跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 01:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾智聆
研究生(外文):Chih-Ling Chung
論文名稱:研究類胰島素生長因子結合蛋白3在喹諾酮類藥物介導之抑制癌細胞生長的角色
論文名稱(外文):Study the roles of insulin-like growth factor binding protein-3 in fluoroquinolone-mediated growth inhibition in cancer cells
指導教授:陳俊霖陳俊霖引用關係
指導教授(外文):Chen,Chun-lin
學位類別:博士
校院名稱:國立中山大學
系所名稱:生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:121
中文關鍵詞:氟喹諾酮類抗生素類胰島素生長因子結合蛋白3類胰島素生長因子訊息傳遞路徑p53蛋白抗癌藥物藥物重定位
外文關鍵詞:FluoroquinolonesIGFBP3IGF-I signalingp53AnticancerDrug repurposing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:0
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氟喹諾酮類抗生素是一種廣效型抗生素可用於治療各種細菌感染﹐近年來許多研究指出氟喹諾酮類抗生素除了具有抗菌功能之外還可以抗癌。已知氟喹諾酮類抗生素具有促進細胞凋亡、抑制癌細胞增生與加強化學療法等抗癌功能﹐然而其抗癌機制仍是未知﹐本論文將研究並探討氟喹諾酮類抗生素的抗癌機制。本篇研究發現在細胞實驗與小鼠模型當中﹐氟喹諾酮類抗生素可促進類胰島素生長因子結合蛋白3的生合成﹐研究指出氟喹諾酮類抗生素通過p53蛋白路徑以調控類胰島素生長因子結合蛋白3的生合成﹐由氟喹諾酮類抗生素誘導而產生之類胰島素生長因子結合蛋白3則會進一步抑制類胰島素生長因子下游訊息以及由類胰島素生長因子誘導之細胞增生。在同源腫瘤異體移植小鼠模型當中﹐研究發現環丙沙星可促進移植之肝癌細胞凋亡以此效抑制腫瘤生長﹐同時在肝癌腫瘤切片當中也觀察到類胰島素生長因子結合蛋白3表現量有所增加。本研究發現氟喹諾酮類抗生素透過調控類胰島素生長因子結合蛋白3表現的抗癌新機轉﹐未來將進一步探討關於氟喹諾酮類抗生素的抗癌用途與氟喹諾酮類衍生物的抗癌機轉﹐以此釐清氟喹諾酮類抗生是否可用於癌症治療。
Fluoroquinolones (FQs) are broad-spectrum antibiotics which are used to treat various bacterial infections. Apart from their antibacterial properties, evidence has implied their potential as an anticancer agent, with multiple anticancer activities including pro-apoptosis, antiproliferative, and enhancing chemotherapies. However, the mechanism underlying the anticancer activities of FQs remains unclear. Here, we found that the antiproliferative of FQs was mediated by inducing insulin-like growth factor binding protein-3 (IGFBP3) through a p53-dependent pathway. FQs-induced IGFBP3 suppressed IGF-I signaling and IGF-I-induced cell proliferation. Moreover, ciprofloxacin, a commonly used FQ, was found to attenuate growth of tumor in a syngeneic mouse tumor model of hepatocellular carcinoma by triggering apoptosis of tumor cells with upregulation of IGFBP3. Our results reveal a novel mechanism by which FQs exert their antiproliferative effect, prompting further investigation for their potential application and derivative compounds in treatment against cancer.
論文審定書 i
中文摘要 iii
Abstract iv
Table of Content v
Figure Index vii
Table of Appendix ix
Abbreviations x
1. Introduction 1
1.1 Fluoroquinolones 1
1.2 Classification of fluoroquinolones 2
1.3 Mechanism of action of FQs as antibacterial agents 3
1.4 The anticancer effects of FQs 4
1.4.1 FQs induce cell cycle arrest and inhibit cell proliferation 5
1.4.2 Proapoptotic effect of FQs 6
1.4.3 Modulation of epithelial-mesenchymal transition (EMT) and cell mobility in cancer cells 8
1.4.4 Improve the outcome of chemotherapy 9
1.5 IGFBP3 10
2. Methods and Materials 26
2.1. Cell culture and reagents 26
2.2. Animal experiments 26
2.3. Establishment of HCC in syngeneic mouse model 27
2.4. Hematoxylin & eosin staining and immunohistochemistry staining 28
2.5. TUNEL assay 29
2.6. MTT assay 30
2.7. BrdU assay 30
2.8. EdU cell proliferation assay 30
2.9. Preparation of conditional medium (CM) 31
2.10. Western blotting 31
2.11. Gene knockdown by siRNA transfection 32
2.12. Lentivirus-mediated shRNA knockdown 33
2.13. RNA extraction and RT-PCR 34
2.14. Quantitative-PCR 34
2.15. ELISA assay 35
2.16. Statistical analysis 36
3. Results 37
3.1 The effect of FQs on cell proliferation 37
3.2 FQs induced IGFBP3 expression 37
3.3 Ciprofloxacin induced IGFBP3 expression in mice model 39
3.4 Ciprofloxacin attenuated growth of tumor in the syngeneic mouse HCC model 40
3.5 FQs suppressed IGF-I signaling in HCC and mouse mammary gland epithelial cells and attenuated IGF-I-induced cell growth 41
3.6 FQs inhibited cell growth through inducing IGFBP3 expression 43
3.7 p53 was the key component for FQs to induce IGFBP3 expression 44
3.8 The antiproliferative effect of FQs mediated by IGFBP3 was p53-dependent 45
4. Discussions 80
5. References 89
6. Appendix 100
6.1 Supplemental Figures 100
6.2 Supplemental Materials 105
Publications 108
5.References

1.Lesher, G.Y., et al., 1,8-Naphthyridine Derivatives. A New Class of Chemotherapeutic Agents. J Med Pharm Chem, 1962. 5(5): p. 1063-5.
2.Idowu, T. and F. Schweizer, Ubiquitous Nature of Fluoroquinolones: The Oscillation between Antibacterial and Anticancer Activities. Antibiotics-Basel, 2017. 6(4): p. 26.
3.Domagala, J.M., Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J Antimicrob Chemother, 1994. 33(4): p. 685-706.
4.Wang, S., et al., Synthesis, antimycobacterial and antibacterial activity of ciprofloxacin derivatives containing a N-substituted benzyl moiety. Bioorg Med Chem Lett, 2012. 22(18): p. 5971-5.
5.Appelbaum, P.C. and P.A. Hunter, The fluoroquinolone antibacterials: past, present and future perspectives. Int J Antimicrob Agents, 2000. 16(1): p. 5-15.
6.Sharma, P.C., A. Jain, and S. Jain, Fluoroquinolone antibacterials: a review on chemistry, microbiology and therapeutic prospects. Acta Pol Pharm, 2009. 66(6): p. 587-604.
7.Ohmine, T., et al., Anti-HIV-1 activities and pharmacokinetics of new arylpiperazinyl fluoroquinolones. Bioorg Med Chem Lett, 2002. 12(5): p. 739-42.
8.Dalhoff, A., Antiviral, antifungal, and antiparasitic activities of fluoroquinolones optimized for treatment of bacterial infections: a puzzling paradox or a logical consequence of their mode of action? European Journal of Clinical Microbiology & Infectious Diseases, 2015. 34(4): p. 661-668.
9.Zhang, J.Z. and K.W. Ward, Besifloxacin, a novel fluoroquinolone antimicrobial agent, exhibits potent inhibition of pro-inflammatory cytokines in human THP-1 monocytes. J Antimicrob Chemother, 2008. 61(1): p. 111-6.
10.Yadav, V. and P. Talwar, Repositioning of fluoroquinolones from antibiotic to anti-cancer agents: An underestimated truth. Biomed Pharmacother, 2019. 111: p. 934-946.
11.Sharma, P.C., et al., Insights on fluoroquinolones in cancer therapy: chemistry and recent developments. Materials Today Chemistry, 2020. 17: p. 100296.
12.Emmerson, A.M. and A.M. Jones, The quinolones: decades of development and use. J Antimicrob Chemother, 2003. 51 Suppl 1(suppl_1): p. 13-20.
13.Scheld, W.M., Maintaining fluoroquinolone class efficacy: review of influencing factors. Emerg Infect Dis, 2003. 9(1): p. 1-9.
14.Mandell, L. and G. Tillotson, Safety of fluoroquinolones: An update. Can J Infect Dis, 2002. 13(1): p. 54-61.
15.Zhao, X., et al., DNA topoisomerase targets of the fluoroquinolones: a strategy for avoiding bacterial resistance. Proc Natl Acad Sci U S A, 1997. 94(25): p. 13991-6.
16.Koster, D.A., et al., Cellular strategies for regulating DNA supercoiling: a single-molecule perspective. Cell, 2010. 142(4): p. 519-30.
17.Aldred, K.J., R.J. Kerns, and N. Osheroff, Mechanism of quinolone action and resistance. Biochemistry, 2014. 53(10): p. 1565-74.
18.Sissi, C. and M. Palumbo, In front of and behind the replication fork: bacterial type IIA topoisomerases. Cell Mol Life Sci, 2010. 67(12): p. 2001-24.
19.Wang, X., R. Reyes-Lamothe, and D.J. Sherratt, Modulation of Escherichia coli sister chromosome cohesion by topoisomerase IV. Genes Dev, 2008. 22(17): p. 2426-33.
20.Reece, R.J. and A. Maxwell, DNA gyrase: structure and function. Crit Rev Biochem Mol Biol, 1991. 26(3-4): p. 335-75.
21.Gellert, M., et al., DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proceedings of the National Academy of Sciences, 1976. 73(11): p. 3872-3876.
22.Lampe, M.F. and K.F. Bott, Genetic and physical organization of the cloned gyrA and gyrB genes of Bacillus subtilis. J Bacteriol, 1985. 162(1): p. 78-84.
23.Kato, J., H. Suzuki, and H. Ikeda, Purification and characterization of DNA topoisomerase IV in Escherichia coli. J Biol Chem, 1992. 267(36): p. 25676-84.
24.Peng, H. and K.J. Marians, Escherichia coli topoisomerase IV. Purification, characterization, subunit structure, and subunit interactions. J Biol Chem, 1993. 268(32): p. 24481-90.
25.Drlica, K. and X. Zhao, DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev, 1997. 61(3): p. 377-92.
26.Laponogov, I., et al., Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nature Structural & Molecular Biology, 2009. 16(6): p. 667-669.
27.Bax, B.D., et al., Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature, 2010. 466(7309): p. 935-940.
28.Wohlkonig, A., et al., Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance. Nat Struct Mol Biol, 2010. 17(9): p. 1152-3.
29.Cabral, J.H.M., et al., Crystal structure of the breakage-reunion domain of DNA gyrase. Nature, 1997. 388(6645): p. 903-906.
30.Chen, C.R., et al., DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage. J Mol Biol, 1996. 258(4): p. 627-37.
31.Willmott, C.J., et al., The complex of DNA gyrase and quinolone drugs with DNA forms a barrier to transcription by RNA polymerase. J Mol Biol, 1994. 242(4): p. 351-63.
32.Kern, G., et al., Inhibition of Neisseria gonorrhoeae Type II Topoisomerases by the Novel Spiropyrimidinetrione AZD0914. J Biol Chem, 2015. 290(34): p. 20984-20994.
33.Kumari, R. and P. Jat, Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol, 2021. 9: p. 645593.
34.Malumbres, M. and M. Barbacid, Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer, 2009. 9(3): p. 153-66.
35.Vermeulen, K., D.R. Van Bockstaele, and Z.N. Berneman, The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif, 2003. 36(3): p. 131-49.
36.Aranha, O., D.P. Wood, Jr., and F.H. Sarkar, Ciprofloxacin mediated cell growth inhibition, S/G2-M cell cycle arrest, and apoptosis in a human transitional cell carcinoma of the bladder cell line. Clin Cancer Res, 2000. 6(3): p. 891-900.
37.Aranha, O., et al., Suppression of human prostate cancer cell growth by ciprofloxacin is associated with cell cycle arrest and apoptosis. International Journal of Oncology, 2003. 22(4): p. 787-794.
38.Beberok, A., et al., Lomefloxacin Induces Oxidative Stress and Apoptosis in COLO829 Melanoma Cells. Int J Mol Sci, 2017. 18(10): p. 2194.
39.Yu, M., R.S. Li, and J. Zhang, Repositioning of antibiotic levofloxacin as a mitochondrial biogenesis inhibitor to target breast cancer. Biochemical and Biophysical Research Communications, 2016. 471(4): p. 639-645.
40.Perucca, P., et al., Structure-activity relationship and role of oxygen in the potential antitumour activity of fluoroquinolones in human epithelial cancer cells. J Photochem Photobiol B, 2014. 140: p. 57-68.
41.Sousa, E., et al., Enoxacin inhibits growth of prostate cancer cells and effectively restores microRNA processing. Epigenetics, 2013. 8(5): p. 548-58.
42.Yadav, V., et al., Gatifloxacin induces S and G2-phase cell cycle arrest in pancreatic cancer cells via p21/p27/p53. PLoS One, 2012. 7(10): p. e47796.
43.Meier, P., A. Finch, and G. Evan, Apoptosis in development. Nature, 2000. 407(6805): p. 796-801.
44.Reed, J.C., Mechanisms of apoptosis. Am J Pathol, 2000. 157(5): p. 1415-30.
45.Fernald, K. and M. Kurokawa, Evading apoptosis in cancer. Trends Cell Biol, 2013. 23(12): p. 620-33.
46.Elmore, S., Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007. 35(4): p. 495-516.
47.Shi, Z.Y., et al., Piperonal ciprofloxacin hydrazone induces growth arrest and apoptosis of human hepatocarcinoma SMMC-7721 cells. Acta Pharmacol Sin, 2012. 33(2): p. 271-8.
48.Beberok, A., et al., Ciprofloxacin triggers the apoptosis of human triple-negative breast cancer MDA-MB-231 cells via the p53/Bax/Bcl-2 signaling pathway. Int J Oncol, 2018. 52(5): p. 1727-1737.
49.Smart, D.J., et al., Ciprofloxacin-induced G2 arrest and apoptosis in TK6 lymphoblastoid cells is not dependent on DNA double-strand break formation. Cancer biology & therapy, 2008. 7(1): p. 113-119.
50.Song, M.J., et al., Antibiotic drug levofloxacin inhibits proliferation and induces apoptosis of lung cancer cells through inducing mitochondrial dysfunction and oxidative damage. Biomedicine & Pharmacotherapy, 2016. 84: p. 1137-1143.
51.Yadav, V., et al., Moxifloxacin and ciprofloxacin induces S-phase arrest and augments apoptotic effects of cisplatin in human pancreatic cancer cells via ERK activation. BMC Cancer, 2015. 15(1): p. 581.
52.Beberok, A., et al., GSH depletion, mitochondrial membrane breakdown, caspase-3/7 activation and DNA fragmentation in U87MG glioblastoma cells: New insight into the mechanism of cytotoxicity induced by fluoroquinolones. European Journal of Pharmacology, 2018. 835: p. 94-107.
53.Nishi, K., et al., Enoxacin with UVA Irradiation Induces Apoptosis in the AsPC1 Human Pancreatic Cancer Cell Line Through ROS Generation. Anticancer Research, 2017. 37(11): p. 6211-6214.
54.Mondal, E., S. Das, and P. Mukherjee, Comparative evaluation of antiproliferative activity and induction of apoptosis by some fluoroquinolones on a human non-small cell lung cancer cell line in culture. Asian Pacific Journal of Cancer Prevention, 2004. 5(2): p. 196-204.
55.Nieto, M.A., et al., Emt: 2016. Cell, 2016. 166(1): p. 21-45.
56.Kalluri, R., EMT: When epithelial cells decide to become mesenchymal-like cells. Journal of Clinical Investigation, 2009. 119(6): p. 1417-1419.
57.Kan, J.Y., et al., Gemifloxacin, a fluoroquinolone antimicrobial drug, inhibits migration and invasion of human colon cancer cells. Biomed Res Int, 2013. 2013: p. 159786.
58.Chen, T.C., et al., Gemifloxacin inhibits migration and invasion and induces mesenchymal-epithelial transition in human breast adenocarcinoma cells. J Mol Med (Berl), 2014. 92(1): p. 53-64.
59.Huang, C.Y., et al., Fluoroquinolones Suppress TGF-beta and PMA-Induced MMP-9 Production in Cancer Cells: Implications in Repurposing Quinolone Antibiotics for Cancer Treatment. Int J Mol Sci, 2021. 22(21): p. 11602.
60.DeVita, V.T., Jr. and E. Chu, A history of cancer chemotherapy. Cancer Res, 2008. 68(21): p. 8643-53.
61.Nygren, P. and R. Larsson, Overview of the clinical efficacy of investigational anticancer drugs. J Intern Med, 2003. 253(1): p. 46-75.
62.Al-Lazikani, B., U. Banerji, and P. Workman, Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol, 2012. 30(7): p. 679-92.
63.El-Rayes, B.F., et al., Ciprofloxacin inhibits cell growth and synergises the effect of etoposide in hormone resistant prostate cancer cells. Int J Oncol, 2002. 21(1): p. 207-11.
64.Pinto, A.C., J.N. Moreira, and S. Simoes, Ciprofloxacin sensitizes hormone-refractory prostate cancer cell lines to doxorubicin and docetaxel treatment on a schedule-dependent manner. Cancer Chemother Pharmacol, 2009. 64(3): p. 445-54.
65.Arany, E., et al., Differential cellular synthesis of insulin-like growth factor binding protein-1 (IGFBP-1) and IGFBP-3 within human liver. The Journal of Clinical Endocrinology & Metabolism, 1994. 79(6): p. 1871-1876.
66.Buckbinder, L., et al., Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature, 1995. 377(6550): p. 646-649.
67.Sirotkin, A. and A. Makarevich, GH regulates secretory activity and apoptosis in cultured bovine granulosa cells through the activation of the cAMP/protein kinase A system. Journal of Endocrinology, 1999. 163(2): p. 317-328.
68.MARTIN, J.L. and R.C. BAXTRE, Transforming growth factor-β stimulates production of insulin-like growth factor-binding protein-3 by human skin fibroblasts. Endocrinology, 1991. 128(3): p. 1425-1433.
69.Hakuno, F. and S.-I. Takahashi, 40 years of IGF1: IGF1 receptor signaling pathways. Journal of molecular endocrinology, 2018. 61(1): p. T69-T86.
70.Imai, Y., et al., Substitutions for hydrophobic amino acids in the N-terminal domains of IGFBP-3 and-5 markedly reduce IGF-I binding and alter their biologic actions. Journal of Biological Chemistry, 2000. 275(24): p. 18188-18194.
71.Burger, A.M., et al., Essential roles of IGFBP-3 and IGFBP-rP1 in breast cancer. European Journal of Cancer, 2005. 41(11): p. 1515-1527.
72.Schedlich, L.J., et al., Nuclear import of insulin-like growth factor-binding protein-3 and-5 is mediated by the importin β subunit. Journal of Biological Chemistry, 2000. 275(31): p. 23462-23470.
73.Liu, B., et al., Direct functional interactions between insulin-like growth factor-binding protein-3 and retinoid X receptor-α regulate transcriptional signaling and apoptosis. Journal of Biological Chemistry, 2000. 275(43): p. 33607-33613.
74.Li, J., et al., Insulin-like growth factor binding protein-3 modulates osteoblast differentiation via interaction with vitamin D receptor. Biochemical and biophysical research communications, 2013. 436(4): p. 632-637.
75.Fanayan, S., et al., Growth inhibition by insulin-like growth factor-binding protein-3 in T47D breast cancer cells requires transforming growth factor-β (TGF-β) and the type II TGF-β receptor. Journal of Biological Chemistry, 2000. 275(50): p. 39146-39151.
76.Kuhn, H., et al., IGFBP3 inhibits tumor growth and invasion of lung cancer cells and is associated with improved survival in lung cancer patients. Translational Oncology, 2023. 27: p. 101566.
77.Rinaldi, S., et al., IGF-I, IGFBP-3 and breast cancer risk in women: The European Prospective Investigation into Cancer and Nutrition (EPIC). Endocrine-related cancer, 2006. 13(2): p. 593-605.
78.Johnson, M.A. and S.M. Firth, IGFBP-3: a cell fate pivot in cancer and disease. Growth Horm IGF Res, 2014. 24(5): p. 164-73.
79.Martin, J.L. and S. Jambazov, Insulin-like growth factor binding protein-3 in extracellular matrix stimulates adhesion of breast epithelial cells and activation of p44/42 mitogen-activated protein kinase. Endocrinology, 2006. 147(9): p. 4400-9.
80.Massoner, P., et al., Novel mechanism of IGF-binding protein-3 action on prostate cancer cells: inhibition of proliferation, adhesion, and motility. Endocr Relat Cancer, 2009. 16(3): p. 795-808.
81.McCaig, C., C.M. Perks, and J.M.P. Holly, Intrinsic actions of IGFBP-3 and IGFBP-5 on Hs578T breast cancer epithelial cells: inhibition or accentuation of attachment and survival is dependent upon the presence of fibronectin. Journal of Cell Science, 2002. 115(22): p. 4293-4303.
82.Grkovic, S., et al., IGFBP-3 binds GRP78, stimulates autophagy and promotes the survival of breast cancer cells exposed to adverse microenvironments. Oncogene, 2013. 32(19): p. 2412-20.
83.Yamanaka, Y., et al., Characterization of insulin-like growth factor binding protein-3 (IGFBP-3) binding to human breast cancer cells: kinetics of IGFBP-3 binding and identification of receptor binding domain on the IGFBP-3 molecule. Endocrinology, 1999. 140(3): p. 1319-28.
84.Leal, S.M., et al., The type V transforming growth factor beta receptor is the putative insulin-like growth factor-binding protein 3 receptor. Journal of Biological Chemistry, 1997. 272(33): p. 20572-20576.
85.Shian Huang, S., et al., Identification of insulin receptor substrate proteins as key molecules for the TβR‐V/LRP‐1‐mediated growth inhibitory signaling cascade in epithelial and myeloid cells. The FASEB journal, 2004. 18(14): p. 1719-1721.
86.Bush, N.G., et al., Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance. Molecules, 2020. 25(23): p. 5662.
87.Neuman, K.C., Evolutionary twist on topoisomerases: conversion of gyrase to topoisomerase IV. Proc Natl Acad Sci U S A, 2010. 107(52): p. 22363-4.
88.Levine, C., H. Hiasa, and K.J. Marians, DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim Biophys Acta, 1998. 1400(1-3): p. 29-43.
89.Ashley, R.E., et al., Activities of gyrase and topoisomerase IV on positively supercoiled DNA. Nucleic Acids Res, 2017. 45(16): p. 9611-9624.
90.Redgrave, L.S., et al., Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol, 2014. 22(8): p. 438-45.
91.Herbert, R., et al., Potential new fluoroquinolone treatments for suspected bacterial keratitis. BMJ Open Ophthalmol, 2022. 7(1): p. e001002.
92.Herold, C., et al., Ciprofloxacin induces apoptosis and inhibits proliferation of human colorectal carcinoma cells. Br J Cancer, 2002. 86(3): p. 443-8.
93.Beberok, A., et al., Ciprofloxacin-mediated induction of S-phase cell cycle arrest and apoptosis in COLO829 melanoma cells. Pharmacol Rep, 2018. 70(1): p. 6-13.
94.Phiboonchaiyanan, P.P., C. Kiratipaiboon, and P. Chanvorachote, Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism. Chemico-Biological Interactions, 2016. 250: p. 1-11.
95.Kloskowski, T., et al., The influence of ciprofloxacin on viability of A549, HepG2, A375.S2, B16 and C6 cell lines in vitro. Acta Pol Pharm, 2011. 68(6): p. 859-65.
96.Lim, E.J., et al., Ciprofloxacin Enhances TRAIL-Induced Apoptosis in Lung Cancer Cells by Upregulating the Expression and Protein Stability of Death Receptors through CHOP Expression. International Journal of Molecular Sciences, 2018. 19(10): p. 3187.
97.He, X., et al., Levofloxacin exerts broad-spectrum anticancer activity via regulation of THBS1, LAPTM5, SRD5A3, MFAP5 and P4HA1. Anticancer Drugs, 2022. 33(1): p. e235-e246.
98.Beberok, A., et al., Moxifloxacin as an inducer of apoptosis in melanoma cells: A study at the cellular and molecular level. Toxicology in Vitro, 2019. 55: p. 75-92.
99.Valianatos, G., et al., A small molecule drug promoting miRNA processing induces alternative splicing of MdmX transcript and rescues p53 activity in human cancer cells overexpressing MdmX protein. PLoS One, 2017. 12(10): p. e0185801.
100.Kloskowski, T., et al., Ciprofloxacin and Levofloxacin as Potential Drugs in Genitourinary Cancer Treatment-The Effect of Dose-Response on 2D and 3D Cell Cultures. International Journal of Molecular Sciences, 2021. 22(21): p. 11970.
101.Bourikas, L.A., et al., Ciprofloxacin decreases survival in HT-29 cells via the induction of TGF-beta1 secretion and enhances the anti-proliferative effect of 5-fluorouracil. Br J Pharmacol, 2009. 157(3): p. 362-70.
102.Engeler, D.S., et al., Ciprofloxacin and epirubicin synergistically induce apoptosis in human urothelial cancer cell lines. Urol Int, 2012. 88(3): p. 343-9.
103.Pinto, A.C., et al., Schedule treatment design and quantitative in vitro evaluation of chemotherapeutic combinations for metastatic prostate cancer therapy. Cancer Chemother Pharmacol, 2011. 67(2): p. 275-84.
104.Reuveni, D., et al., Moxifloxacin enhances etoposide-induced cytotoxic, apoptotic and anti-topoisomerase II effects in a human colon carcinoma cell line. Int J Oncol, 2010. 37(2): p. 463-71.
105.Reuveni, D., et al., Moxifloxacin increases anti-tumor and anti-angiogenic activity of irinotecan in human xenograft tumors. Biochem Pharmacol, 2010. 79(8): p. 1100-7.
106.Fabian, I., et al., Moxifloxacin enhances antiproliferative and apoptotic effects of etoposide but inhibits its proinflammatory effects in THP-1 and Jurkat cells. Br J Cancer, 2006. 95(8): p. 1038-46.
107.Reuveni, D., et al., Quinolones as enhancers of camptothecin-induced cytotoxic and anti-topoisomerase I effects. Biochemical Pharmacology, 2008. 75(6): p. 1272-1281.
108.Yamada, P.M. and K.W. Lee, Perspectives in mammalian IGFBP-3 biology: local vs. systemic action. Am J Physiol Cell Physiol, 2009. 296(5): p. C954-76.
109.Varma Shrivastav, S., et al., Insulin-like growth factor binding protein-3 (IGFBP-3): unraveling the role in mediating IGF-independent effects within the cell. Frontiers in Cell and Developmental Biology, 2020. 8: p. 286.
110.Chen, C.L., et al., IGFBP-3 and TGF-beta inhibit growth in epithelial cells by stimulating type V TGF-beta receptor (TbetaR-V)-mediated tumor suppressor signaling. FASEB Bioadv, 2021. 3(9): p. 709-729.
111.Marzec, K.A., et al., Involvement of p53 in insulin-like growth factor binding protein-3 regulation in the breast cancer cell response to DNA damage. Oncotarget, 2015. 6(29): p. 26583-98.
112.Fabbi, P., et al., Doxorubicin impairs the insulin-like growth factor-1 system and causes insulin-like growth factor-1 resistance in cardiomyocytes. PLoS One, 2015. 10(5): p. e0124643.
113.Elzi, D.J., et al., Plasminogen activator inhibitor 1--insulin-like growth factor binding protein 3 cascade regulates stress-induced senescence. Proc Natl Acad Sci U S A, 2012. 109(30): p. 12052-7.
114.Vijayan, A., et al., IGFBP-5 enhances epithelial cell adhesion and protects epithelial cells from TGFbeta1-induced mesenchymal invasion. Int J Biochem Cell Biol, 2013. 45(12): p. 2774-85.
115.Fenton, S.E. and L.G. Sheffield, Control of mammary epithelial cell DNA synthesis by epidermal growth factor, cholera toxin, and IGF-1: specific inhibitory effect of prolactin on EGF-stimulated cell growth. Exp Cell Res, 1994. 210(1): p. 102-6.
116.Tian, J., et al., Developmental stage determines estrogen receptor alpha expression and non-genomic mechanisms that control IGF-1 signaling and mammary proliferation in mice. Journal of Clinical Investigation, 2012. 122(1): p. 192-204.
117.Agarwal, M.L., et al., The p53 network. J Biol Chem, 1998. 273(1): p. 1-4.
118.Kruse, J.P. and W. Gu, Modes of p53 regulation. Cell, 2009. 137(4): p. 609-22.
119.Grimberg, A., et al., IGFBP-3 mediates p53-induced apoptosis during serum starvation. Int J Oncol, 2002. 21(2): p. 327-35.
120.Grimberg, A., P53 and IGFBP-3: apoptosis and cancer protection. Mol Genet Metab, 2000. 70(2): p. 85-98.
121.Bressac, B., et al., Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proc Natl Acad Sci U S A, 1990. 87(5): p. 1973-7.
122.Sengupta, S. and B. Wasylyk, Ligand-dependent interaction of the glucocorticoid receptor with p53 enhances their degradation by Hdm2. Genes & Development, 2001. 15(18): p. 2367-2380.
123.Chung, C.L. and C.L. Chen, Fluoroquinolones upregulate insulin-like growth factor-binding protein 3, inhibit cell growth and insulin-like growth factor signaling. Eur J Pharmacol, 2024. 969: p. 176421.
124.Liu, L.F., et al., Cleavage of DNA by mammalian DNA topoisomerase II. J Biol Chem, 1983. 258(24): p. 15365-70.
125.Drlica, K. and R.J. Franco, Inhibitors of DNA topoisomerases. Biochemistry, 1988. 27(7): p. 2253-9.
126.Wolfson, J.S. and D.C. Hooper, Fluoroquinolone antimicrobial agents. Clin Microbiol Rev, 1989. 2(4): p. 378-424.
127.Fief, C.A., et al., Examining the Impact of Antimicrobial Fluoroquinolones on Human DNA Topoisomerase IIalpha and IIbeta. ACS Omega, 2019. 4(2): p. 4049-4055.
128.Hoofnagle, J.H., LiverTox: a website on drug-induced liver injury, in Drug-induced liver disease. 2013, Elsevier. p. 725-732.
129.Adikwu, E. and N. Brambaifa, Ciprofloxacin cardiotoxicity and hepatotoxicity in humans and animals. 2012.
130.Pham, T.D.M., Z.M. Ziora, and M.A.T. Blaskovich, Quinolone antibiotics. Medchemcomm, 2019. 10(10): p. 1719-1739.
131.Fowlkes, J.L., et al., Matrix metalloproteinases degrade insulin-like growth factor-binding protein-3 in dermal fibroblast cultures. J Biol Chem, 1994. 269(41): p. 25742-6.
132.Manes, S., et al., The matrix metalloproteinase-9 regulates the insulin-like growth factor-triggered autocrine response in DU-145 carcinoma cells. J Biol Chem, 1999. 274(11): p. 6935-45.
133.Huang, C.-Y., et al., Fluoroquinolones suppress TGF-β and PMA-induced MMP-9 production in cancer cells: implications in repurposing quinolone antibiotics for cancer treatment. International Journal of Molecular Sciences, 2021. 22(21): p. 11602.
134.Nishikawa, S. and T. Iwakuma, Drugs Targeting p53 Mutations with FDA Approval and in Clinical Trials. Cancers (Basel), 2023. 15(2): p. 429.
135.Khoo, K.H., C.S. Verma, and D.P. Lane, Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov, 2014. 13(3): p. 217-36.
136.Giaccia, A.J. and M.B. Kastan, The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev, 1998. 12(19): p. 2973-83.
137.Nag, S., et al., The MDM2-p53 pathway revisited. J Biomed Res, 2013. 27(4): p. 254-71.
138.Roth, J., et al., Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J, 1998. 17(2): p. 554-64.
139.Moll, U.M., G. Riou, and A.J. Levine, Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci U S A, 1992. 89(15): p. 7262-6.
140.Moll, U.M., et al., Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc Natl Acad Sci U S A, 1995. 92(10): p. 4407-11.
141.Engeland, K., Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ, 2022. 29(5): p. 946-960.
142.Hollowood, A.D., et al., IGFBP-3 prolongs the p53 response and enhances apoptosis following UV irradiation. Int J Cancer, 2000. 88(3): p. 336-41.
143.Price, D., et al., IGFBP-3 Blocks Hyaluronan-CD44 Signaling, Leading to Increased Acetylcholinesterase Levels in A549 Cell Media and Apoptosis in a p53-Dependent Manner. Sci Rep, 2020. 10(1): p. 5083.
144.Dai, H., Y.I. Goto, and M. Itoh, Insulin-Like Growth Factor Binding Protein-3 Deficiency Leads to Behavior Impairment with Monoaminergic and Synaptic Dysfunction. Am J Pathol, 2017. 187(2): p. 390-400.
145.Akhurst, R.J. and R. Derynck, TGF-β signaling in cancer—a double-edged sword. Trends in cell biology, 2001. 11: p. S44-S51.
146.Gonzalez, M.A., et al., Multiple-dose pharmacokinetics and safety of ciprofloxacin in normal volunteers. Antimicrob Agents Chemother, 1984. 26(5): p. 741-4.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top