跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/02 05:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙擘
研究生(外文):Bo-zhao
論文名稱:共軛微孔聚合物作為光催化劑對於環境應用
論文名稱(外文):Conjugated Microporous Polymers as Photocatalysts for Environmental Applications
指導教授:曼哈迪
指導教授(外文):Ahmed Fikry Mohamed EL-Mahdy Admed
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:64
中文關鍵詞:共軛微孔聚合物染料移除染料降解光降解合成
外文關鍵詞:Conjugated microporous polymersDye removalPhotodegradationsynthesisDye degradation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在水汙染日益嚴重的情況下,我們提出共軛微孔聚合物當一種清除水中有機汙染物的方法。
本實驗中席夫鹼 (Schiff-base) 脫水縮合反應出兩種DBTO-CMPs,並使用FTIR確認其自組裝結構,在DBTO-CMP-2 中更是加入了OH group使其利用分子間氫鍵在染料(RhB)吸附中有著出色的表現,並且利用Tauc plot繪製DBTO-CMPs能隙,具有較小的能隙使其成為出色的光降解催化劑,我們的實驗展示了DBTO-CMPs 優異的光降解能力。
In the face of the escalating issue of water pollution, we propose the use of conjugated microporous polymers (CMPs) as a method for removing organic contaminants from water.
In this experiment, two types of DBTO-CMPs were synthesized through Schiff-base dehydration condensation reactions, and their self-assembled structures were confirmed using FTIR. In DBTO-CMP-2, the addition of OH groups enhanced its performance in dye (RhB) adsorption through intermolecular hydrogen bonding. Moreover, the Tauc plot indicated that DBTO-CMPs have smaller bandgaps, making them excellent photocatalysts for the degradation of organic compounds under light. Our experiments demonstrate the outstanding photocatalytic capabilities of DBTO-CMPs.
論文審定書 i
摘要 ii
Abstract iii
Content iv
List of figures vii
List of tables ix
List of schemes x
Chapter 1 Introduction 1
1.1 The environmental issues that human society faces today. 1
1.2 Conjugated Microporous Polymers (CMPs) 2
1.3 Rhodamine B Dye (RhB) 3
1.4 Adsorption Theory 5
1.4.1 Adsorption isotherm 5
1.4.2 Mechanism of Adsorption 8
1.5 Photocatalysis 9
1.5.1 Principle of heterogeneous photocatalysis 9
1.5.2 Conjugated Polymer Design for Photocatalysis 11
1.6 The application of advanced oxidation processes (AOPs) 13
Chapter 2 Motivation and Objectives 15
Chapter 3 Experimental Section 16
3.1 Materials 16
3.2 Syntheses 17
3.2.1 Synthesis of 3,7-diaminodibenzo[b,d]thiophene 5,5-dioxide (DBTO-2NH2) 17
3.2.2 Synthesis of 2,5-dihydroxyterephthalaldehyde (TP-2OHCHO) 18
3.2.3 Synthesis of DBTO-CMP-1 19
3.2.4 Synthesis of DBTO-CMP-2 20
Chapter 4 Results and Discussion 21
4.1 Structural Characterization 21
4.1.1 Characterization of DBTO-2NH2 21
4.1.2 Characterization of TP-2CHO 22
4.1.3 Characterization of BDI 23
4.1.4 Characterization of TP-2OHCHO 24
4.1.5 Characterization of DBTO-CMP-1 25
4.1.6 Characterization of DBTO-CMP-2 26
4.1.7 Solid-State Nuclear Magnetic Resonance Spectroscopy (ssNMR) 27
4.2 Powder X-ray Diffraction Analysis 28
4.3 Thermal Stability Analysis 29
4.4 X-ray Photoelectron Spectroscopy Analysis 31
4.5 Morphology 35
4.5.1 Transmission Electron Microscopy (TEM) 35
4.5.2 Scanning Electron Microscopy (SEM) 36
4.6 Photophysical and Electrochemical Properties 37
4.6.1 UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS) 37
4.6.2 Tauc Plots of DBTO-CMPs 38
4.6.3 Cyclic Voltammo grams (CV) 40
4.6.4 Energy Level Diagram 41
4.6.5 Electrochemical Impedance Spectroscopy (EIS) 42
4.7 Dye Adsorption 43
4.8 Photocatalytic Degradation of RhB 45
4.8.1 Photocatalytic Degradation of RhB 45
4.8.2 Photodegradation Efficiency of RhB 47
Chapter 5 Conclusions 49
References 50

List of figures
Figure 1-1 Chemical structure of RhB 4
Figure 1-2. Monolayer adsorption 6
Figure 1-3. Multilayer adsorption. 7
Figure 1-4. The steps of heterogeneous photocatalysis. 10
Figure 1-5. Mechanism of photocatalytic dye degradation. 14
Figure 4-1. IR spectrum of DBTO-2NH2. 21
Figure 4-2. IR spectrum of TP-2CHO 22
Figure 4-3. IR spectrum of BDI 23
Figure 4-4. IR spectrum of TP-2OHCHO 24
Figure 4-5. IR spectrum of DBTO-2NH2, TP-2CHO, BDI,and the DBTO-CMP-1 25
Figure 4-6. IR spectrum of DBTO-2NH2, TP-2OHCHO, BDI, and the DBTO-CMP-2 26
Figure 4-7. 13C ssNMR of DBTO-CMP-1 and DBTO-CMP-2 27
Figure 4-8. PXRD patterns of DBTO-CMP-1 and DBTO-CMP-2 28
Figure 4-9. TGA analysis of DBTO-CMP-1 and DBTO-CMP-2. 30
Figure 4-10. XPS full spectrum of DBTO-CMP-1 and DBTO-CMP-2 32
Figure 4-11. XPS peak fitting of (a) DBTO-CMP-1 and (b) DBTO-CMP-2 33
Figure 4-12. TEM images of (a) DBTO-CMP-1, (d) DBTO-CMP-2. 35
Figure 4-13. SEM images of (a) DBTO-CMP-1, (c) DBTO-CMP-2 36
Figure 4-14. UV-Vis DRS spectra of DBTO-CMP-1, DBTO-CMP-2 37
Figure 4-15. Tauc plots of DBTO-CMP-1 and DBTO-CMP-2 39
Figure 4-16. Cyclic voltammograms of DBTO-CMP-1 and DBTO-CMP-2 40
Figure 4-17. Energy level of DBTO-CMP-1 and DBTO-CMP-2. 41
Figure 4-18. EIS of DBTO-CMP-1 and DBTO-CMP-2. 42
Figure 4-19. (a)UV-Vis spectra of RhB solution (initial concentration: 12.5 mg L–1) were obtained at different times after the addition of DBTO-CMP-1 and DBTO-CMP-2. (b)RhB adsorption rates from aqueous solutions on DBTO-CMP-1 and DBTO-CMP-2 were evaluated over time. 44
Figure 4-20. photodegradation of RhB solution 10 mg L−1 (a) DBTO-CMP-1 and (b)DBTO-CMP-2. (c) Photocatalytic efficacies of DBTO-CMP-1 and DBTO-CMP-2 46
Figure 4-21. Photodegradation efficiencies of DBTO-CMP-1 and DBTO-CMP-2. 47

List of tables
Table 4-1. Td10 and char yield of DBTO-CMP-1 and DBTO-CMP-2. 30
Table 4-2. XPS peak-fitting positions of DBTO-CMP-1 and DBTO-CMP-2. 34
Table 4-3. XPS peak-fitting area fractions of DBTO-CMP-1 and DBTO-CMP-2. 34
Table 4-4. Photodegradation performance of RhB on the DBTO-CMPs in comparison to other published material. 48

List of schemes
Scheme 3-1. Synthesis of DBTO-2NH2 17
Scheme 3-2. Synthesis of TP-2OHCHO 18
Scheme 3-3. Synthesis of DBTO-CMP-1 19
Scheme 3-4. Synthesis of DBTO-CMP-2 20
Du, C.;Yang, L.;Tan, S.;Song, J.;Zhang, Z.;Wang, S.;Xiong, Y.;Yu, G.;Chen, H.;Zhou, L., "Reduced graphene oxide modified Z-scheme AgI/Bi2MoO6 heterojunctions with boosted photocatalytic activity for water treatment originated from the efficient charge pairs partition and migration." Environmental Science and Pollution Research 2021, 28, 66589-66601. DOI: 10.1007/s11356-021-15180-y.
[2] Cooper, A. I., "Conjugated microporous polymers." Advanced Materials 2009, 21, 1291-1295. DOI: 10.1002/adma.200801971.
[3] Zhou, Y. B.;Zhan, Z. P., "Conjugated microporous polymers for heterogeneous catalysis." Chemistry–An Asian Journal 2018,13,9-19. DOI: 10.1002/asia.201701107.
[4] Chen, T.;Zhang, W.;Li, B.;Huang, W.;Lin, C.;Wu, Y.;Chen, S.;Ma, H., "Adsorptive separation of aromatic compounds from alkanes by π–π interactions in a carbazole-based conjugated microporous polymer." ACS Applied Materials & Interfaces 2020,12,56385-56392. DOI: 10.1021/acsami.0c18232.
[5] Mohamed, M. G.;EL-Mahdy, A. F.;Kotp, M. G.;Kuo, S.-W., "Advances in porous organic polymers: Syntheses, structures, and diverse applications." Materials Advances 2022, 3, 707-733. DOI: 10.1039/D1MA00771H.
[6] Imam, S. S.;Babamale, H. F., "A short review on the removal of rhodamine B dye using agricultural waste-based adsorbents." Asian Journal of Chemical Sciences 2020, 7, 25-37. DOI: 10.9734/AJOCS/2020/v7i119013.
[7] Lin, Y.;Ma, J.;Liu, W.;Li, Z.;He, K., "Efficient removal of dyes from dyeing wastewater by powder activated charcoal/titanate nanotube nanocomposites: adsorption and photoregeneration." Environmental Science and Pollution Research 2019, 26, 10263-10273. DOI: 10.1007/s11356-019-04218-x.
[8] Liu, Y.;Li, B.;Xiang, Z., "Pathways towards Boosting Solar‐Driven Hydrogen Evolution of Conjugated Polymers." Small 2021,17,2007576. DOI: 10.1002/smll.202007576.
[9] Zhang, H.;Li, M.;Wang, W.;Zhang, G.;Tang, Q.;Cao, J., "Designing 3D porous BiOI/Ti3C2 nanocomposite as a superior coating photocatalyst for photodegradation RhB and photoreduction Cr (VI)." Separation and Purification Technology 2021, 272,118911.DOI: 10.1016/j.seppur.2021.118911.
[10] Gao, X.;Shu, C.;Zhang, C.;Ma, W.;Ren, S.-B.;Wang, F.;Chen, Y.;Zeng, J. H.;Jiang, J.-X., "Substituent effect of conjugated microporous polymers on the photocatalytic hydrogen evolution activity." Journal of Materials Chemistry A 2020, 8, 2404-2411. DOI: 10.1039/C9TA13212K.
[11] Yu, C.;Cao, F.;Li, G.;Wei, R.;Jimmy, C. Y.;Jin, R.;Fan, Q.;Wang, C., "Novel noble metal (Rh, Pd, Pt)/BiOX (Cl, Br, I) composite photocatalysts with enhanced photocatalytic performance in dye degradation." Separation and Purification Technology 2013,120,110-122. DOI: 10.1016/j.seppur.2013.09.036.
[12] Liu, H.;Wang, C.;Wang, G., "Photocatalytic advanced oxidation processes for water treatment: recent advances and perspective." Chemistry–An Asian Journal 2020, 15, 3239-3253. DOI: 10.1002/asia.202000895.
[13] Andreozzi, R.;Caprio, V.;Insola, A.;Marotta, R., "Advanced oxidation processes (AOP) for water purification and recovery." Catalysis today 1999, 53, 51-59. DOI: 10.1016/S0920-5861(99)00102-9.
[14] Zhang, T.;Xing, G.;Chen, W.;Chen, L., "Porous organic polymers: a promising platform for efficient photocatalysis." Materials Chemistry Frontiers 2020, 4, 332-353. DOI: 10.1039/C9QM00633H.
[15] Sillanpää, M. E.;Kurniawan, T. A.;Lo, W.-h., "Degradation of chelating agents in aqueous solution using advanced oxidation process (AOP)." Chemosphere 2011, 83, 1443-1460. DOI: 10.1016/j.chemosphere.2011.01.007.
[16] Wang, B.;Xie, Z.;Li, Y.;Yang, Z.;Chen, L., "Dual-functional conjugated nanoporous polymers for efficient organic pollutants treatment in water: a synergistic strategy of adsorption and photocatalysis." Macromolecules 2018, 51, 3443-3449. DOI: 10.1021/acs.macromol.8b00669.
[17] Hou, Y.;Cui, C.-X.;Zhang, E.;Wang, J.-C.;Li, Y.;Zhang, Y.;Zhang, Y.;Wang, Q.;Jiang, J., "A hybrid of g-C3N4 and porphyrin-based covalent organic frameworks via liquid-assisted grinding for enhanced visible-light-driven photoactivity." Dalton Transactions 2019,48,14989-14995. DOI: 10.1039/C9DT03307F.
[18] Deng, Y.;Zhang, Z.;Du, P.;Ning, X.;Wang, Y.;Zhang, D.;Liu, J.;Zhang, S.;Lu, X., "Embedding ultrasmall Au clusters into the pores of a covalent organic framework for enhanced photostability and photocatalytic performance." Angewandte Chemie 2020, 132, 6138-6145. DOI: 10.1002/ange.201916154.
[19] Wang, T.-X.;Liang, H.-P.;Anito, D. A.;Ding, X.;Han, B.-H., "Emerging applications of porous organic polymers in visible-light photocatalysis." Journal of Materials Chemistry A 2020,8,7003-7034. DOI: 10.1039/D0TA00364F.
[20] Li, M.;Zhao, H.;Lu, Z.-Y., "Porphyrin-based porous organic polymer, Py-POP, as a multifunctional platform for efficient selective adsorption and photocatalytic degradation of cationic dyes." Microporous and Mesoporous Materials 2020, 292, 109774. DOI: 10.1016/j.micromeso.2019.109774.
[21] Preet, K.;Gupta, G.;Kotal, M.;Kansal, S. K.;Salunke, D. B.;Sharma, H. K.;Chandra Sahoo, S.;Van Der Voort, P.;Roy, S., "Mechanochemical synthesis of a new triptycene-based imine-linked covalent organic polymer for degradation of organic dye." Crystal Growth & Design 2019, 19, 2525-2530. DOI: 10.1021/acs.cgd.9b00166.
[22] Ma, S.;Li, Z.;Jia, J.;Zhang, Z.;Xia, H.;Li, H.;Chen, X.;Xu, Y.;Liu, X., "Amide-linked covalent organic frameworks as efficient heterogeneous photocatalysts in water." Chinese Journal of Catalysis 2021,42,2010-2019. DOI: 10.1016/S1872-2067(21)63836-6.
[23] Wang, J. H.;Chang, C.-L.;Zhang, Z. W.;EL-Mahdy, A. F., "Facile metal-free synthesis of pyrrolo [3,2-b] pyrrolyl-based conjugated microporous polymers for high-performance photocatalytic degradation of organic pollutants." Polymer Chemistry 2022, 13, 5300-5308. DOI: 10.1039/D2PY00658H.
電子全文 電子全文(網際網路公開日期:20270712)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top