跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 00:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳詩芸
研究生(外文):Shih-Yun Chen
論文名稱:二氧化碳/環氧環己烯共聚製備具有高二氧化碳吸附能力的中孔洞碳材
論文名稱(外文):CO2/Epoxy Cyclohexene Copolymerization for the Preparation of Mesoporous Carbons with High CO2 Adsorption Capacity
指導教授:郭紹偉郭紹偉引用關係
指導教授(外文):Kuo, Shiao-Wei
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:63
中文關鍵詞:聚碳酸酯二氧化碳嵌段聚合物氫鍵作用力中孔材料
外文關鍵詞:polycarbonateCO2block copolymersH-bonding interactionsmesoporous material
相關次數:
  • 被引用被引用:0
  • 點閱點閱:8
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
此研究透過開環共聚合反應(Ring-opening copolymerization, ROCOP),將環己氧化物(CHO)、Carbon dioxide (CO2)和聚乙二醇(Polyethylene glycol, PEO)成功合成了PEO-b-PCHC,並通過傅立葉變換紅外光譜儀(FTIR)、核磁共振(NMR)和凝膠滲透色譜法(GPC)驗證了合成成功。利用蒸發誘導自組裝(EISA)方法,製備不同比例的PEO-b-PCHC/酚醛樹脂二元混合物,最通過高溫鍛燒去除模板,以獲得中孔碳材料,並進行了詳細的孔徑分析。這是首次使用CO2聚合物作為模板來製備中孔材料的研究,且發現碳材料具有高比表面積(509 m2 g-1),並在0 °C時表現出非常高的二氧化碳吸附能力(4.51 mmol g -1)。
In this study, successfully synthesized PEO-b-PCHC via ring-opening copolymerization (ROCOP) of cyclohexane oxide (CHO), carbon dioxide (CO2), and polyethylene glycol (PEO). This was confirmed by Nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), and Fourier transform infrared spectroscopy (FTIR) were used to confirm the successful synthesis of PEO-b-PCHC. Afterwards, the phenolic resin-like mesoporous materials were prepared using the evaporation-induced self-assembly (EISA) method. The interaction changes in differential scanning calorimetry (DSC) were observed through binary blends by phenolic resin in different ratios. After curing, elimination of the templates through high-temperature forging to obtain mesoporous carbon materials and detailed pore analysis was carried out.
Finally, the carbon material was found to have a high specific surface area (509.7 m2 g-1) and exhibited a very high CO2 adsorption capacity (4.51 mmol g-1) at 0 °C. This is the first study to use CO2 polymer as a template for the preparation of mesoporous materials.
Content
論文審定書 ii
誌謝 ii
摘要 iii
Abstract iv
Content v
Figure Captions vii
Scheme Captions ix
Table Captions x
Chapter 1. Introduction and Literature Review 1
1.1 Ring-opening copolymerization (ROCOP) 1
1.2 Phenol-Formaldehyde Resin 3
1.3 Self-Assembly of block Polymer 4
1.3.1 Block copolymer 4
1.3.2 Hydrogen Bonding 6
1.3.3 Evaporation-induced self-assembly (EISA) 8
1.4 Diffusion-Ordered Spectroscopy (DOSY) 9
1.5 Adsorption Theory 10
1.5.1 Porous materials 10
1.5.2 Adsorption Principle and Type 11
1.5.3 CO2 Adsorption 15
Chapter 2. Motivation and Objectives 16
Chapter 3. Experimental Section 17
3.1 Synthesis of LH and LZn2OAc2 17
3.2 Synthesis of PEO-b-PCHC 18
3.3 Synthesis of phenolic resin (Resol type). 19
3.4 Self-Assembled Resol/ PEO-b-PCHC Blends 19
3.5 Synthesis of Mesoporous Phenolic Resins and Carbon. 19
3.6 Characterization 20
Chapter 4 Results and Discussion 21
4.1 Structure Identification of PEO-b-PCHC 21
4.2 Analyses of PEO-b-PCHC /Resol binary blends. 30
4.2.1 DSC of PEO-b-PCHC /Resol binary blends. 30
4.2.2 FTIR of Resol/PEO-b-PCHC binary blends. 31
4.3 Analysis of Small-angle X-ray scattering (SAXS) 34
4.4 Analysis of TEM 37
4.5 Analysis of BET 40
4.5.1 Surface area analyses 40
4.5.2 CO2 capture analysis 42
4.6 Raman spectroscopy analyses 43
Chapter 5 Conclusions 45
References 46


Figure Captions
Figure 1- 1 Ring opening copolymerizations (ROCOP) 2
Figure 1- 2 Ring opening polymerizations (ROP) 2
Figure 1-3 Initiation of ROCOP 2
Figure 1-4 Reactions of Novolac and Resol 3
Figure 1-5 Four main types of copolymer 4
Figure 1-6 Theoretical phase diagram and corresponding morphologies for diblock copolymers 5
Figure 1-7 Hydrogen bond 7
Figure 1-8 The IUPAC classification of adsorption isotherm ] 12
Figure 1-9 The IUPAC classification of hysteresis 14
Figure 4-1 FTIR spectrum of PEO114-b-PCHC178 22
Figure 4-2 FTIR spectrum of PEO114-b-PCHC268 22
Figure 4-3 GPC spectrum of PEO114-b-PCHC178 23
Figure 4-4 GPC spectrum of PEO114-b-PCHC268 23
Figure 4-5 1H NMR spectrum of PEO114-b-PCHC178 24
Figure 4-6 1H NMR spectrum of PEO114-b-PCHC268 24
Figure 4-7 13C NMR spectrum of PEO114-b-PCHC178 25
Figure 4-8 13C NMR spectrum of PEO114-b-PCHC268 25
Figure 4-9 TGA analyses of PEO-b-PCHC 27
Figure 4-10 DSC thermal analyses of PEO-b-PCHC 27
Figure 4- 11 DOSY of PEO114-b-PCHC178 29
Figure 4- 12 DOSY of PEO114-b-PCHC268 29
Figure 4-13 DSC thermai analyses of Resol/PEO114-b-PCHC268 30
Figure 4-14 FTIR spectra recorded at 120 °C displaying the (a) hydroxyl stretching, (b) carbonyl stretching 32
Figure 4-15 Curve fitting the C=O absorptions of selected Resol/PEO114-b-PCHC178 binary blends. 33
Figure 4-16 SAXS patterns of (a) Resol/PEO114-b-PCHC268 (b) Resol/PEO114-b-PCHC268 = 60/40, recorded at various temperatures 35
Figure 4-17 SAXS patterns of Resol/PEO114-b-PCHC178 (a) 60/40 (b)50/50 recorded at various temperatures 35
Figure 4-18 SAXS patterns of Resol/PEO114-b-PCHC268 (a) 40/60 (b)50/50 recorded at various temperatures 36
Figure 4- 19 TEM images and SAXS of mesoporous templated by PEO114-b-PCHC178 at weight fraction of Resol/template = (a,d) 60/40 (b,e) 50/50 (c,f) 40/60 37
Figure 4-20 TEM images and SAXS of mesoporous templated by PEO114-b-PCHC268 at weight fraction of Resol/template = (a,d) 30/70, (b,e) 40/60, (c,f) 50/50, (g,j) 60/40 (h,k) 70/30, and (i.l) 80/20 38
Figure 4-21 TEM images and SAXS of mesoporous templated by PEO114-b-PCHC178 at weight fraction of Resol/template = (a,d) 60/40, (b,e) 50/50, and (c,f) 40/60 39
Figure 4-22 The N2 adsorption-desorption isotherms of mesoporous carbon 41
Figure 4-23 CO2 capture property of mesoporous carbon 42
Figure 4-24 Raman spectra of mesoporous carbon 44

Scheme Captions
Scheme 3-1 Synthesis of LH and LZn2OAc2 17
Scheme 3-2 Synthesis of PEO-b-PCHC 18
Scheme 3-3 Synthesis of phenolic resin (resol type). 19

[1] Paul, S.; Zhu, Y.; Romain, C.; Brooks, R.; Saini, P. K.; Williams, C. K. Ring-opening copolymerization (ROCOP): synthesis and properties of polyesters and polycarbonates. Chem. Commun. 2015, 51, 6459-6479. DOI: 10.1039/c4cc10113h.
[2] Lu, X. B.; Ren, W. M.; Wu, G. P. CO2 copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control. Acc. Chem. Res. 2012, 45, 1721-1735. DOI: 10.1021/ar300035z.
[3] Clark, E. F.; Kociok Köhn, G.; Davidson, M. G.; Buchard, A. Polymers from sugars and isothiocyanates: ring-opening copolymerization of ad-xylose anhydrosugar oxetane. Polym. Chem. 2023, 14, 2838-2847. DOI: 10.1039/d3py00443k.
[4] Plajer, A. J. Sequence Selective Ring‐opening Terpolymerisation Facilitates Higher Order Switchable Catalysis. ChemCatChem 2022, 14, e202200867. DOI: 10.1002/cctc.202200867.
[5] Stirling, E.; Champouret, Y.; Visseaux, M. Catalytic metal-based systems for controlled statistical copolymerisation of lactide with a lactone. Polym. Chem. 2018, 9, 2517-2531. DOI: 10.1039/c8py00310f.
[6] Zhang, J.; Qiao, Z. A.; Mahurin, S. M.; Jiang, X.; Chai, S. H.; Lu, H.; Nelson, K.; Dai, S. Hypercrosslinked phenolic polymers with well‐developed mesoporous frameworks. Angew. Chem. Int. Ed. 2015, 54, 4582-4586. DOI: 10.1002/anie.201500305.
[7] Muylaert, I.; Verberckmoes, A.; De Decker, J.; Van Der Voort, P. Ordered mesoporous phenolic resins: Highly versatile and ultra stable support materials. J. Colloid Interface Sci. 2012, 175, 39-51. DOI: 10.1016/j.cis.2012.03.007.
[8] Fickert, J.; Wohnhaas, C.; Turshatov, A.; Landfester, K.; Crespy, D. Copolymers structures tailored for the preparation of nanocapsules. Macromolecules 2013, 46, 573-579. DOI: 10.1021/ma302013s.
[9] Zhang, Z. G.; Wang, J. Structures and properties of conjugated donor–acceptor copolymers for solar cell applications. J. Mater. Chem. 2012, 22, 4178-4187. DOI: 10.1039/c2jm14951f.
[10] Marsh, L. H.; Coke, M.; Dettmar, P. W.; Ewen, R. J.; Havler, M.; Nevell, T. G.; Smart, J. D.; Smith, J. R.; Timmins, B.; Tsibouklis, J. Adsorbed poly (ethyleneoxide)–poly (propyleneoxide) copolymers on synthetic surfaces: Spectroscopy and microscopy of polymer structures and effects on adhesion of skin‐borne bacteria. J. Biomed. Mater. Res. 2002, 61, 641-652. DOI: 10.1002/jbm.10174.
[11] Leibler, L. Theory of microphase separation in block copolymers. Macromolecules 1980, 13, 1602-1617. DOI: 10.1021/ma60078a047.
[12] Swann, J. M.; Topham, P. D. Design and application of nanoscale actuators using block-copolymers. Polymers 2010, 2, 454-469. DOI: 10.3390/polym2040454.
[13] Lodge, T. P. Block copolymers: past successes and future challenges. Macromol. Chem. Phys. 2003, 204, 265-273. DOI: 10.1002/macp.200290073.
[14] Lee, K.; Corrigan, N.; Boyer, C. Polymerization induced microphase separation for the fabrication of nanostructured materials. Angew. Chem.Int. Ed. 2023, 135, e202307329. DOI: 10.1002/anie.202307329.
[15] Ghoufi, A.; Artzner, F.; Malfreyt, P. Physical properties and hydrogen-bonding network of water–ethanol mixtures from molecular dynamics simulations. J. Phys. Chem. B. 2016, 120, 793-802. DOI: 10.1021/acs.jpcb.5b11776.
[16] Kuo, S. W. Hydrogen-bonding in polymer blends. J. Polym. Res. 2008, 15, 459-486. DOI: 10.1007/s10965-008-9192-4.
[17] Coleman, M. M.; Painter, P. C. Hydrogen bonded polymer blends. Prog. Polym. Sci. 1995, 20, 1-59. DOI: 10.1016/0079-6700(94)00038-4.
[18] Kimura, T. Evaporation‐induced self‐assembly process controlled for obtaining highly ordered mesoporous materials with demanded morphologies. Chem Rec. 2016, 16, 445-457. DOI: 10.1002/tcr.201500262.
[19] Dunphy, D. R.; Sheth, P. H.; Garcia, F. L.; Brinker, C. J. Enlarged pore size in mesoporous silica films templated by pluronic F127: Use of poloxamer mixtures and increased template/SiO2 ratios in materials synthesized by evaporation-induced self-assembly. Chem. Mater. 2015, 27, 75-84. DOI: 10.1021/cm5031624.
[20] Tian, H.; Feng, Q.; Chen, Y.; Yang, H.; Li, X.; Lu, P. Synthesis of amino-functionalized mesoporous materials with environmentally friendly surfactants by evaporation-induced self-assembly and their application to the adsorption of lead (II) ions. J. Mater. Sci. 2015, 50, 2768-2778. DOI: 10.1007/s10853-015-8832-4.
[21] Mahoney, L.; Koodali, R. T. Versatility of evaporation-induced self-assembly (EISA) method for preparation of mesoporous TiO2 for energy and environmental applications. Materials 2014, 7, 2697-2746. DOI: 10.3390/ma7042697.
[22] Pan, D.; Chen, W.; Huang, X.; Zhang, J.; Yang, Y.; Yu, F.; Chen, S.; Fan, B.; Shi, X.; Cui, X. Solvothermal-assisted evaporation-induced self-assembly of ordered mesoporous alumina with improved performance. J. Colloid Interface Sci. 2018, 529, 432-443. DOI: 10.1016/j.jcis.2018.06.031.
[23] Sinnaeve, D. The Stejskal–Tanner equation generalized for any gradient shape—an overview of most pulse sequences measuring free diffusion. Concepts Magn. Reson. Part A 2012, 40, 39-65.
[24] Hrabe, J.; Kaur, G.; Guilfoyle, D. N. Principles and limitations of NMR diffusion measurements. J. Med. Phys. 2007, 32, 34-42.
[25] Everett, D. H. Manual of symbols and terminology for physicochemical quantities and units, appendix II: Definitions, terminology and symbols in colloid and surface chemistry. Pure Appl. Chem. 1972, 31, 577-638. DOI: 10.1351/pac197231040577.
[26] Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 1997, 97, 2373-2420. DOI: 10.1021/cr960406n.
[27] Cundy, C. S.; Cox, P. A. The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem. Rev. 2003, 103, 663-702. DOI: 10.1021/cr020060i.
[28] Ha, C. S.; Park, S. S. General synthesis and physico-chemical properties of mesoporous materials. Periodic Mesoporous Organosilicas, pringer 2019, pp. 15-85. DOI: 10.1007/978-981-13-2959-3.
[29] Kumar, S.; Malik, M.; Purohit, R. Synthesis methods of mesoporous silica materials. Mater. Today: Proc. 2017, 4, 350-357. DOI: 10.1016/j.matpr.2017.01.032.
[30] Schmidt, H. K.; Geiter, E.; Mennig, M.; Krug, H.; Becker, C.; Winkler, R.-P. The sol-gel process for nano-technologies: new nanocomposites with interesting optical and mechanical properties. J. Sol-Gel Sci. Technol. 1998, 13, 397-404. DOI: 10.1023/a:1008660909108
[31] Zhang, F.; Gu, D.; Yu, T.; Zhang, F.; Xie, S.; Zhang, L.; Deng, Y.; Wan, Y.; Tu, B.; Zhao, D. Mesoporous carbon single-crystals from organic− organic self-assembly. J. Am. Chem. Soc. 2007, 129, 7746-7747. DOI: 10.1021/ja072316d.
[32] Zdravkov, B.; Čermák, J.; Šefara, M.; Janků, J. Pore classification in the characterization of porous materials: A perspective. Open Chem. 2007, 5, 385-395. DOI: 10.2478/s11532-007-0017-9.
[33] Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051-1069. DOI: 10.1515/pac-2014-1117.
[34] Lake, J. A.; Lomax, B. H. Plant responses to simulated carbon capture and storage (CCS) CO2 pipeline leakage: the effect of soil type. Greenh. Gases: Sci. Technol. 2019, 9, 397-408. DOI: 10.1002/ghg.1858.
[35] Fu, D.; Davis, M. E. Carbon dioxide capture with zeotype materials. Chem. Soc. Rev. 2022, 51, 9340-9370. DOI: 10.1039/d2cs00508e.
[36] Jawad, A. H.; Bardhan, M.; Islam, M. A.; Islam, M. A.; Syed-Hassan, S. S. A.; Surip, S.; ALOthman, Z. A.; Khan, M. R. Insights into the modeling, characterization and adsorption performance of mesoporous activated carbon from corn cob residue via microwave-assisted H3PO4 activation. Surf. Interfaces. 2020, 21, 100688. DOI: 10.1016/j.surfin.2020.100688.
[37] Gunawardene, O. H.; Gunathilake, C. A.; Vikrant, K.; Amaraweera, S. M. Carbon Dioxide capture through physical and chemical adsorption using porous carbon materials: A review. Atmosphere 2022, 13, 397. DOI: 10.3390/atmos13030397.
[38] North, M. What is CO2? Thermodynamics, basic reactions and physical chemistry. In J. CO2 Util., Elsevier, 2015; pp 3-17.
[39] Houshmand, A.; Wan Daud, W. M. A.; Shafeeyan, M. S. Exploring potential methods for anchoring amine groups on the surface of activated carbon for CO2 adsorption. Sep. Purif. Technol. 2011, 46, 1098-1112. DOI: 10.1080/01496395.2010.546383.
[40] Thevenon, A.; Garden, J. A.; White, A. J.; Williams, C. K. Dinuclear zinc salen catalysts for the ring opening copolymerization of epoxides and carbon dioxide or anhydrides. Inorg. Chem. 2015, 54, 11906-11915. DOI: 10.1021/acs.inorgchem.5b02233.
[41] Du, W. T.; Kuan, Y.-L.; Kuo, S.-W. Intra-and intermolecular hydrogen bonding in miscible blends of CO2/epoxy cyclohexene copolymer with poly (vinyl phenol). Int. J. Mol. Sci. 2022, 23, 7018. DOI: 10.3390/ijms23137018.
[42] Chu, W. C.; Bastakoti, B. P.; Kaneti, Y. V.; Li, J. G.; Alamri, H. R.; Alothman, Z. A.; Yamauchi, Y.; Kuo, S. W. Tailored design of bicontinuous gyroid mesoporous carbon and nitrogen‐doped carbon from poly (ethylene oxide‐b‐caprolactone) diblock copolymers. Chem. Eur. J. 2017, 23, 13734-13741. DOI: 10.1002/chem.201702360.
[43] Thevenon, A.; Garden, J. A.; White, A. J.; Williams, C. K. Dinuclear zinc salen catalysts for the ring opening copolymerization of epoxides and carbon dioxide or anhydrides. Inorg. Chem. 2015, 54, 11906-11915. DOI: 10.1021/acs.inorgchem.5b02233.
[44] Zhang, Y. Y.; Yang, G. W.; Wang, Y.; Lu, X. Y.; Wu, G. P.; Zhang, Z. S.; Wang, K.; Zhang, R. Y.; Nealey, P. F.; Darensbourg, D. J. Synthesis of CO2-based block copolymers via chain transfer polymerization using macroinitiators: activity, blocking efficiency, and nanostructure. Macromolecules 2018, 51, 791-800. DOI: 10.1021/acs.macromol.7b02231.
[45] Schulze, M. W.; Hillmyer, M. A. Tuning mesoporosity in cross-linked nanostructured thermosets via polymerization-induced microphase separation. Macromolecules 2017, 50, 997-1007. DOI: 10.1021/acs.macromol.6b02570.
[46] Yu, R.; Zheng, S.; Li, X.; Wang, J. Reaction-induced microphase separation in epoxy thermosets containing block copolymers composed of polystyrene and poly (ε-caprolactone): influence of copolymer architectures on formation of nanophases. Macromolecules 2012, 45, 9155-9168. DOI: 10.1021/ma3017212.
[47] Mijovic, J.; Shen, M.; Sy, J. W.; Mondragon, I. Dynamics and morphology in nanostructured thermoset network/block copolymer blends during network formation. Macromolecules 2000, 33, 5235-5244. DOI: 10.1021/ma991894e.
[48] Reshetenko, T.; Avdeeva, L.; Ismagilov, Z.; Pushkarev, V.; Cherepanova, S.; Chuvilin, A.; Likholobov, V. Catalytic filamentous carbon: Structural and textural properties. Carbon 2003, 41, 1605-1615. DOI: 10.1016/S0008-6223(03)00115-5.
[49] Vinu, A.; Srinivasu, P.; Takahashi, M.; Mori, T.; Balasubramanian, V.; Ariga, K. Controlling the textural parameters of mesoporous carbon materials. Microporous Mesoporous Mater. 2007, 100, 20-26. DOI: 10.1016/j.micromeso.2006.10.008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 利用廢石英砂製備中孔洞與微孔材料進行二氧 化碳處理之研究
2. 以溶膠-凝膠法製備聚碳酸酯與二氧化矽混成有機/無機奈米複合材料及性質研究
3. 改質底渣合成中孔材料並應用於二氧化碳吸附之研究
4. 以二氧化碳與4-乙烯基環氧環己烷合成聚碳酸酯共聚合物與性質之研究
5. 具含氮雜環苯酚氧基配位基修飾之新穎銦金屬錯合物合成、結構鑑定以及應用於二氧化碳與脂肪族環氧化物共聚合反應之催化研究
6. 改質MCM-41中孔材料並應用於二氧化碳吸附之研究
7. 基於 PCHC 共聚物和聚乙烯苯酚共混物之分子內和分子間氫鍵
8. 以環氧化物與CO2合成具生物可降解性的聚碳酸酯共聚物
9. 新穎含雙胺基雙苯並噻唑苯酚氧基衍生物之雙核鈷和鉻錯合物的合成、結構鑑定及應用於二氧化碳/環氧化物共聚合與耦合反應之催化研究
10. 新穎含雙亞胺基雙苯並三唑苯酚氧配位基衍生物之單金屬鈷錯合物合成、結構鑑定以及應用於二氧化碳/環氧化物共聚合反應的催化研究
11. 不同取代基之胺類配位基過渡金屬化合物 (鋅、鎳、銅)之合成、鑑定及其在環氧環己烷和二氧化碳之催化應用
12. 新穎含雙亞胺基雙苯並噻唑苯酚氧衍生物的雙核鎳錯合物之合成、結構鑑定以及於二氧化碳/環氧化物共聚合反應的催化應用
13. 親水性聚碳酸酯纖維薄膜之製備
14. 新穎鑭系錯合物含循理設計之多牙希夫鹼配位基之合成、結構鑑定與催化研究
15. 聚碳酸酯與二氧化矽之奈米複合材料合成與性質分析
 
無相關期刊