehaus, J., Fluorescent Proteins 101: Introduction to FRET.
16.Singleton, M. R.; Dillingham, M. S.; Gaudier, M.; Kowalczykowski, S. C.; Wigley, D. B., Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature 2004, 432 (7014), 187-193.
17.Pugh, B. F.; Cox, M. M. J. J. o. B. C., Stable binding of recA protein to duplex DNA. Unraveling a paradox. 1987, 262 (3), 1326-1336.
18.Bianco, P., RecA Protein. 2018; pp 1-12.
19.Roca, A. I. J. P. N. A. R. M. B., RecA protein: structure, function, and role in recombinational DNA repair. 1997, 56, 129-223.
20.Lusetti, S. L.; Wood, E. A.; Fleming, C. D.; Modica, M. J.; Korth, J.; Abbott, L.; Dwyer, D. W.; Roca, A. I.; Inman, R. B.; Cox, M. M. J. J. o. B. C., C-terminal Deletions of the Escherichia coli RecA Protein: CHARACTERIZATION OF IN VIVO AND IN VITROEFFECTS. 2003, 278 (18), 16372-16380.
21.Bobst, E.; Bobst, A.; Perrino, F.; Meyer, R.; Rein, D. J. F. l., Variability in the nucleic acid binding site size and the amount of single-stranded DNA-binding protein in Escherichia coli. 1985, 181 (1), 133-137.
22.Horii, T.; Ozawa, N.; Ogawa, T.; Ogawa, H. J. J. o. m. b., Inhibitory effects of N-and C-terminal truncated Escherichia coli recA gene products on functions of the wild-type recA gene. 1992, 223 (1), 105-114.
23.Larminat, F.; Defais, M. J. M.; MGG, G. G., Modulation of the SOS response by truncated RecA proteins. 1989, 216, 106-112.
24.Lai, W.-A.; Kämpfer, P.; Arun, A.; Shen, F.-T.; Huber, B.; Rekha, P.; Young, C.-C. J. I. j. o. s.; microbiology, e., Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa L. 2006, 56 (4), 787-791.
25.Kim, J.-I.; Sharma, A. K.; Abbott, S. N.; Wood, E. A.; Dwyer, D. W.; Jambura, A.; Minton, K. W.; Inman, R. B.; Daly, M. J.; Cox, M. M. J. J. o. b., RecA Protein from the extremely radioresistant bacterium Deinococcus radiodurans: expression, purification, and characterization. 2002, 184 (6), 1649-1660.
26.Fan, H.-F.; Su, S.; Kuo, Y.-A.; Chen, C.-J. J. A. o., Influence of the C-terminal tail of RecA proteins from alkaline pH-resistant bacterium Deinococcus ficus. 2020, 5 (31), 19868-19876.
27.Balogh, J.; Victor III, D.; Asham, E. H.; Burroughs, S. G.; Boktour, M.; Saharia, A.; Li, X.; Ghobrial, R. M.; Monsour Jr, H. P. J. J. o. h. c., Hepatocellular carcinoma: a review. 2016, 41-53.
28.Craig, A. J.; Von Felden, J.; Garcia-Lezana, T.; Sarcognato, S.; Villanueva, A. J. N. r. G.; hepatology, Tumour evolution in hepatocellular carcinoma. 2020, 17 (3), 139-152.
29.Akinyemiju, T.; Abera, S.; Ahmed, M.; Alam, N.; Alemayohu, M. A.; Allen, C.; Al-Raddadi, R.; Alvis-Guzman, N.; Amoako, Y.; Artaman, A. J. J. o., The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the global burden of disease study 2015. 2017, 3 (12), 1683-1691.
30.Marrero, J. A.; Kulik, L. M.; Sirlin, C. B.; Zhu, A. X.; Finn, R. S.; Abecassis, M. M.; Roberts, L. R.; Heimbach, J. K. J. H., Diagnosis, S taging, and M anagement of H epatocellular C arcinoma: 2018 P ractice G uidance by the A merican A ssociation for the S tudy of L iver D iseases. 2018, 68 (2), 723-750.
31.Berzigotti, A.; Reig, M.; Abraldes, J. G.; Bosch, J.; Bruix, J. J. H., Portal hypertension and the outcome of surgery for hepatocellular carcinoma in compensated cirrhosis: a systematic review and meta‐analysis. 2015, 61 (2), 526-536.
32.Yang, J. D.; Larson, J. J.; Watt, K. D.; Allen, A. M.; Wiesner, R. H.; Gores, G. J.; Roberts, L. R.; Heimbach, J. A.; Leise, M. D. J. C. G.; Hepatology, Hepatocellular carcinoma is the most common indication for liver transplantation and placement on the waitlist in the United States. 2017, 15 (5), 767-775. e3.
33.Lencioni, R.; de Baere, T.; Soulen, M. C.; Rilling, W. S.; Geschwind, J. F. H. J. H., Lipiodol transarterial chemoembolization for hepatocellular carcinoma: a systematic review of efficacy and safety data. 2016, 64 (1), 106-116.
34.Jourdain, G.; Ngo-Giang-Huong, N.; Harrison, L.; Decker, L.; Khamduang, W.; Tierney, C.; Salvadori, N.; Cressey, T. R.; Sirirungsi, W.; Achalapong, J. J. N. E. J. o. M., Tenofovir versus placebo to prevent perinatal transmission of hepatitis B. 2018, 378 (10), 911-923.
35.Yang, J. D.; Hainaut, P.; Gores, G. J.; Amadou, A.; Plymoth, A.; Roberts, L. R. J. N. r. G.; hepatology, A global view of hepatocellular carcinoma: trends, risk, prevention and management. 2019, 16 (10), 589-604.
36.Nakamura, H.; Izumoto, Y.; Kambe, H.; Kuroda, T.; Mori, T.; Kawamura, K.; Yamamoto, H.; Kishimoto, T. J. J. o. B. C., Molecular cloning of complementary DNA for a novel human hepatoma-derived growth factor. Its homology with high mobility group-1 protein. 1994, 269 (40), 25143-25149.
37.Kishima, Y.; Yamamoto, H.; Izumoto, Y.; Yoshida, K.; Enomoto, H.; Yamamoto, M.; Kuroda, T.; Ito, H.; Yoshizaki, K.; Nakamura, H. J. J. o. B. C., Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. 2002, 277 (12), 10315-10322.
38.Ren, H.; Tang, X.; Lee, J. J.; Feng, L.; Everett, A. D.; Hong, W. K.; Khuri, F. R.; Mao, L. J. J. o. c. o., Expression of hepatoma-derived growth factor is a strong prognostic predictor for patients with early-stage non–small-cell lung cancer. 2004, 22 (16), 3230-3237.
39.Yoshida, K.; Tomita, Y.; Okuda, Y.; Yamamoto, S.; Enomoto, H.; Uyama, H.; Ito, H.; Hoshida, Y.; Aozasa, K.; Nagano, H. J. A. o. s. o., Hepatoma-derived growth factor is a novel prognostic factor for hepatocellular carcinoma. 2006, 13, 159-167.
40.Chen, S.-C.; Hu, T.-H.; Huang, C.-C.; Kung, M.-L.; Chu, T.-H.; Yi, L.-N.; Huang, S.-T.; Chan, H.-H.; Chuang, J.-H.; Liu, L.-F. J. O., Hepatoma-derived growth factor/nucleolin axis as a novel oncogenic pathway in liver carcinogenesis. 2015, 6 (18), 16253.
41.Hung, Y.-L.; Lee, H.-J.; Jiang, I.; Lin, S.-C.; Lo, W.-C.; Lin, Y.-J.; Sue, S.-C. J. B., The first residue of the PWWP motif modulates HATH domain binding, Stability, and Protein–Protein Interaction. 2015, 54 (26), 4063-4074.
42.Chen, L.-Y.; Huang, Y.-C.; Huang, S.-T.; Hsieh, Y.-C.; Guan, H.-H.; Chen, N.-C.; Chuankhayan, P.; Yoshimura, M.; Tai, M.-H.; Chen, C.-J. J. S. r., Domain swapping and SMYD1 interactions with the PWWP domain of human hepatoma-derived growth factor. 2018, 8 (1), 1-15.
43.Yang, J.; Everett, A. D. J. B. m. b., Hepatoma derived growth factor binds DNA through the N-terminal PWWP domain. 2007, 8, 1-9.
44.Enomoto, H.; Nakamura, H.; Nishikawa, H.; Nishiguchi, S.; Iijima, H. J. I. J. o. M. S., Hepatoma-derived growth factor: an overview and its role as a potential therapeutic target molecule for digestive malignancies. 2020, 21 (12), 4216.
45.Enomoto, H.; Nakamura, H.; Liu, W.; Nishiguchi, S. J. I. j. o. m. s., Hepatoma-derived growth factor: Its possible involvement in the progression of hepatocellular carcinoma. 2015, 16 (6), 14086-14097.
46.Stec, I.; Nagl, S. B.; van Ommen, G.-J. B.; den Dunnen, J. T. J. F. l., The PWWP domain: a potential protein–protein interaction domain in nuclear proteins influencing differentiation? 2000, 473 (1), 1-5.
47.Everett, A. D.; Lobe, D. R.; Matsumura, M. E.; Nakamura, H.; McNamara, C. A. J. T. J. o. c. i., Hepatoma-derived growth factor stimulates smooth muscle cell growth and is expressed in vascular development. 2000, 105 (5), 567-575.
48.Everett, A. D.; Yang, J.; Rahman, M.; Dulloor, P.; Brautigan, D. L. J. B. c. b., Mitotic phosphorylation activates hepatoma-derived growth factor as a mitogen. 2011, 12, 1-9.
49.Cooper, G. M.; Hausman, R. E.; Hausman, R. E., The cell: a molecular approach. ASM press Washington, DC: 2007; Vol. 4.
50.Atig, R.; Hsouna, S.; Beraud-Colomb, E.; Abdelhak, S. J. A. d. L. i. P. d. T., Mitochondrial DNA: properties and applications. 2009, 86 (1-4), 3-14.
51.Taanman, J.-W. J. B. e. B. A.-B., The mitochondrial genome: structure, transcription, translation and replication. 1999, 1410 (2), 103-123.
52.Wills, E. J. U. p., The powerhouse of the cell. Taylor & Francis: 1992; Vol. 16, pp iii-vi.
53.Falkenberg, M., Mitochondrial DNA replication in mammalian cells: overview of the pathway. Essays in Biochemistry 2018, 62 (3), 287-296.
54.Bogenhagen, D. F.; Clayton, D. A. J. T. i. b. s., The mitochondrial DNA replication bubble has not burst. 2003, 28 (7), 357-360.
55.Holt, I. J.; Lorimer, H. E.; Jacobs, H. T. J. C., Coupled leading-and lagging-strand synthesis of mammalian mitochondrial DNA. 2000, 100 (5), 515-524.
56.McKinney, E. A.; Oliveira, M. T. J. G.; biology, m., Replicating animal mitochondrial DNA. 2013, 36, 308-315.
57.Korhonen, J. A.; Pham, X. H.; Pellegrini, M.; Falkenberg, M. J. T. E. j., Reconstitution of a minimal mtDNA replisome in vitro. 2004, 23 (12), 2423-2429.
58.Falkenberg, M.; Larsson, N.-G.; Gustafsson, C. M. J. A. R. B., DNA replication and transcription in mammalian mitochondria. 2007, 76, 679-699.
59.Spelbrink, J. N.; Li, F.-Y.; Tiranti, V.; Nikali, K.; Yuan, Q.-P.; Tariq, M.; Wanrooij, S.; Garrido, N.; Comi, G.; Morandi, L. J. N. g., Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. 2001, 28 (3), 223-231.
60.Donmez, I.; Patel, S. S. J. N. a. r., Mechanisms of a ring shaped helicase. 2006, 34 (15), 4216-4224.
61.Korhonen, J. A.; Gaspari, M.; Falkenberg, M. J. J. o. B. C., TWINKLE has 5′→ 3′ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. 2003, 278 (49), 48627-48632.
62.Farge, G.; Holmlund, T.; Khvorostova, J.; Rofougaran, R.; Hofer, A.; Falkenberg, M. J. N. a. r., The N-terminal domain of TWINKLE contributes to single-stranded DNA binding and DNA helicase activities. 2008, 36 (2), 393-403.
63.Jemt, E.; Farge, G.; Bäckström, S.; Holmlund, T.; Gustafsson, C. M.; Falkenberg, M. J. N. a. r., The mitochondrial DNA helicase TWINKLE can assemble on a closed circular template and support initiation of DNA synthesis. 2011, 39 (21), 9238-9249.
64.Patel, S. S.; Picha, K. M. J. A. r. o. b., Structure and function of hexameric helicases. 2000, 69 (1), 651-697.
65.Peter, B.; Falkenberg, M., TWINKLE and other human mitochondrial DNA helicases: Structure, function and disease. Genes 2020, 11.
66.Goffart, S.; Cooper, H. M.; Tyynismaa, H.; Wanrooij, S.; Suomalainen, A.; Spelbrink, J. N. J. H. m. g., Twinkle mutations associated with autosomal dominant progressive external ophthalmoplegia lead to impaired helicase function and in vivo mtDNA replication stalling. 2009, 18 (2), 328-340.
67.Riccio, A. A.; Bouvette, J.; Perera, L.; Longley, M. J.; Krahn, J. M.; Williams, J. G.; Dutcher, R.; Borgnia, M. J.; Copeland, W. C. J. P. o. t. N. A. o. S., Structural insight and characterization of human Twinkle helicase in mitochondrial disease. 2022, 119 (32), e2207459119.
68.Jeong, Y.-J.; Levin, M. K.; Patel, S. S. J. P. o. t. N. A. o. S., The DNA-unwinding mechanism of the ring helicase of bacteriophage T7. 2004, 101 (19), 7264-7269.
69.Ribeck, N.; Kaplan, D. L.; Bruck, I.; Saleh, O. A. J. B. j., DnaB helicase activity is modulated by DNA geometry and force. 2010, 99 (7), 2170-2179.
70.Lionnet, T.; Spiering, M. M.; Benkovic, S. J.; Bensimon, D.; Croquette, V. J. P. o. t. N. A. o. S., Real-time observation of bacteriophage T4 gp41 helicase reveals an unwinding mechanism. 2007, 104 (50), 19790-19795.
71.Lu, C.-H.; Chang, T.-T.; Cho, C.-C.; Lin, H.-C.; Li, H.-W. J. S. r., Stable nuclei of nucleoprotein filament and high ssDNA binding affinity contribute to enhanced RecA E38K recombinase activity. 2017, 7 (1), 1-12.
72.Korhonen, J. A.; Gaspari, M.; Falkenberg, M., TWINKLE Has 5'' -> 3'' DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. The Journal of biological chemistry 2003, 278 (49), 48627-32.
73.Hermanson, G. T., Bioconjugate techniques. Academic press: 2013.
74.Cordes, T.; Vogelsang, J.; Tinnefeld, P. J. J. o. t. A. C. S., On the mechanism of Trolox as antiblinking and antibleaching reagent. 2009, 131 (14), 5018-5019.
75.Dinda, S.; Sarkar, S.; Das, P. K. J. C. C., Glucose oxidase mediated targeted cancer-starving therapy by biotinylated self-assembled vesicles. 2018, 54 (71), 9929-9932.
76.Sheppard, C. J. E. o. M. O., Microscopy overview. Elsevier, Oxford: 2004; Vol. 3, pp 61-68.
77.Roy, R.; Hohng, S.; Ha, T. J. N. m., A practical guide to single-molecule FRET. 2008, 5 (6), 507-516.
78.Eggler, A. L.; Lusetti, S. L.; Cox, M. M. J. J. o. B. C., The C terminus of the Escherichia coli RecA protein modulates the DNA binding competition with single-stranded DNA-binding protein. 2003, 278 (18), 16389-16396.
79.Laguri, C.; Duband-Goulet, I.; Friedrich, N.; Axt, M.; Belin, P.; Callebaut, I.; Gilquin, B.; Zinn-Justin, S.; Couprie, J. J. B., Human mismatch repair protein MSH6 contains a PWWP domain that targets double stranded DNA. 2008, 47 (23), 6199-6207.
80.Kaddoum, L.; Magdeleine, E.; Waldo, G. S.; Joly, E.; Cabantous, S. J. B., One-step split GFP staining for sensitive protein detection and localization in mammalian cells. 2010, 49 (4), 727-736.
81.Tian, W.; Yan, P.; Xu, N.; Chakravorty, A.; Liefke, R.; Xi, Q.; Wang, Z. J. N. a. r., The HRP3 PWWP domain recognizes the minor groove of double-stranded DNA and recruits HRP3 to chromatin. 2019, 47 (10), 5436-5448.
82.Murphy, M.; Rasnik, I.; Cheng, W.; Lohman, T. M.; Ha, T. J. B. j., Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. 2004, 86 (4), 2530-2537.
83.Cifra, P.; Benková, Z.; Bleha, T. J. P. C. C. P., Persistence length of DNA molecules confined in nanochannels. 2010, 12 (31), 8934-8942.
84.Lee, G.; Yoo, J.; Leslie, B. J.; Ha, T. J. N. c. b., Single-molecule analysis reveals three phases of DNA degradation by an exonuclease. 2011, 7 (6), 367-374.
85.Modrich, P. J. A. r. o. b., DNA mismatch correction. 1987, 56 (1), 435-466.
86.Kunz, C.; Saito, Y.; Schär, P. J. C.; sciences, m. l., DNA Repair in mammalian cells: Mismatched repair: variations on a theme. 2009, 66, 1021-1038.
87.Kolodner, R. D. J. T. i. b. s., Mismatch repair: mechanisms and relationship to cancer susceptibility. 1995, 20 (10), 397-401.
88.Kunkel, T. A.; Erie, D. A. J. A. R. B., DNA mismatch repair. 2005, 74, 681-710.
89.Fan, H.-F.; Su, S. J. B. J., The regulation mechanism of the C-terminus of RecA proteins during DNA strand-exchange process. 2021, 120 (15), 3166-3179.
90.Rajala, N.; Gerhold, J. M.; Martinsson, P.; Klymov, A.; Spelbrink, J. N. J. N. a. r., Replication factors transiently associate with mtDNA at the mitochondrial inner membrane to facilitate replication. 2013, 42 (2), 952-967.
91.Copeland, W. C. J. C. r. i. b.; biology, m., Defects in mitochondrial DNA replication and human disease. 2012, 47 (1), 64-74.
92.Itsathitphaisarn, O.; Wing, R. A.; Eliason, W. K.; Wang, J.; Steitz, T. A. J. C., The hexameric helicase DnaB adopts a nonplanar conformation during translocation. 2012, 151 (2), 267-277.
93.Gao, Y.; Yang, W. J. C. o. i. s. b., Different mechanisms for translocation by monomeric and hexameric helicases. 2020, 61, 25-32.
94.Sen, D.; Nandakumar, D.; Tang, G.-Q.; Patel, S. S. J. J. o. B. C., Human mitochondrial DNA helicase TWINKLE is both an unwinding and annealing helicase. 2012, 287 (18), 14545-14556.
95.Matson, S. W.; Richardson, C. J. J. o. B. C., Nucleotide-dependent binding of the gene 4 protein of bacteriophage T7 to single-stranded DNA. 1985, 260 (4), 2281-2287.
96.Sen, D.; Patel, G.; Patel, S. S. J. N. a. r., Homologous DNA strand exchange activity of the human mitochondrial DNA helicase TWINKLE. 2016, 44 (9), 4200-4210.
97.Kaur, P.; Longley, M. J.; Pan, H.; Wang, W.; Countryman, P.; Wang, H.; Copeland, W. C. J. J. o. B. C., Single-molecule level structural dynamics of DNA unwinding by human mitochondrial Twinkle helicase. 2020, 295 (17), 5564-5576.
98.Khan, I.; Crouch, J. D.; Bharti, S. K.; Sommers, J. A.; Carney, S. M.; Yakubovskaya, E.; Garcia-Diaz, M.; Trakselis, M. A.; Brosh, R. M. J. J. o. B. C., Biochemical characterization of the human mitochondrial replicative Twinkle helicase: substrate specificity, DNA branch migration, and ability to overcome blockades to DNA unwinding. 2016, 291 (27), 14324-14339.
99.Garcia, P. L.; Liu, Y.; Jiricny, J.; West, S. C.; Janscak, P. J. T. E. j., Human RECQ5β, a protein with DNA helicase and strand‐annealing activities in a single polypeptide. 2004, 23 (14), 2882-2891.
100.Cheok, C. F.; Wu, L.; Garcia, P. L.; Janscak, P.; Hickson, I. D. J. N. a. r., The Bloom''s syndrome helicase promotes the annealing of complementary single-stranded DNA. 2005, 33 (12), 3932-3941.
101.Machwe, A.; Xiao, L.; Groden, J.; Matson, S. W.; Orren, D. K. J. J. o. B. C., RecQ family members combine strand pairing and unwinding activities to catalyze strand exchange. 2005, 280 (24), 23397-23407.
102.Pohjoismäki, J. L.; Goffart, S.; Tyynismaa, H.; Willcox, S.; Ide, T.; Kang, D.; Suomalainen, A.; Karhunen, P. J.; Griffith, J. D.; Holt, I. J. J. J. o. B. C., Human heart mitochondrial DNA is organized in complex catenated networks containing abundant four-way junctions and replication forks. 2009, 284 (32), 21446-21457.
103.Muddana, H. S.; Sengupta, S.; Sen, A.; Butler, P. J. J. a. p. a., Enhanced brightness and photostability of cyanine dyes by supramolecular containment. 2014.
104.Li, G.-M. J. C. r., Mechanisms and functions of DNA mismatch repair. 2008, 18 (1), 85-98.
105.Muftuoglu, M.; Mori, M. P.; de Souza-Pinto, N. C. J. M., Formation and repair of oxidative damage in the mitochondrial DNA. 2014, 17, 164-181.
106.Hamdan, S. M.; Richardson, C. C. J. A. r. o. b., Motors, switches, and contacts in the replisome. 2009, 78, 205-243.
107.Ciesielski, G. L.; Oliveira, M. T.; Kaguni, L. S. J. T. E., Animal mitochondrial DNA replication. 2016, 39, 255-292.
108.Kaguni, L. S. J. A. r. o. b., DNA polymerase γ, the mitochondrial replicase. 2004, 73 (1), 293-320.
109.Stano, N. M.; Jeong, Y.-J.; Donmez, I.; Tummalapalli, P.; Levin, M. K.; Patel, S. S. J. N., DNA synthesis provides the driving force to accelerate DNA unwinding by a helicase. 2005, 435 (7040), 370-373.
電子全文 電子全文(網際網路公開日期:20260809)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top