|
5.References
1.Lesher, G.Y., et al., 1,8-Naphthyridine Derivatives. A New Class of Chemotherapeutic Agents. J Med Pharm Chem, 1962. 5(5): p. 1063-5. 2.Idowu, T. and F. Schweizer, Ubiquitous Nature of Fluoroquinolones: The Oscillation between Antibacterial and Anticancer Activities. Antibiotics-Basel, 2017. 6(4): p. 26. 3.Domagala, J.M., Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J Antimicrob Chemother, 1994. 33(4): p. 685-706. 4.Wang, S., et al., Synthesis, antimycobacterial and antibacterial activity of ciprofloxacin derivatives containing a N-substituted benzyl moiety. Bioorg Med Chem Lett, 2012. 22(18): p. 5971-5. 5.Appelbaum, P.C. and P.A. Hunter, The fluoroquinolone antibacterials: past, present and future perspectives. Int J Antimicrob Agents, 2000. 16(1): p. 5-15. 6.Sharma, P.C., A. Jain, and S. Jain, Fluoroquinolone antibacterials: a review on chemistry, microbiology and therapeutic prospects. Acta Pol Pharm, 2009. 66(6): p. 587-604. 7.Ohmine, T., et al., Anti-HIV-1 activities and pharmacokinetics of new arylpiperazinyl fluoroquinolones. Bioorg Med Chem Lett, 2002. 12(5): p. 739-42. 8.Dalhoff, A., Antiviral, antifungal, and antiparasitic activities of fluoroquinolones optimized for treatment of bacterial infections: a puzzling paradox or a logical consequence of their mode of action? European Journal of Clinical Microbiology & Infectious Diseases, 2015. 34(4): p. 661-668. 9.Zhang, J.Z. and K.W. Ward, Besifloxacin, a novel fluoroquinolone antimicrobial agent, exhibits potent inhibition of pro-inflammatory cytokines in human THP-1 monocytes. J Antimicrob Chemother, 2008. 61(1): p. 111-6. 10.Yadav, V. and P. Talwar, Repositioning of fluoroquinolones from antibiotic to anti-cancer agents: An underestimated truth. Biomed Pharmacother, 2019. 111: p. 934-946. 11.Sharma, P.C., et al., Insights on fluoroquinolones in cancer therapy: chemistry and recent developments. Materials Today Chemistry, 2020. 17: p. 100296. 12.Emmerson, A.M. and A.M. Jones, The quinolones: decades of development and use. J Antimicrob Chemother, 2003. 51 Suppl 1(suppl_1): p. 13-20. 13.Scheld, W.M., Maintaining fluoroquinolone class efficacy: review of influencing factors. Emerg Infect Dis, 2003. 9(1): p. 1-9. 14.Mandell, L. and G. Tillotson, Safety of fluoroquinolones: An update. Can J Infect Dis, 2002. 13(1): p. 54-61. 15.Zhao, X., et al., DNA topoisomerase targets of the fluoroquinolones: a strategy for avoiding bacterial resistance. Proc Natl Acad Sci U S A, 1997. 94(25): p. 13991-6. 16.Koster, D.A., et al., Cellular strategies for regulating DNA supercoiling: a single-molecule perspective. Cell, 2010. 142(4): p. 519-30. 17.Aldred, K.J., R.J. Kerns, and N. Osheroff, Mechanism of quinolone action and resistance. Biochemistry, 2014. 53(10): p. 1565-74. 18.Sissi, C. and M. Palumbo, In front of and behind the replication fork: bacterial type IIA topoisomerases. Cell Mol Life Sci, 2010. 67(12): p. 2001-24. 19.Wang, X., R. Reyes-Lamothe, and D.J. Sherratt, Modulation of Escherichia coli sister chromosome cohesion by topoisomerase IV. Genes Dev, 2008. 22(17): p. 2426-33. 20.Reece, R.J. and A. Maxwell, DNA gyrase: structure and function. Crit Rev Biochem Mol Biol, 1991. 26(3-4): p. 335-75. 21.Gellert, M., et al., DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proceedings of the National Academy of Sciences, 1976. 73(11): p. 3872-3876. 22.Lampe, M.F. and K.F. Bott, Genetic and physical organization of the cloned gyrA and gyrB genes of Bacillus subtilis. J Bacteriol, 1985. 162(1): p. 78-84. 23.Kato, J., H. Suzuki, and H. Ikeda, Purification and characterization of DNA topoisomerase IV in Escherichia coli. J Biol Chem, 1992. 267(36): p. 25676-84. 24.Peng, H. and K.J. Marians, Escherichia coli topoisomerase IV. Purification, characterization, subunit structure, and subunit interactions. J Biol Chem, 1993. 268(32): p. 24481-90. 25.Drlica, K. and X. Zhao, DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev, 1997. 61(3): p. 377-92. 26.Laponogov, I., et al., Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nature Structural & Molecular Biology, 2009. 16(6): p. 667-669. 27.Bax, B.D., et al., Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature, 2010. 466(7309): p. 935-940. 28.Wohlkonig, A., et al., Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance. Nat Struct Mol Biol, 2010. 17(9): p. 1152-3. 29.Cabral, J.H.M., et al., Crystal structure of the breakage-reunion domain of DNA gyrase. Nature, 1997. 388(6645): p. 903-906. 30.Chen, C.R., et al., DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage. J Mol Biol, 1996. 258(4): p. 627-37. 31.Willmott, C.J., et al., The complex of DNA gyrase and quinolone drugs with DNA forms a barrier to transcription by RNA polymerase. J Mol Biol, 1994. 242(4): p. 351-63. 32.Kern, G., et al., Inhibition of Neisseria gonorrhoeae Type II Topoisomerases by the Novel Spiropyrimidinetrione AZD0914. J Biol Chem, 2015. 290(34): p. 20984-20994. 33.Kumari, R. and P. Jat, Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol, 2021. 9: p. 645593. 34.Malumbres, M. and M. Barbacid, Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer, 2009. 9(3): p. 153-66. 35.Vermeulen, K., D.R. Van Bockstaele, and Z.N. Berneman, The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif, 2003. 36(3): p. 131-49. 36.Aranha, O., D.P. Wood, Jr., and F.H. Sarkar, Ciprofloxacin mediated cell growth inhibition, S/G2-M cell cycle arrest, and apoptosis in a human transitional cell carcinoma of the bladder cell line. Clin Cancer Res, 2000. 6(3): p. 891-900. 37.Aranha, O., et al., Suppression of human prostate cancer cell growth by ciprofloxacin is associated with cell cycle arrest and apoptosis. International Journal of Oncology, 2003. 22(4): p. 787-794. 38.Beberok, A., et al., Lomefloxacin Induces Oxidative Stress and Apoptosis in COLO829 Melanoma Cells. Int J Mol Sci, 2017. 18(10): p. 2194. 39.Yu, M., R.S. Li, and J. Zhang, Repositioning of antibiotic levofloxacin as a mitochondrial biogenesis inhibitor to target breast cancer. Biochemical and Biophysical Research Communications, 2016. 471(4): p. 639-645. 40.Perucca, P., et al., Structure-activity relationship and role of oxygen in the potential antitumour activity of fluoroquinolones in human epithelial cancer cells. J Photochem Photobiol B, 2014. 140: p. 57-68. 41.Sousa, E., et al., Enoxacin inhibits growth of prostate cancer cells and effectively restores microRNA processing. Epigenetics, 2013. 8(5): p. 548-58. 42.Yadav, V., et al., Gatifloxacin induces S and G2-phase cell cycle arrest in pancreatic cancer cells via p21/p27/p53. PLoS One, 2012. 7(10): p. e47796. 43.Meier, P., A. Finch, and G. Evan, Apoptosis in development. Nature, 2000. 407(6805): p. 796-801. 44.Reed, J.C., Mechanisms of apoptosis. Am J Pathol, 2000. 157(5): p. 1415-30. 45.Fernald, K. and M. Kurokawa, Evading apoptosis in cancer. Trends Cell Biol, 2013. 23(12): p. 620-33. 46.Elmore, S., Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007. 35(4): p. 495-516. 47.Shi, Z.Y., et al., Piperonal ciprofloxacin hydrazone induces growth arrest and apoptosis of human hepatocarcinoma SMMC-7721 cells. Acta Pharmacol Sin, 2012. 33(2): p. 271-8. 48.Beberok, A., et al., Ciprofloxacin triggers the apoptosis of human triple-negative breast cancer MDA-MB-231 cells via the p53/Bax/Bcl-2 signaling pathway. Int J Oncol, 2018. 52(5): p. 1727-1737. 49.Smart, D.J., et al., Ciprofloxacin-induced G2 arrest and apoptosis in TK6 lymphoblastoid cells is not dependent on DNA double-strand break formation. Cancer biology & therapy, 2008. 7(1): p. 113-119. 50.Song, M.J., et al., Antibiotic drug levofloxacin inhibits proliferation and induces apoptosis of lung cancer cells through inducing mitochondrial dysfunction and oxidative damage. Biomedicine & Pharmacotherapy, 2016. 84: p. 1137-1143. 51.Yadav, V., et al., Moxifloxacin and ciprofloxacin induces S-phase arrest and augments apoptotic effects of cisplatin in human pancreatic cancer cells via ERK activation. BMC Cancer, 2015. 15(1): p. 581. 52.Beberok, A., et al., GSH depletion, mitochondrial membrane breakdown, caspase-3/7 activation and DNA fragmentation in U87MG glioblastoma cells: New insight into the mechanism of cytotoxicity induced by fluoroquinolones. European Journal of Pharmacology, 2018. 835: p. 94-107. 53.Nishi, K., et al., Enoxacin with UVA Irradiation Induces Apoptosis in the AsPC1 Human Pancreatic Cancer Cell Line Through ROS Generation. Anticancer Research, 2017. 37(11): p. 6211-6214. 54.Mondal, E., S. Das, and P. Mukherjee, Comparative evaluation of antiproliferative activity and induction of apoptosis by some fluoroquinolones on a human non-small cell lung cancer cell line in culture. Asian Pacific Journal of Cancer Prevention, 2004. 5(2): p. 196-204. 55.Nieto, M.A., et al., Emt: 2016. Cell, 2016. 166(1): p. 21-45. 56.Kalluri, R., EMT: When epithelial cells decide to become mesenchymal-like cells. Journal of Clinical Investigation, 2009. 119(6): p. 1417-1419. 57.Kan, J.Y., et al., Gemifloxacin, a fluoroquinolone antimicrobial drug, inhibits migration and invasion of human colon cancer cells. Biomed Res Int, 2013. 2013: p. 159786. 58.Chen, T.C., et al., Gemifloxacin inhibits migration and invasion and induces mesenchymal-epithelial transition in human breast adenocarcinoma cells. J Mol Med (Berl), 2014. 92(1): p. 53-64. 59.Huang, C.Y., et al., Fluoroquinolones Suppress TGF-beta and PMA-Induced MMP-9 Production in Cancer Cells: Implications in Repurposing Quinolone Antibiotics for Cancer Treatment. Int J Mol Sci, 2021. 22(21): p. 11602. 60.DeVita, V.T., Jr. and E. Chu, A history of cancer chemotherapy. Cancer Res, 2008. 68(21): p. 8643-53. 61.Nygren, P. and R. Larsson, Overview of the clinical efficacy of investigational anticancer drugs. J Intern Med, 2003. 253(1): p. 46-75. 62.Al-Lazikani, B., U. Banerji, and P. Workman, Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol, 2012. 30(7): p. 679-92. 63.El-Rayes, B.F., et al., Ciprofloxacin inhibits cell growth and synergises the effect of etoposide in hormone resistant prostate cancer cells. Int J Oncol, 2002. 21(1): p. 207-11. 64.Pinto, A.C., J.N. Moreira, and S. Simoes, Ciprofloxacin sensitizes hormone-refractory prostate cancer cell lines to doxorubicin and docetaxel treatment on a schedule-dependent manner. Cancer Chemother Pharmacol, 2009. 64(3): p. 445-54. 65.Arany, E., et al., Differential cellular synthesis of insulin-like growth factor binding protein-1 (IGFBP-1) and IGFBP-3 within human liver. The Journal of Clinical Endocrinology & Metabolism, 1994. 79(6): p. 1871-1876. 66.Buckbinder, L., et al., Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature, 1995. 377(6550): p. 646-649. 67.Sirotkin, A. and A. Makarevich, GH regulates secretory activity and apoptosis in cultured bovine granulosa cells through the activation of the cAMP/protein kinase A system. Journal of Endocrinology, 1999. 163(2): p. 317-328. 68.MARTIN, J.L. and R.C. BAXTRE, Transforming growth factor-β stimulates production of insulin-like growth factor-binding protein-3 by human skin fibroblasts. Endocrinology, 1991. 128(3): p. 1425-1433. 69.Hakuno, F. and S.-I. Takahashi, 40 years of IGF1: IGF1 receptor signaling pathways. Journal of molecular endocrinology, 2018. 61(1): p. T69-T86. 70.Imai, Y., et al., Substitutions for hydrophobic amino acids in the N-terminal domains of IGFBP-3 and-5 markedly reduce IGF-I binding and alter their biologic actions. Journal of Biological Chemistry, 2000. 275(24): p. 18188-18194. 71.Burger, A.M., et al., Essential roles of IGFBP-3 and IGFBP-rP1 in breast cancer. European Journal of Cancer, 2005. 41(11): p. 1515-1527. 72.Schedlich, L.J., et al., Nuclear import of insulin-like growth factor-binding protein-3 and-5 is mediated by the importin β subunit. Journal of Biological Chemistry, 2000. 275(31): p. 23462-23470. 73.Liu, B., et al., Direct functional interactions between insulin-like growth factor-binding protein-3 and retinoid X receptor-α regulate transcriptional signaling and apoptosis. Journal of Biological Chemistry, 2000. 275(43): p. 33607-33613. 74.Li, J., et al., Insulin-like growth factor binding protein-3 modulates osteoblast differentiation via interaction with vitamin D receptor. Biochemical and biophysical research communications, 2013. 436(4): p. 632-637. 75.Fanayan, S., et al., Growth inhibition by insulin-like growth factor-binding protein-3 in T47D breast cancer cells requires transforming growth factor-β (TGF-β) and the type II TGF-β receptor. Journal of Biological Chemistry, 2000. 275(50): p. 39146-39151. 76.Kuhn, H., et al., IGFBP3 inhibits tumor growth and invasion of lung cancer cells and is associated with improved survival in lung cancer patients. Translational Oncology, 2023. 27: p. 101566. 77.Rinaldi, S., et al., IGF-I, IGFBP-3 and breast cancer risk in women: The European Prospective Investigation into Cancer and Nutrition (EPIC). Endocrine-related cancer, 2006. 13(2): p. 593-605. 78.Johnson, M.A. and S.M. Firth, IGFBP-3: a cell fate pivot in cancer and disease. Growth Horm IGF Res, 2014. 24(5): p. 164-73. 79.Martin, J.L. and S. Jambazov, Insulin-like growth factor binding protein-3 in extracellular matrix stimulates adhesion of breast epithelial cells and activation of p44/42 mitogen-activated protein kinase. Endocrinology, 2006. 147(9): p. 4400-9. 80.Massoner, P., et al., Novel mechanism of IGF-binding protein-3 action on prostate cancer cells: inhibition of proliferation, adhesion, and motility. Endocr Relat Cancer, 2009. 16(3): p. 795-808. 81.McCaig, C., C.M. Perks, and J.M.P. Holly, Intrinsic actions of IGFBP-3 and IGFBP-5 on Hs578T breast cancer epithelial cells: inhibition or accentuation of attachment and survival is dependent upon the presence of fibronectin. Journal of Cell Science, 2002. 115(22): p. 4293-4303. 82.Grkovic, S., et al., IGFBP-3 binds GRP78, stimulates autophagy and promotes the survival of breast cancer cells exposed to adverse microenvironments. Oncogene, 2013. 32(19): p. 2412-20. 83.Yamanaka, Y., et al., Characterization of insulin-like growth factor binding protein-3 (IGFBP-3) binding to human breast cancer cells: kinetics of IGFBP-3 binding and identification of receptor binding domain on the IGFBP-3 molecule. Endocrinology, 1999. 140(3): p. 1319-28. 84.Leal, S.M., et al., The type V transforming growth factor beta receptor is the putative insulin-like growth factor-binding protein 3 receptor. Journal of Biological Chemistry, 1997. 272(33): p. 20572-20576. 85.Shian Huang, S., et al., Identification of insulin receptor substrate proteins as key molecules for the TβR‐V/LRP‐1‐mediated growth inhibitory signaling cascade in epithelial and myeloid cells. The FASEB journal, 2004. 18(14): p. 1719-1721. 86.Bush, N.G., et al., Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance. Molecules, 2020. 25(23): p. 5662. 87.Neuman, K.C., Evolutionary twist on topoisomerases: conversion of gyrase to topoisomerase IV. Proc Natl Acad Sci U S A, 2010. 107(52): p. 22363-4. 88.Levine, C., H. Hiasa, and K.J. Marians, DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim Biophys Acta, 1998. 1400(1-3): p. 29-43. 89.Ashley, R.E., et al., Activities of gyrase and topoisomerase IV on positively supercoiled DNA. Nucleic Acids Res, 2017. 45(16): p. 9611-9624. 90.Redgrave, L.S., et al., Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol, 2014. 22(8): p. 438-45. 91.Herbert, R., et al., Potential new fluoroquinolone treatments for suspected bacterial keratitis. BMJ Open Ophthalmol, 2022. 7(1): p. e001002. 92.Herold, C., et al., Ciprofloxacin induces apoptosis and inhibits proliferation of human colorectal carcinoma cells. Br J Cancer, 2002. 86(3): p. 443-8. 93.Beberok, A., et al., Ciprofloxacin-mediated induction of S-phase cell cycle arrest and apoptosis in COLO829 melanoma cells. Pharmacol Rep, 2018. 70(1): p. 6-13. 94.Phiboonchaiyanan, P.P., C. Kiratipaiboon, and P. Chanvorachote, Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism. Chemico-Biological Interactions, 2016. 250: p. 1-11. 95.Kloskowski, T., et al., The influence of ciprofloxacin on viability of A549, HepG2, A375.S2, B16 and C6 cell lines in vitro. Acta Pol Pharm, 2011. 68(6): p. 859-65. 96.Lim, E.J., et al., Ciprofloxacin Enhances TRAIL-Induced Apoptosis in Lung Cancer Cells by Upregulating the Expression and Protein Stability of Death Receptors through CHOP Expression. International Journal of Molecular Sciences, 2018. 19(10): p. 3187. 97.He, X., et al., Levofloxacin exerts broad-spectrum anticancer activity via regulation of THBS1, LAPTM5, SRD5A3, MFAP5 and P4HA1. Anticancer Drugs, 2022. 33(1): p. e235-e246. 98.Beberok, A., et al., Moxifloxacin as an inducer of apoptosis in melanoma cells: A study at the cellular and molecular level. Toxicology in Vitro, 2019. 55: p. 75-92. 99.Valianatos, G., et al., A small molecule drug promoting miRNA processing induces alternative splicing of MdmX transcript and rescues p53 activity in human cancer cells overexpressing MdmX protein. PLoS One, 2017. 12(10): p. e0185801. 100.Kloskowski, T., et al., Ciprofloxacin and Levofloxacin as Potential Drugs in Genitourinary Cancer Treatment-The Effect of Dose-Response on 2D and 3D Cell Cultures. International Journal of Molecular Sciences, 2021. 22(21): p. 11970. 101.Bourikas, L.A., et al., Ciprofloxacin decreases survival in HT-29 cells via the induction of TGF-beta1 secretion and enhances the anti-proliferative effect of 5-fluorouracil. Br J Pharmacol, 2009. 157(3): p. 362-70. 102.Engeler, D.S., et al., Ciprofloxacin and epirubicin synergistically induce apoptosis in human urothelial cancer cell lines. Urol Int, 2012. 88(3): p. 343-9. 103.Pinto, A.C., et al., Schedule treatment design and quantitative in vitro evaluation of chemotherapeutic combinations for metastatic prostate cancer therapy. Cancer Chemother Pharmacol, 2011. 67(2): p. 275-84. 104.Reuveni, D., et al., Moxifloxacin enhances etoposide-induced cytotoxic, apoptotic and anti-topoisomerase II effects in a human colon carcinoma cell line. Int J Oncol, 2010. 37(2): p. 463-71. 105.Reuveni, D., et al., Moxifloxacin increases anti-tumor and anti-angiogenic activity of irinotecan in human xenograft tumors. Biochem Pharmacol, 2010. 79(8): p. 1100-7. 106.Fabian, I., et al., Moxifloxacin enhances antiproliferative and apoptotic effects of etoposide but inhibits its proinflammatory effects in THP-1 and Jurkat cells. Br J Cancer, 2006. 95(8): p. 1038-46. 107.Reuveni, D., et al., Quinolones as enhancers of camptothecin-induced cytotoxic and anti-topoisomerase I effects. Biochemical Pharmacology, 2008. 75(6): p. 1272-1281. 108.Yamada, P.M. and K.W. Lee, Perspectives in mammalian IGFBP-3 biology: local vs. systemic action. Am J Physiol Cell Physiol, 2009. 296(5): p. C954-76. 109.Varma Shrivastav, S., et al., Insulin-like growth factor binding protein-3 (IGFBP-3): unraveling the role in mediating IGF-independent effects within the cell. Frontiers in Cell and Developmental Biology, 2020. 8: p. 286. 110.Chen, C.L., et al., IGFBP-3 and TGF-beta inhibit growth in epithelial cells by stimulating type V TGF-beta receptor (TbetaR-V)-mediated tumor suppressor signaling. FASEB Bioadv, 2021. 3(9): p. 709-729. 111.Marzec, K.A., et al., Involvement of p53 in insulin-like growth factor binding protein-3 regulation in the breast cancer cell response to DNA damage. Oncotarget, 2015. 6(29): p. 26583-98. 112.Fabbi, P., et al., Doxorubicin impairs the insulin-like growth factor-1 system and causes insulin-like growth factor-1 resistance in cardiomyocytes. PLoS One, 2015. 10(5): p. e0124643. 113.Elzi, D.J., et al., Plasminogen activator inhibitor 1--insulin-like growth factor binding protein 3 cascade regulates stress-induced senescence. Proc Natl Acad Sci U S A, 2012. 109(30): p. 12052-7. 114.Vijayan, A., et al., IGFBP-5 enhances epithelial cell adhesion and protects epithelial cells from TGFbeta1-induced mesenchymal invasion. Int J Biochem Cell Biol, 2013. 45(12): p. 2774-85. 115.Fenton, S.E. and L.G. Sheffield, Control of mammary epithelial cell DNA synthesis by epidermal growth factor, cholera toxin, and IGF-1: specific inhibitory effect of prolactin on EGF-stimulated cell growth. Exp Cell Res, 1994. 210(1): p. 102-6. 116.Tian, J., et al., Developmental stage determines estrogen receptor alpha expression and non-genomic mechanisms that control IGF-1 signaling and mammary proliferation in mice. Journal of Clinical Investigation, 2012. 122(1): p. 192-204. 117.Agarwal, M.L., et al., The p53 network. J Biol Chem, 1998. 273(1): p. 1-4. 118.Kruse, J.P. and W. Gu, Modes of p53 regulation. Cell, 2009. 137(4): p. 609-22. 119.Grimberg, A., et al., IGFBP-3 mediates p53-induced apoptosis during serum starvation. Int J Oncol, 2002. 21(2): p. 327-35. 120.Grimberg, A., P53 and IGFBP-3: apoptosis and cancer protection. Mol Genet Metab, 2000. 70(2): p. 85-98. 121.Bressac, B., et al., Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proc Natl Acad Sci U S A, 1990. 87(5): p. 1973-7. 122.Sengupta, S. and B. Wasylyk, Ligand-dependent interaction of the glucocorticoid receptor with p53 enhances their degradation by Hdm2. Genes & Development, 2001. 15(18): p. 2367-2380. 123.Chung, C.L. and C.L. Chen, Fluoroquinolones upregulate insulin-like growth factor-binding protein 3, inhibit cell growth and insulin-like growth factor signaling. Eur J Pharmacol, 2024. 969: p. 176421. 124.Liu, L.F., et al., Cleavage of DNA by mammalian DNA topoisomerase II. J Biol Chem, 1983. 258(24): p. 15365-70. 125.Drlica, K. and R.J. Franco, Inhibitors of DNA topoisomerases. Biochemistry, 1988. 27(7): p. 2253-9. 126.Wolfson, J.S. and D.C. Hooper, Fluoroquinolone antimicrobial agents. Clin Microbiol Rev, 1989. 2(4): p. 378-424. 127.Fief, C.A., et al., Examining the Impact of Antimicrobial Fluoroquinolones on Human DNA Topoisomerase IIalpha and IIbeta. ACS Omega, 2019. 4(2): p. 4049-4055. 128.Hoofnagle, J.H., LiverTox: a website on drug-induced liver injury, in Drug-induced liver disease. 2013, Elsevier. p. 725-732. 129.Adikwu, E. and N. Brambaifa, Ciprofloxacin cardiotoxicity and hepatotoxicity in humans and animals. 2012. 130.Pham, T.D.M., Z.M. Ziora, and M.A.T. Blaskovich, Quinolone antibiotics. Medchemcomm, 2019. 10(10): p. 1719-1739. 131.Fowlkes, J.L., et al., Matrix metalloproteinases degrade insulin-like growth factor-binding protein-3 in dermal fibroblast cultures. J Biol Chem, 1994. 269(41): p. 25742-6. 132.Manes, S., et al., The matrix metalloproteinase-9 regulates the insulin-like growth factor-triggered autocrine response in DU-145 carcinoma cells. J Biol Chem, 1999. 274(11): p. 6935-45. 133.Huang, C.-Y., et al., Fluoroquinolones suppress TGF-β and PMA-induced MMP-9 production in cancer cells: implications in repurposing quinolone antibiotics for cancer treatment. International Journal of Molecular Sciences, 2021. 22(21): p. 11602. 134.Nishikawa, S. and T. Iwakuma, Drugs Targeting p53 Mutations with FDA Approval and in Clinical Trials. Cancers (Basel), 2023. 15(2): p. 429. 135.Khoo, K.H., C.S. Verma, and D.P. Lane, Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov, 2014. 13(3): p. 217-36. 136.Giaccia, A.J. and M.B. Kastan, The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev, 1998. 12(19): p. 2973-83. 137.Nag, S., et al., The MDM2-p53 pathway revisited. J Biomed Res, 2013. 27(4): p. 254-71. 138.Roth, J., et al., Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J, 1998. 17(2): p. 554-64. 139.Moll, U.M., G. Riou, and A.J. Levine, Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci U S A, 1992. 89(15): p. 7262-6. 140.Moll, U.M., et al., Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc Natl Acad Sci U S A, 1995. 92(10): p. 4407-11. 141.Engeland, K., Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ, 2022. 29(5): p. 946-960. 142.Hollowood, A.D., et al., IGFBP-3 prolongs the p53 response and enhances apoptosis following UV irradiation. Int J Cancer, 2000. 88(3): p. 336-41. 143.Price, D., et al., IGFBP-3 Blocks Hyaluronan-CD44 Signaling, Leading to Increased Acetylcholinesterase Levels in A549 Cell Media and Apoptosis in a p53-Dependent Manner. Sci Rep, 2020. 10(1): p. 5083. 144.Dai, H., Y.I. Goto, and M. Itoh, Insulin-Like Growth Factor Binding Protein-3 Deficiency Leads to Behavior Impairment with Monoaminergic and Synaptic Dysfunction. Am J Pathol, 2017. 187(2): p. 390-400. 145.Akhurst, R.J. and R. Derynck, TGF-β signaling in cancer—a double-edged sword. Trends in cell biology, 2001. 11: p. S44-S51. 146.Gonzalez, M.A., et al., Multiple-dose pharmacokinetics and safety of ciprofloxacin in normal volunteers. Antimicrob Agents Chemother, 1984. 26(5): p. 741-4.
|