跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 10:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃歆智
研究生(外文):Hsin-Chih Huang
論文名稱:含四級胺鹽之多硫聚合物的合成與鑑定並應用於鋰硫電池之研究
論文名稱(外文):The synthesis and characterization of quaternary ammonium salt-containing polysulfide materials for application in Lithium-Sulfur battery
指導教授:林渝亞
指導教授(外文):Lin,Yu-Ya
學位類別:碩士
校院名稱:國立中山大學
系所名稱:化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:85
中文關鍵詞:鋰硫電池穿梭效應極性官能基多硫共聚物反硫化反應固態電解質層
外文關鍵詞:Lithium-sulfur batteryshuttle effectpolar-functional grouppolysulfideinverse vulcanization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:7
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  隨著科技日新月異的進步,電晶體的數量急遽上升,但現今開發的材料能量密度卻沒有顯著的提升,因此擁有高理論能量密度的鋰硫電池 (1672 mAh/g),是近年來科學家們致力發展的替代能源之一,而鋰硫電池在經過電化學後產生的穿梭效應大大的影響了電池的性能,這也是科學家們致力想解決的問題。本研究預期利用極性官能基與多硫化鋰的親和力,使鋰硫電池充放電過程中所產生的長鏈多硫化鋰,可以被我們所設計的正極材料吸附,以抑制穿梭效應的發生。本篇研究設計並成功合成出具有極性官能基之四級胺鹽單體,並且利用反硫化反應成功合成出多硫聚合物,並利用其組裝成鈕扣電池,在0.2 C的電流下進行恆流充放電測試其循環壽命,首圈提供1167.5 mAh/g之放電比容量,待固態電解質層形成後仍提供771.4 mAh/g之放電比容量,形成鈍化膜之後循環95圈,仍提供670.1 mAh/g的放電比容量並提供86.9%的電容量維持率,並透過紫外-可見光光譜初步得知,此聚合物可以吸附多硫化鋰,並利用掃描式電子顯微鏡觀察經過充放電循環後之極片,利用四級胺鹽之聚合物製備的極片較元素硫製備之極片完整。
With the rapid advancements in technology, the number of transistors has increased dramatically. However, the energy density of the present storage device has not seen significant improvement. Therefore, high-energy-density lithium-sulfur batteries have become one of the alternative energy storage devices that scientists have been striving to develop in recent years. The shuttle effect, a phenomenon that occur in lithium-sulfur batteries after electrochemical reactions and result in poor cycling performance, is a problem that scientists are keen to solve. This research aims to utilize the affinity between polar functional groups and lithium polysulfides to adsorb the long-chain lithium polysulfides produced after the discharge in lithium-sulfur batteries into our designed materials, thereby inhibiting the shuttle effect. Accordingly, this study designed and successfully synthesized an ammonium salt crosslinker with polar functional groups and its polysulfide polymer by inverse vulcanization. This polymer was used to assemble coin cells, which were subjected to constant current charge-discharge tests at a current rate of 0.2 C to evaluate their cycle life. The experimental results showed an initial discharge cycle capacity of 1167.5 mAh/g. When the solid electrolyte interface (SEI) formed after 5 cycles, the discharge cycle capacity retained 771.4 mAh/g. After 95 charge-discharge cycles, the capacity still retained 670.1 mAh/g and the cell maintained 86.9% of the original capacity. Preliminary results obtained through UV-Vis spectroscopy indicated that the polymer synthesized can adsorb lithium polysulfides. Additionally, scanning electron microscopy was used to observe the surface of the electrode after charge-discharge cycles. Compared to elemental sulfur, the electrode from the polymer containing quaternary ammonium salts is more complete.
目錄
論文審定書………………………………………………………………………………i
謝誌……………………………………………………………………………………...ii
中文摘要………………………………………………………………………………..iii
Abstract……………………………………………………………………………….....iv
第一章 緒論 1
1.1 元素硫(Elemental sulfur) 與多硫共聚物(Polysulfides) 1
1.2 鋰硫電池 3
1.2.1 基本介紹 3
1.2.2 工作原理 4
1.2.3 穿梭效應(Shuttle Effect) 5
1.3 改善穿梭效應之方法/策略 6
1.3.1 黏著劑 6
1.3.2 正極之官能基修飾 9
1.3.3 空間封裝 10
1.3.4 多硫共聚物 12
1.4 研究動機與方法 16
第二章 結果與討論 17
2.1 交聯劑的合成 17
2.2 元素硫與交聯劑的共聚合反應 19
2.2.1 含胺之多硫共聚物之合成 19
2.2.2 含二乙烯基苯多硫聚合物之合成 20
2.3 聚合物之性質鑑定 22
2.3.1 多硫共聚物之熱重分析 22
2.3.2 多硫共聚物之傅立葉轉換紅外光譜(Fourier-transform infrared spectroscopy, FTIR) 23
2.3.3 掃描式電子顯微鏡(Scanning electron microscopy, SEM)及X射線能量散布分析儀(Energy-dispersive X-ray spectroscopy, EDS) 26
2.4 含胺多硫共聚物電池測試 26
2.4.1 含胺多硫共聚物的電池製備 26
2.4.2 循環伏安法 27
2.4.3 循環壽命測試 (Cycle life test) 32
2.5 倍率充放電測試 (C-rate test) 37
2.6 擴散係數 (Diffusion coefficient) 40
2.7 電化學阻抗圖譜((Electrochemical Impedance Spectroscopy, EIS) 45
2.8 多硫化鋰吸附測試 48
2.9 極片表面分析 50
2.9.1 掃描式電子顯微鏡(Scanning electron microscopy, SEM) 50
2.9.2 水接觸角測試 51
2.9.3 附著力測試 52
2.10 結論 53
第三章 參考文獻 54
第四章 實驗步驟 58
4.1 儀器設備 58
4.2 實驗藥品 62
4.3 合成步驟 63
4.3.1 Synthesis of triallyl ethanol ammonium bromide (3, TAEAB) 63
4.3.2 Synthesis of Poly(S-r-(DVB)) (7) 64
4.3.3 Synthesis of Poly(S-r-(DVB)-(TAEAB)) (8) 64
4.3.4 Synthesis of Poly(S-r-(TAEAB)) (6) 66
4.3.5 Synthesis of Poly(S-r-(TAA)) (9) 66
4.4 Electrode Preparation & Battery assembly 67
(1) Rappold, T. A.; Lackner, K. S. Large scale disposal of waste sulfur: From sulfide fuels to sulfate sequestration. Energy., 2010, 35, 1368-1380. DOI: 10.1016/j.energy.2009.11.022.

(2) Chung, W. J.; Griebel, J. J.; Kim, E. T.; Yoon, H.; Simmonds, A. G.; Ji, H. J.; Dirlam, P. T.; Glass, R. S.; Wie, J. J.; Nguyen, N. A.; et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem., 2013, 5, 518-524. DOI: 10.1038/nchem.1624.

(3) Eder, M. L.; Call, C. B.; Jenkins, C. L. Utilizing Reclaimed Petroleum Waste to Synthesize Water-Soluble Polysulfides for Selective Heavy Metal Binding and Detection. ACS Appl. Polym. Mater., 2022, 4, 1110-1116. DOI: 10.1021/acsapm.1c01536.

(4) Simmonds, A. G.; Griebel, J. J.; Park, J.; Kim, K. R.; Chung, W. J.; Oleshko, V. P.; Kim, J.; Kim, E. T.; Glass, R. S.; Soles, C. L.; et al. Inverse Vulcanization of Elemental Sulfur to Prepare Polymeric Electrode Materials for Li-S Batteries. ACS Macro Lett., 2014, 3, 229-232. DOI: 10.1021/mz400649w.

(5) Shalf, J. The future of computing beyond Moore''s Law. Philos. Trans. R. Soc., A, 2020, 378, 20190061. DOI: 10.1098/rsta.2019.0061.

(6) Wang, Y.; Huang, X.; Zhang, S.; Hou, Y. Sulfur Hosts against the Shuttle Effect. Small Methods, 2018, 2. DOI: 10.1002/smtd.201700345.

(7) Zeng, F.; Wang, W.; Wang, A.; Yuan, K.; Jin, Z.; Yang, Y. S. Multidimensional Polycation beta-Cyclodextrin Polymer as an Effective Aqueous Binder for High Sulfur Loading Cathode in Lithium-Sulfur Batteries. ACS Appl Mater. Interfaces, 2015, 7, 26257-26265. DOI: 10.1021/acsami.5b08537.

(8) Wang, Z.; Li, Y.; Ji, H.; Zhou, J.; Qian, T.; Yan, C. Unity of Opposites between Soluble and Insoluble Lithium Polysulfides in Lithium-Sulfur Batteries. Adv Mater, 2022, 34, e2203699. DOI: 10.1002/adma.202203699.

(9) Marino, C.; Debenedetti, A.; Fraisse, B.; Favier, F.; Monconduit, L. Activated-phosphorus as new electrode material for Li-ion batteries. Electrochem. Commun., 2011, 13, 346-349. DOI: 10.1016/j.elecom.2011.01.021.
(10) Marino, C.; Boulet, L.; Gaveau, P.; Fraisse, B.; Monconduit, L. Nanoconfined phosphorus in mesoporous carbon as an electrode for Li-ion batteries: performance and mechanism. J. Mater. Chem., 2012, 22. DOI: 10.1039/c2jm34562e.

(11) Komaba, S.; Yabuuchi, N.; Ozeki, T.; Han, Z.-J.; Shimomura, K.; Yui, H.; Katayama, Y.; Miura, T. Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si–Graphite Composite Negative Electrodes in Li-Ion Batteries. J. Phys. Chem. C., 2011, 116, 1380-1389. DOI: 10.1021/jp204817h.

(12) Wang, J.; Yao, Z.; Monroe, C. W.; Yang, J.; Nuli, Y. Carbonyl‐β‐Cyclodextrin as a Novel Binder for Sulfur Composite Cathodes in Rechargeable Lithium Batteries. Adv. Funct. Mater., 2012, 23, 1194-1201. DOI: 10.1002/adfm.201201847.

(13) Wang, R.-Y.; Kang, H.; Park, M. J. High-Capacity, Sustainable Lithium–Sulfur Batteries Based on Multifunctional Polymer Binders. ACS Appl. Energy Mater., 2021, 4, 2696-2706. DOI: 10.1021/acsaem.0c03244.

(14) Li, Q.; Yang, H.; Xie, L.; Yang, J.; Nuli, Y.; Wang, J. Guar gum as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Chem comm, 2016, 52, 13479-13482. DOI: 10.1039/c6cc07250j.

(15) Chen, W.; Lei, T.; Qian, T.; Lv, W.; He, W.; Wu, C.; Liu, X.; Liu, J.; Chen, B.; Yan, C.; et al. A New Hydrophilic Binder Enabling Strongly Anchoring Polysulfides for High‐Performance Sulfur Electrodes in Lithium‐Sulfur Battery. Adv. Energy Mater., 2018, 8. DOI: 10.1002/aenm.201702889.

(16) Jung, Y.; Kim, S. New approaches to improve cycle life characteristics of lithium–sulfur cells. Electrochem. Commun., 2007, 9, 249-254. DOI: 10.1016/j.elecom.2006.09.013.

(17) Kim, S.; Cho, M.; Lee, Y. Saponin-containing multifunctional binder toward superior long-term cycling stability in Li–S batteries. J. Mater. Chem. A, 2020, 8, 10419-10425. DOI: 10.1039/d0ta03051a.

(18) Li, Q.; Liu, M.; Qin, X.; Wu, J.; Han, W.; Liang, G.; Zhou, D.; He, Y.-B.; Li, B.; Kang, F. Cyclized-polyacrylonitrile modified carbon nanofiber interlayers enabling strong trapping of polysulfides in lithium–sulfur batteries. J. Mater. Chem. A, 2016, 4, 12973-12980. DOI: 10.1039/c6ta03918a.
(19) Pan, J.; Xu, G.; Ding, B.; Han, J.; Dou, H.; Zhang, X. Enhanced electrochemical performance of sulfur cathodes with a water-soluble binder. RSC Adv., 2015, 5, 13709-13714. DOI: 10.1039/c4ra15303k.

(20) Reddy, B. R. S.; Ahn, J.-H.; Ahn, H.-J.; Cho, G.-B.; Cho, K.-K. Low-Cost and Sustainable Cross-Linked Polyvinyl Alcohol–Tartaric Acid Composite Binder for High-Performance Lithium–Sulfur Batteries. ACS Appl. Energy Mater., 2023, 6, 6327-6337. DOI: 10.1021/acsaem.3c00896.

(21) Seh, Z. W.; Zhang, Q.; Li, W.; Zheng, G.; Yao, H.; Cui, Y. Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. Chem. Sci., 2013, 4. DOI: 10.1039/c3sc51476e.

(22) Yi, H.; Lan, T.; Yang, Y.; Lei, Z.; Zeng, H.; Tang, T.; Wang, C.; Deng, Y. Aqueous-processable polymer binder with strong mechanical and polysulfide-trapping properties for high performance of lithium–sulfur batteries. J. Mater. Chem. A, 2018, 6, 18660-18668. DOI: 10.1039/c8ta07194b.

(23) Yuan, J.-J.; Kong, Q.-R.; Huang, Z.; Song, Y.-Z.; Li, M.-Y.; Fang, L.-F.; Zhu, B.-K.; Li, H.-Y. A well-designed polymer as a three-in-one multifunctional binder for high-performance lithium–sulfur batteries. J. Mater. Chem. A, 2021, 9, 2970-2979. DOI: 10.1039/d0ta09489g.

(24) Ji, X.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater, 2009, 8, 500-506. DOI: 10.1038/nmat2460.

(25) Zhang, B.; Qin, X.; Li, G. R.; Gao, X. P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci., 2010, 3. DOI: 10.1039/c002639e.

(26) Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem., Int. Ed. Engl., 2011, 50, 5904-5908. DOI: 10.1002/anie.201100637.

(27) Zheng, G.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett., 2011, 11 , 4462-4467. DOI: 10.1021/nl2027684.
(28) Sun, Z.; Xiao, M.; Wang, S.; Han, D.; Song, S.; Chen, G.; Meng, Y. Sulfur-rich polymeric materials with semi-interpenetrating network structure as a novel lithium–sulfur cathode. J. Mater. Chem. A, 2014, 2. DOI: 10.1039/c4ta00779d.

(29) Liu, X.; Lu, Y.; Zeng, Q.; Chen, P.; Li, Z.; Wen, X.; Wen, W.; Li, Z.; Zhang, L. Trapping of Polysulfides with Sulfur-Rich Poly Ionic Liquid Cathode Materials for Ultralong-Life Lithium-Sulfur Batteries. ChemSusChem, 2020, 13, 715-723. DOI: 10.1002/cssc.201903122.

(30) Wang, H.; Zhang, B.; Dop, R.; Yan, P.; Neale, A. R.; Hardwick, L. J.; Hasell, T. Oxygen heteroatom enhanced sulfur-rich polymers synthesized by inverse vulcanization for high-performance lithium-sulfur batteries. J. Power Sources, 2022, 545. DOI: 10.1016/j.jpowsour.2022.231921.

(31) Wang, Z.; Fan, Q.; Si, Y.; Guo, W.; Fu, Y. A Self-regulatory organosulfur copolymer cathode towards high performance lithium-sulfur batteries. Energy Storage Mater., 2023, 58, 222-231. DOI: 10.1016/j.ensm.2023.03.020.

(32) Dale, J. J.; Petcher, S.; Hasell, T. Dark Sulfur: Quantifying Unpolymerized Sulfur in Inverse Vulcanized Polymers. ACS Appl. Polym. Mater., 2022, 4, 3169-3173. DOI: 10.1021/acsapm.2c00304.

(33) Gomez, I.; Mecerreyes, D.; Blazquez, J. A.; Leonet, O.; Ben Youcef, H.; Li, C.; Gómez-Cámer, J. L.; Bondarchuk, O.; Rodriguez-Martinez, L. Inverse vulcanization of sulfur with divinylbenzene: Stable and easy processable cathode material for lithium-sulfur batteries. J. Power Sources, 2016, 329, 72-78. DOI: 10.1016/j.jpowsour.2016.08.046.

(34) Huang, J.; Li, Z.; Ge, H.; Zhang, J. Analytical Solution to the Impedance of Electrode/Electrolyte Interface in Lithium-Ion Batteries. J. Electrochem. Soc., 2015, 162, A7037-A7048. DOI: 10.1149/2.0081513jes.
電子全文 電子全文(網際網路公開日期:20290814)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊