|
[1] Paul, S.; Zhu, Y.; Romain, C.; Brooks, R.; Saini, P. K.; Williams, C. K. Ring-opening copolymerization (ROCOP): synthesis and properties of polyesters and polycarbonates. Chem. Commun. 2015, 51, 6459-6479. DOI: 10.1039/c4cc10113h. [2] Lu, X. B.; Ren, W. M.; Wu, G. P. CO2 copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control. Acc. Chem. Res. 2012, 45, 1721-1735. DOI: 10.1021/ar300035z. [3] Clark, E. F.; Kociok Köhn, G.; Davidson, M. G.; Buchard, A. Polymers from sugars and isothiocyanates: ring-opening copolymerization of ad-xylose anhydrosugar oxetane. Polym. Chem. 2023, 14, 2838-2847. DOI: 10.1039/d3py00443k. [4] Plajer, A. J. Sequence Selective Ring‐opening Terpolymerisation Facilitates Higher Order Switchable Catalysis. ChemCatChem 2022, 14, e202200867. DOI: 10.1002/cctc.202200867. [5] Stirling, E.; Champouret, Y.; Visseaux, M. Catalytic metal-based systems for controlled statistical copolymerisation of lactide with a lactone. Polym. Chem. 2018, 9, 2517-2531. DOI: 10.1039/c8py00310f. [6] Zhang, J.; Qiao, Z. A.; Mahurin, S. M.; Jiang, X.; Chai, S. H.; Lu, H.; Nelson, K.; Dai, S. Hypercrosslinked phenolic polymers with well‐developed mesoporous frameworks. Angew. Chem. Int. Ed. 2015, 54, 4582-4586. DOI: 10.1002/anie.201500305. [7] Muylaert, I.; Verberckmoes, A.; De Decker, J.; Van Der Voort, P. Ordered mesoporous phenolic resins: Highly versatile and ultra stable support materials. J. Colloid Interface Sci. 2012, 175, 39-51. DOI: 10.1016/j.cis.2012.03.007. [8] Fickert, J.; Wohnhaas, C.; Turshatov, A.; Landfester, K.; Crespy, D. Copolymers structures tailored for the preparation of nanocapsules. Macromolecules 2013, 46, 573-579. DOI: 10.1021/ma302013s. [9] Zhang, Z. G.; Wang, J. Structures and properties of conjugated donor–acceptor copolymers for solar cell applications. J. Mater. Chem. 2012, 22, 4178-4187. DOI: 10.1039/c2jm14951f. [10] Marsh, L. H.; Coke, M.; Dettmar, P. W.; Ewen, R. J.; Havler, M.; Nevell, T. G.; Smart, J. D.; Smith, J. R.; Timmins, B.; Tsibouklis, J. Adsorbed poly (ethyleneoxide)–poly (propyleneoxide) copolymers on synthetic surfaces: Spectroscopy and microscopy of polymer structures and effects on adhesion of skin‐borne bacteria. J. Biomed. Mater. Res. 2002, 61, 641-652. DOI: 10.1002/jbm.10174. [11] Leibler, L. Theory of microphase separation in block copolymers. Macromolecules 1980, 13, 1602-1617. DOI: 10.1021/ma60078a047. [12] Swann, J. M.; Topham, P. D. Design and application of nanoscale actuators using block-copolymers. Polymers 2010, 2, 454-469. DOI: 10.3390/polym2040454. [13] Lodge, T. P. Block copolymers: past successes and future challenges. Macromol. Chem. Phys. 2003, 204, 265-273. DOI: 10.1002/macp.200290073. [14] Lee, K.; Corrigan, N.; Boyer, C. Polymerization induced microphase separation for the fabrication of nanostructured materials. Angew. Chem.Int. Ed. 2023, 135, e202307329. DOI: 10.1002/anie.202307329. [15] Ghoufi, A.; Artzner, F.; Malfreyt, P. Physical properties and hydrogen-bonding network of water–ethanol mixtures from molecular dynamics simulations. J. Phys. Chem. B. 2016, 120, 793-802. DOI: 10.1021/acs.jpcb.5b11776. [16] Kuo, S. W. Hydrogen-bonding in polymer blends. J. Polym. Res. 2008, 15, 459-486. DOI: 10.1007/s10965-008-9192-4. [17] Coleman, M. M.; Painter, P. C. Hydrogen bonded polymer blends. Prog. Polym. Sci. 1995, 20, 1-59. DOI: 10.1016/0079-6700(94)00038-4. [18] Kimura, T. Evaporation‐induced self‐assembly process controlled for obtaining highly ordered mesoporous materials with demanded morphologies. Chem Rec. 2016, 16, 445-457. DOI: 10.1002/tcr.201500262. [19] Dunphy, D. R.; Sheth, P. H.; Garcia, F. L.; Brinker, C. J. Enlarged pore size in mesoporous silica films templated by pluronic F127: Use of poloxamer mixtures and increased template/SiO2 ratios in materials synthesized by evaporation-induced self-assembly. Chem. Mater. 2015, 27, 75-84. DOI: 10.1021/cm5031624. [20] Tian, H.; Feng, Q.; Chen, Y.; Yang, H.; Li, X.; Lu, P. Synthesis of amino-functionalized mesoporous materials with environmentally friendly surfactants by evaporation-induced self-assembly and their application to the adsorption of lead (II) ions. J. Mater. Sci. 2015, 50, 2768-2778. DOI: 10.1007/s10853-015-8832-4. [21] Mahoney, L.; Koodali, R. T. Versatility of evaporation-induced self-assembly (EISA) method for preparation of mesoporous TiO2 for energy and environmental applications. Materials 2014, 7, 2697-2746. DOI: 10.3390/ma7042697. [22] Pan, D.; Chen, W.; Huang, X.; Zhang, J.; Yang, Y.; Yu, F.; Chen, S.; Fan, B.; Shi, X.; Cui, X. Solvothermal-assisted evaporation-induced self-assembly of ordered mesoporous alumina with improved performance. J. Colloid Interface Sci. 2018, 529, 432-443. DOI: 10.1016/j.jcis.2018.06.031. [23] Sinnaeve, D. The Stejskal–Tanner equation generalized for any gradient shape—an overview of most pulse sequences measuring free diffusion. Concepts Magn. Reson. Part A 2012, 40, 39-65. [24] Hrabe, J.; Kaur, G.; Guilfoyle, D. N. Principles and limitations of NMR diffusion measurements. J. Med. Phys. 2007, 32, 34-42. [25] Everett, D. H. Manual of symbols and terminology for physicochemical quantities and units, appendix II: Definitions, terminology and symbols in colloid and surface chemistry. Pure Appl. Chem. 1972, 31, 577-638. DOI: 10.1351/pac197231040577. [26] Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 1997, 97, 2373-2420. DOI: 10.1021/cr960406n. [27] Cundy, C. S.; Cox, P. A. The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem. Rev. 2003, 103, 663-702. DOI: 10.1021/cr020060i. [28] Ha, C. S.; Park, S. S. General synthesis and physico-chemical properties of mesoporous materials. Periodic Mesoporous Organosilicas, pringer 2019, pp. 15-85. DOI: 10.1007/978-981-13-2959-3. [29] Kumar, S.; Malik, M.; Purohit, R. Synthesis methods of mesoporous silica materials. Mater. Today: Proc. 2017, 4, 350-357. DOI: 10.1016/j.matpr.2017.01.032. [30] Schmidt, H. K.; Geiter, E.; Mennig, M.; Krug, H.; Becker, C.; Winkler, R.-P. The sol-gel process for nano-technologies: new nanocomposites with interesting optical and mechanical properties. J. Sol-Gel Sci. Technol. 1998, 13, 397-404. DOI: 10.1023/a:1008660909108 [31] Zhang, F.; Gu, D.; Yu, T.; Zhang, F.; Xie, S.; Zhang, L.; Deng, Y.; Wan, Y.; Tu, B.; Zhao, D. Mesoporous carbon single-crystals from organic− organic self-assembly. J. Am. Chem. Soc. 2007, 129, 7746-7747. DOI: 10.1021/ja072316d. [32] Zdravkov, B.; Čermák, J.; Šefara, M.; Janků, J. Pore classification in the characterization of porous materials: A perspective. Open Chem. 2007, 5, 385-395. DOI: 10.2478/s11532-007-0017-9. [33] Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051-1069. DOI: 10.1515/pac-2014-1117. [34] Lake, J. A.; Lomax, B. H. Plant responses to simulated carbon capture and storage (CCS) CO2 pipeline leakage: the effect of soil type. Greenh. Gases: Sci. Technol. 2019, 9, 397-408. DOI: 10.1002/ghg.1858. [35] Fu, D.; Davis, M. E. Carbon dioxide capture with zeotype materials. Chem. Soc. Rev. 2022, 51, 9340-9370. DOI: 10.1039/d2cs00508e. [36] Jawad, A. H.; Bardhan, M.; Islam, M. A.; Islam, M. A.; Syed-Hassan, S. S. A.; Surip, S.; ALOthman, Z. A.; Khan, M. R. Insights into the modeling, characterization and adsorption performance of mesoporous activated carbon from corn cob residue via microwave-assisted H3PO4 activation. Surf. Interfaces. 2020, 21, 100688. DOI: 10.1016/j.surfin.2020.100688. [37] Gunawardene, O. H.; Gunathilake, C. A.; Vikrant, K.; Amaraweera, S. M. Carbon Dioxide capture through physical and chemical adsorption using porous carbon materials: A review. Atmosphere 2022, 13, 397. DOI: 10.3390/atmos13030397. [38] North, M. What is CO2? Thermodynamics, basic reactions and physical chemistry. In J. CO2 Util., Elsevier, 2015; pp 3-17. [39] Houshmand, A.; Wan Daud, W. M. A.; Shafeeyan, M. S. Exploring potential methods for anchoring amine groups on the surface of activated carbon for CO2 adsorption. Sep. Purif. Technol. 2011, 46, 1098-1112. DOI: 10.1080/01496395.2010.546383. [40] Thevenon, A.; Garden, J. A.; White, A. J.; Williams, C. K. Dinuclear zinc salen catalysts for the ring opening copolymerization of epoxides and carbon dioxide or anhydrides. Inorg. Chem. 2015, 54, 11906-11915. DOI: 10.1021/acs.inorgchem.5b02233. [41] Du, W. T.; Kuan, Y.-L.; Kuo, S.-W. Intra-and intermolecular hydrogen bonding in miscible blends of CO2/epoxy cyclohexene copolymer with poly (vinyl phenol). Int. J. Mol. Sci. 2022, 23, 7018. DOI: 10.3390/ijms23137018. [42] Chu, W. C.; Bastakoti, B. P.; Kaneti, Y. V.; Li, J. G.; Alamri, H. R.; Alothman, Z. A.; Yamauchi, Y.; Kuo, S. W. Tailored design of bicontinuous gyroid mesoporous carbon and nitrogen‐doped carbon from poly (ethylene oxide‐b‐caprolactone) diblock copolymers. Chem. Eur. J. 2017, 23, 13734-13741. DOI: 10.1002/chem.201702360. [43] Thevenon, A.; Garden, J. A.; White, A. J.; Williams, C. K. Dinuclear zinc salen catalysts for the ring opening copolymerization of epoxides and carbon dioxide or anhydrides. Inorg. Chem. 2015, 54, 11906-11915. DOI: 10.1021/acs.inorgchem.5b02233. [44] Zhang, Y. Y.; Yang, G. W.; Wang, Y.; Lu, X. Y.; Wu, G. P.; Zhang, Z. S.; Wang, K.; Zhang, R. Y.; Nealey, P. F.; Darensbourg, D. J. Synthesis of CO2-based block copolymers via chain transfer polymerization using macroinitiators: activity, blocking efficiency, and nanostructure. Macromolecules 2018, 51, 791-800. DOI: 10.1021/acs.macromol.7b02231. [45] Schulze, M. W.; Hillmyer, M. A. Tuning mesoporosity in cross-linked nanostructured thermosets via polymerization-induced microphase separation. Macromolecules 2017, 50, 997-1007. DOI: 10.1021/acs.macromol.6b02570. [46] Yu, R.; Zheng, S.; Li, X.; Wang, J. Reaction-induced microphase separation in epoxy thermosets containing block copolymers composed of polystyrene and poly (ε-caprolactone): influence of copolymer architectures on formation of nanophases. Macromolecules 2012, 45, 9155-9168. DOI: 10.1021/ma3017212. [47] Mijovic, J.; Shen, M.; Sy, J. W.; Mondragon, I. Dynamics and morphology in nanostructured thermoset network/block copolymer blends during network formation. Macromolecules 2000, 33, 5235-5244. DOI: 10.1021/ma991894e. [48] Reshetenko, T.; Avdeeva, L.; Ismagilov, Z.; Pushkarev, V.; Cherepanova, S.; Chuvilin, A.; Likholobov, V. Catalytic filamentous carbon: Structural and textural properties. Carbon 2003, 41, 1605-1615. DOI: 10.1016/S0008-6223(03)00115-5. [49] Vinu, A.; Srinivasu, P.; Takahashi, M.; Mori, T.; Balasubramanian, V.; Ariga, K. Controlling the textural parameters of mesoporous carbon materials. Microporous Mesoporous Mater. 2007, 100, 20-26. DOI: 10.1016/j.micromeso.2006.10.008.
|