|
Du, C.;Yang, L.;Tan, S.;Song, J.;Zhang, Z.;Wang, S.;Xiong, Y.;Yu, G.;Chen, H.;Zhou, L., "Reduced graphene oxide modified Z-scheme AgI/Bi2MoO6 heterojunctions with boosted photocatalytic activity for water treatment originated from the efficient charge pairs partition and migration." Environmental Science and Pollution Research 2021, 28, 66589-66601. DOI: 10.1007/s11356-021-15180-y. [2] Cooper, A. I., "Conjugated microporous polymers." Advanced Materials 2009, 21, 1291-1295. DOI: 10.1002/adma.200801971. [3] Zhou, Y. B.;Zhan, Z. P., "Conjugated microporous polymers for heterogeneous catalysis." Chemistry–An Asian Journal 2018,13,9-19. DOI: 10.1002/asia.201701107. [4] Chen, T.;Zhang, W.;Li, B.;Huang, W.;Lin, C.;Wu, Y.;Chen, S.;Ma, H., "Adsorptive separation of aromatic compounds from alkanes by π–π interactions in a carbazole-based conjugated microporous polymer." ACS Applied Materials & Interfaces 2020,12,56385-56392. DOI: 10.1021/acsami.0c18232. [5] Mohamed, M. G.;EL-Mahdy, A. F.;Kotp, M. G.;Kuo, S.-W., "Advances in porous organic polymers: Syntheses, structures, and diverse applications." Materials Advances 2022, 3, 707-733. DOI: 10.1039/D1MA00771H. [6] Imam, S. S.;Babamale, H. F., "A short review on the removal of rhodamine B dye using agricultural waste-based adsorbents." Asian Journal of Chemical Sciences 2020, 7, 25-37. DOI: 10.9734/AJOCS/2020/v7i119013. [7] Lin, Y.;Ma, J.;Liu, W.;Li, Z.;He, K., "Efficient removal of dyes from dyeing wastewater by powder activated charcoal/titanate nanotube nanocomposites: adsorption and photoregeneration." Environmental Science and Pollution Research 2019, 26, 10263-10273. DOI: 10.1007/s11356-019-04218-x. [8] Liu, Y.;Li, B.;Xiang, Z., "Pathways towards Boosting Solar‐Driven Hydrogen Evolution of Conjugated Polymers." Small 2021,17,2007576. DOI: 10.1002/smll.202007576. [9] Zhang, H.;Li, M.;Wang, W.;Zhang, G.;Tang, Q.;Cao, J., "Designing 3D porous BiOI/Ti3C2 nanocomposite as a superior coating photocatalyst for photodegradation RhB and photoreduction Cr (VI)." Separation and Purification Technology 2021, 272,118911.DOI: 10.1016/j.seppur.2021.118911. [10] Gao, X.;Shu, C.;Zhang, C.;Ma, W.;Ren, S.-B.;Wang, F.;Chen, Y.;Zeng, J. H.;Jiang, J.-X., "Substituent effect of conjugated microporous polymers on the photocatalytic hydrogen evolution activity." Journal of Materials Chemistry A 2020, 8, 2404-2411. DOI: 10.1039/C9TA13212K. [11] Yu, C.;Cao, F.;Li, G.;Wei, R.;Jimmy, C. Y.;Jin, R.;Fan, Q.;Wang, C., "Novel noble metal (Rh, Pd, Pt)/BiOX (Cl, Br, I) composite photocatalysts with enhanced photocatalytic performance in dye degradation." Separation and Purification Technology 2013,120,110-122. DOI: 10.1016/j.seppur.2013.09.036. [12] Liu, H.;Wang, C.;Wang, G., "Photocatalytic advanced oxidation processes for water treatment: recent advances and perspective." Chemistry–An Asian Journal 2020, 15, 3239-3253. DOI: 10.1002/asia.202000895. [13] Andreozzi, R.;Caprio, V.;Insola, A.;Marotta, R., "Advanced oxidation processes (AOP) for water purification and recovery." Catalysis today 1999, 53, 51-59. DOI: 10.1016/S0920-5861(99)00102-9. [14] Zhang, T.;Xing, G.;Chen, W.;Chen, L., "Porous organic polymers: a promising platform for efficient photocatalysis." Materials Chemistry Frontiers 2020, 4, 332-353. DOI: 10.1039/C9QM00633H. [15] Sillanpää, M. E.;Kurniawan, T. A.;Lo, W.-h., "Degradation of chelating agents in aqueous solution using advanced oxidation process (AOP)." Chemosphere 2011, 83, 1443-1460. DOI: 10.1016/j.chemosphere.2011.01.007. [16] Wang, B.;Xie, Z.;Li, Y.;Yang, Z.;Chen, L., "Dual-functional conjugated nanoporous polymers for efficient organic pollutants treatment in water: a synergistic strategy of adsorption and photocatalysis." Macromolecules 2018, 51, 3443-3449. DOI: 10.1021/acs.macromol.8b00669. [17] Hou, Y.;Cui, C.-X.;Zhang, E.;Wang, J.-C.;Li, Y.;Zhang, Y.;Zhang, Y.;Wang, Q.;Jiang, J., "A hybrid of g-C3N4 and porphyrin-based covalent organic frameworks via liquid-assisted grinding for enhanced visible-light-driven photoactivity." Dalton Transactions 2019,48,14989-14995. DOI: 10.1039/C9DT03307F. [18] Deng, Y.;Zhang, Z.;Du, P.;Ning, X.;Wang, Y.;Zhang, D.;Liu, J.;Zhang, S.;Lu, X., "Embedding ultrasmall Au clusters into the pores of a covalent organic framework for enhanced photostability and photocatalytic performance." Angewandte Chemie 2020, 132, 6138-6145. DOI: 10.1002/ange.201916154. [19] Wang, T.-X.;Liang, H.-P.;Anito, D. A.;Ding, X.;Han, B.-H., "Emerging applications of porous organic polymers in visible-light photocatalysis." Journal of Materials Chemistry A 2020,8,7003-7034. DOI: 10.1039/D0TA00364F. [20] Li, M.;Zhao, H.;Lu, Z.-Y., "Porphyrin-based porous organic polymer, Py-POP, as a multifunctional platform for efficient selective adsorption and photocatalytic degradation of cationic dyes." Microporous and Mesoporous Materials 2020, 292, 109774. DOI: 10.1016/j.micromeso.2019.109774. [21] Preet, K.;Gupta, G.;Kotal, M.;Kansal, S. K.;Salunke, D. B.;Sharma, H. K.;Chandra Sahoo, S.;Van Der Voort, P.;Roy, S., "Mechanochemical synthesis of a new triptycene-based imine-linked covalent organic polymer for degradation of organic dye." Crystal Growth & Design 2019, 19, 2525-2530. DOI: 10.1021/acs.cgd.9b00166. [22] Ma, S.;Li, Z.;Jia, J.;Zhang, Z.;Xia, H.;Li, H.;Chen, X.;Xu, Y.;Liu, X., "Amide-linked covalent organic frameworks as efficient heterogeneous photocatalysts in water." Chinese Journal of Catalysis 2021,42,2010-2019. DOI: 10.1016/S1872-2067(21)63836-6. [23] Wang, J. H.;Chang, C.-L.;Zhang, Z. W.;EL-Mahdy, A. F., "Facile metal-free synthesis of pyrrolo [3,2-b] pyrrolyl-based conjugated microporous polymers for high-performance photocatalytic degradation of organic pollutants." Polymer Chemistry 2022, 13, 5300-5308. DOI: 10.1039/D2PY00658H.
|