|
(1) Rappold, T. A.; Lackner, K. S. Large scale disposal of waste sulfur: From sulfide fuels to sulfate sequestration. Energy., 2010, 35, 1368-1380. DOI: 10.1016/j.energy.2009.11.022.
(2) Chung, W. J.; Griebel, J. J.; Kim, E. T.; Yoon, H.; Simmonds, A. G.; Ji, H. J.; Dirlam, P. T.; Glass, R. S.; Wie, J. J.; Nguyen, N. A.; et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem., 2013, 5, 518-524. DOI: 10.1038/nchem.1624.
(3) Eder, M. L.; Call, C. B.; Jenkins, C. L. Utilizing Reclaimed Petroleum Waste to Synthesize Water-Soluble Polysulfides for Selective Heavy Metal Binding and Detection. ACS Appl. Polym. Mater., 2022, 4, 1110-1116. DOI: 10.1021/acsapm.1c01536.
(4) Simmonds, A. G.; Griebel, J. J.; Park, J.; Kim, K. R.; Chung, W. J.; Oleshko, V. P.; Kim, J.; Kim, E. T.; Glass, R. S.; Soles, C. L.; et al. Inverse Vulcanization of Elemental Sulfur to Prepare Polymeric Electrode Materials for Li-S Batteries. ACS Macro Lett., 2014, 3, 229-232. DOI: 10.1021/mz400649w.
(5) Shalf, J. The future of computing beyond Moore''s Law. Philos. Trans. R. Soc., A, 2020, 378, 20190061. DOI: 10.1098/rsta.2019.0061.
(6) Wang, Y.; Huang, X.; Zhang, S.; Hou, Y. Sulfur Hosts against the Shuttle Effect. Small Methods, 2018, 2. DOI: 10.1002/smtd.201700345.
(7) Zeng, F.; Wang, W.; Wang, A.; Yuan, K.; Jin, Z.; Yang, Y. S. Multidimensional Polycation beta-Cyclodextrin Polymer as an Effective Aqueous Binder for High Sulfur Loading Cathode in Lithium-Sulfur Batteries. ACS Appl Mater. Interfaces, 2015, 7, 26257-26265. DOI: 10.1021/acsami.5b08537.
(8) Wang, Z.; Li, Y.; Ji, H.; Zhou, J.; Qian, T.; Yan, C. Unity of Opposites between Soluble and Insoluble Lithium Polysulfides in Lithium-Sulfur Batteries. Adv Mater, 2022, 34, e2203699. DOI: 10.1002/adma.202203699.
(9) Marino, C.; Debenedetti, A.; Fraisse, B.; Favier, F.; Monconduit, L. Activated-phosphorus as new electrode material for Li-ion batteries. Electrochem. Commun., 2011, 13, 346-349. DOI: 10.1016/j.elecom.2011.01.021. (10) Marino, C.; Boulet, L.; Gaveau, P.; Fraisse, B.; Monconduit, L. Nanoconfined phosphorus in mesoporous carbon as an electrode for Li-ion batteries: performance and mechanism. J. Mater. Chem., 2012, 22. DOI: 10.1039/c2jm34562e.
(11) Komaba, S.; Yabuuchi, N.; Ozeki, T.; Han, Z.-J.; Shimomura, K.; Yui, H.; Katayama, Y.; Miura, T. Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si–Graphite Composite Negative Electrodes in Li-Ion Batteries. J. Phys. Chem. C., 2011, 116, 1380-1389. DOI: 10.1021/jp204817h.
(12) Wang, J.; Yao, Z.; Monroe, C. W.; Yang, J.; Nuli, Y. Carbonyl‐β‐Cyclodextrin as a Novel Binder for Sulfur Composite Cathodes in Rechargeable Lithium Batteries. Adv. Funct. Mater., 2012, 23, 1194-1201. DOI: 10.1002/adfm.201201847.
(13) Wang, R.-Y.; Kang, H.; Park, M. J. High-Capacity, Sustainable Lithium–Sulfur Batteries Based on Multifunctional Polymer Binders. ACS Appl. Energy Mater., 2021, 4, 2696-2706. DOI: 10.1021/acsaem.0c03244.
(14) Li, Q.; Yang, H.; Xie, L.; Yang, J.; Nuli, Y.; Wang, J. Guar gum as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Chem comm, 2016, 52, 13479-13482. DOI: 10.1039/c6cc07250j.
(15) Chen, W.; Lei, T.; Qian, T.; Lv, W.; He, W.; Wu, C.; Liu, X.; Liu, J.; Chen, B.; Yan, C.; et al. A New Hydrophilic Binder Enabling Strongly Anchoring Polysulfides for High‐Performance Sulfur Electrodes in Lithium‐Sulfur Battery. Adv. Energy Mater., 2018, 8. DOI: 10.1002/aenm.201702889.
(16) Jung, Y.; Kim, S. New approaches to improve cycle life characteristics of lithium–sulfur cells. Electrochem. Commun., 2007, 9, 249-254. DOI: 10.1016/j.elecom.2006.09.013.
(17) Kim, S.; Cho, M.; Lee, Y. Saponin-containing multifunctional binder toward superior long-term cycling stability in Li–S batteries. J. Mater. Chem. A, 2020, 8, 10419-10425. DOI: 10.1039/d0ta03051a.
(18) Li, Q.; Liu, M.; Qin, X.; Wu, J.; Han, W.; Liang, G.; Zhou, D.; He, Y.-B.; Li, B.; Kang, F. Cyclized-polyacrylonitrile modified carbon nanofiber interlayers enabling strong trapping of polysulfides in lithium–sulfur batteries. J. Mater. Chem. A, 2016, 4, 12973-12980. DOI: 10.1039/c6ta03918a. (19) Pan, J.; Xu, G.; Ding, B.; Han, J.; Dou, H.; Zhang, X. Enhanced electrochemical performance of sulfur cathodes with a water-soluble binder. RSC Adv., 2015, 5, 13709-13714. DOI: 10.1039/c4ra15303k.
(20) Reddy, B. R. S.; Ahn, J.-H.; Ahn, H.-J.; Cho, G.-B.; Cho, K.-K. Low-Cost and Sustainable Cross-Linked Polyvinyl Alcohol–Tartaric Acid Composite Binder for High-Performance Lithium–Sulfur Batteries. ACS Appl. Energy Mater., 2023, 6, 6327-6337. DOI: 10.1021/acsaem.3c00896.
(21) Seh, Z. W.; Zhang, Q.; Li, W.; Zheng, G.; Yao, H.; Cui, Y. Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. Chem. Sci., 2013, 4. DOI: 10.1039/c3sc51476e.
(22) Yi, H.; Lan, T.; Yang, Y.; Lei, Z.; Zeng, H.; Tang, T.; Wang, C.; Deng, Y. Aqueous-processable polymer binder with strong mechanical and polysulfide-trapping properties for high performance of lithium–sulfur batteries. J. Mater. Chem. A, 2018, 6, 18660-18668. DOI: 10.1039/c8ta07194b.
(23) Yuan, J.-J.; Kong, Q.-R.; Huang, Z.; Song, Y.-Z.; Li, M.-Y.; Fang, L.-F.; Zhu, B.-K.; Li, H.-Y. A well-designed polymer as a three-in-one multifunctional binder for high-performance lithium–sulfur batteries. J. Mater. Chem. A, 2021, 9, 2970-2979. DOI: 10.1039/d0ta09489g.
(24) Ji, X.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater, 2009, 8, 500-506. DOI: 10.1038/nmat2460.
(25) Zhang, B.; Qin, X.; Li, G. R.; Gao, X. P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci., 2010, 3. DOI: 10.1039/c002639e.
(26) Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem., Int. Ed. Engl., 2011, 50, 5904-5908. DOI: 10.1002/anie.201100637.
(27) Zheng, G.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett., 2011, 11 , 4462-4467. DOI: 10.1021/nl2027684. (28) Sun, Z.; Xiao, M.; Wang, S.; Han, D.; Song, S.; Chen, G.; Meng, Y. Sulfur-rich polymeric materials with semi-interpenetrating network structure as a novel lithium–sulfur cathode. J. Mater. Chem. A, 2014, 2. DOI: 10.1039/c4ta00779d.
(29) Liu, X.; Lu, Y.; Zeng, Q.; Chen, P.; Li, Z.; Wen, X.; Wen, W.; Li, Z.; Zhang, L. Trapping of Polysulfides with Sulfur-Rich Poly Ionic Liquid Cathode Materials for Ultralong-Life Lithium-Sulfur Batteries. ChemSusChem, 2020, 13, 715-723. DOI: 10.1002/cssc.201903122.
(30) Wang, H.; Zhang, B.; Dop, R.; Yan, P.; Neale, A. R.; Hardwick, L. J.; Hasell, T. Oxygen heteroatom enhanced sulfur-rich polymers synthesized by inverse vulcanization for high-performance lithium-sulfur batteries. J. Power Sources, 2022, 545. DOI: 10.1016/j.jpowsour.2022.231921.
(31) Wang, Z.; Fan, Q.; Si, Y.; Guo, W.; Fu, Y. A Self-regulatory organosulfur copolymer cathode towards high performance lithium-sulfur batteries. Energy Storage Mater., 2023, 58, 222-231. DOI: 10.1016/j.ensm.2023.03.020.
(32) Dale, J. J.; Petcher, S.; Hasell, T. Dark Sulfur: Quantifying Unpolymerized Sulfur in Inverse Vulcanized Polymers. ACS Appl. Polym. Mater., 2022, 4, 3169-3173. DOI: 10.1021/acsapm.2c00304.
(33) Gomez, I.; Mecerreyes, D.; Blazquez, J. A.; Leonet, O.; Ben Youcef, H.; Li, C.; Gómez-Cámer, J. L.; Bondarchuk, O.; Rodriguez-Martinez, L. Inverse vulcanization of sulfur with divinylbenzene: Stable and easy processable cathode material for lithium-sulfur batteries. J. Power Sources, 2016, 329, 72-78. DOI: 10.1016/j.jpowsour.2016.08.046.
(34) Huang, J.; Li, Z.; Ge, H.; Zhang, J. Analytical Solution to the Impedance of Electrode/Electrolyte Interface in Lithium-Ion Batteries. J. Electrochem. Soc., 2015, 162, A7037-A7048. DOI: 10.1149/2.0081513jes.
|