跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 20:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉凱陞
研究生(外文):Kai-Sheng Liu
論文名稱:氨基矽烷-偶氮苯材料應用於動態全像相位式光柵的合成與特性分析
論文名稱(外文):Synthesis and Characterization of Amino Silan-Azobenzene Compound Materials for Dynamic Holographic Phase Gratings
指導教授:蘇威宏
指導教授(外文):Su,Wei-Hung
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:81
中文關鍵詞:偶氮苯動態全像全像材料相位式光柵繞射效率
外文關鍵詞:AzobenzeneDynamic holographicHolographic materialsPhase gratingDiffraction efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:4
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究選用偶氮苯化合物 2-{[4-(二甲氨基)苯基]偶氮基}苯甲酸 (4-Dimethylaminoazobenzene-2’-carboxylic acid, Methyl Red,簡稱 MR) 與基材 3-氨基丙基三乙氧基矽烷 ((3-Aminopropyl)triethoxysilane, APTES,簡稱 AP),使 MR 與 AP 形成離子鍵結,製備動態全像記錄的偶氮苯全像材料。以功率為 200 mW/cm² 的 532 nm DPSS 雷射干涉寫入,繞射效率量測中發現有兩個峰,第一個可在短時間內產生,並在寫入光關閉後消失。我們透過厚度的改變,驗證此為折射率變化的像位式光柵所造成。研究顯示,厚度增加使最大繞射效率增加,厚度5092 nm 樣品,在0.2秒內達到最大繞射效率2.7 %。然而,材料在寫入光波段有吸收,膜厚增加到一定程度後,繞射效率無法進一步提升。

為了提升光學性能與擴展實用性,將材料添加雙折射特性的液晶混合物E7。研究顯示,莫耳數比1: 6的樣品,在0.4秒內達到最大繞射效率5.2 %。也發現材料隨著溶劑的揮發,光學性能也受影響。研究顯示,E7與MR莫耳數比1: 6且揮發時間3小時,在0.3秒內達到最大繞射效率8.7 %,為本研究最佳參數,並在寫入光關閉後,繞射效率在2638秒後自然消失。由於改變不同參數,需進一步分析對響應時間、最大繞射效率與衰退時間的影響。
In this study, we selected the azoenzene compound 4-Dimethylaminoazobenzene-2’-carboxylic acid (Methyl Red, MR) and the substrate (3-Aminopropyl)triethoxysilane (APTES, AP). MR and AP form ionic bonds, creating azo holographic materials for dynamic holographic recording. A 532 nm DPSS laser with a power of 200 mW/cm² was used for interference recording. Diffraction efficiency measurements revealed two peaks; the first peak appeared in a short time and disappeared when the writing light was turned off. We verified through thickness changes that this was caused by a refractive index phase grating. The study showed that increasing the thickness led to a higher maximum diffraction efficiency. For a sample with a thickness of 5092 nm, the maximum diffraction efficiency of 2.7% was achieved within 0.2 seconds. However, due to the material''s absorption in the recording light wavelength, the diffraction efficiency could not be further increased after the film thickness reached a certain point.

To enhance optical performance and expand practical applications, a birefringent liquid crystal mixture, E7, was added to the material. The study showed that a sample with a molar ratio of 1:6 achieved a maximum diffraction efficiency of 5.2% within 0.4 seconds. It was also found that the optical performance of the material was affected as the solvent evaporated. The study showed that with an MR to E7 molar ratio of 1:6 and an evaporation time of 3 hours, a maximum diffraction efficiency of 8.7% was achieved within 0.3 seconds, representing the optimal parameters in this study, and the diffraction efficiency naturally decayed after 2638 seconds when the writing light was turned off. Further analysis is needed to understand the impact of different parameters on response time, maximum diffraction efficiency, and decay time.
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 研究架構 3
第二章 原理與文獻回顧 4
2.1 全像術 4
2.2 全像術應用 5
2.3 全像儲存材料種類 7
2.3.1 鹵化銀材料 (Silver halide emulsion) 7
2.3.2 重鉻酸鹽明膠 (Dichromated Gelatin,DCG) 7
2.3.3 光折變材料 (Photorefractive Crystal) 8
2.3.4 感光類材料 (Photographic material) 8
2.4 各類動態紀錄全像材料文獻回顧 9
2.5 全像光柵分類 11
2.6 偶氮苯材料光柵形成機制 13
2.6.1 偶氮苯的幾何異構 (Geometric isomers of azobenzene) 13
2.6.2 光致變系統機制 13
2.6.3 光致定向分子的運動型態類型 14
2.6.4 偶氮苯之相位式光柵(Phase grating) 15
2.7 基材APTES 16
2.8 含液晶的偶氮苯類材料 17
2.9 繞射效率 18
第三章 研究方法 19
3.1 實驗藥品 19
3.2 實驗流程 20
3.2.1 MA 材料製程 20
3.2.2 E7/MA 材料製程 21
3.3樣品代號與組成參數控制 22
3.4 實驗儀器及分析方法 24
3.4.1超音波震盪機 (Ultrasonic cleaner) 24
3.4.2 旋轉塗佈機 (Spin coater) 24
3.4.3 傅立葉轉換紅外光譜儀 (Fourier transform infrared spectrometer) 24
3.4.4 三維輪廓儀 (Alpha-step profilometer) 25
3.4.5 精密電子天平 (Electronic balance) 25
3.4.6 紫外-可見光光譜儀 (UV-visible spectrometer) 25
3.5 全像干涉實驗 26
3.5.1實驗設備 26
3.5.2 全像記錄與讀取 26
第四章 結果與討論 29
4.1 材料的合成鑑定分析 29
4.1.1 傅立葉轉換紅外光光譜儀 (FTIR) 29
4.1.2 紫外-可見光光譜儀 35
4.1.3 材料的合成與鑑定分析小結 35
4.1.4 三維輪廓儀 (Alpha-step Profilometer) 38
4.2 光學特性 40
4.2.1 不同膜厚MA材料之一階最大繞射效率與自然衰退 40
4.2.2 不同膜厚MA材料對應穿透率量測 46
4.2.3 不同比例E7/MA材料之一階最大繞射效率與自然衰退 48
4.2.4 不同甲醇揮發程度 MA 材料之一階最大繞射效率與自然衰退 52
4.2.5 不同甲醇揮發程度 E7/MA 材料之一階最大繞射效率與自然衰退 57
4.2.6 光學特性綜合討論 61
第五章 結論 64
未來工作 65
參考文獻 66
[1] Ishii, N.; Kato, T.; Abe, J., A real-time dynamic holographic material using a fast photochromic molecule. Sci Rep 2012, 2, 819.
[2] Gabor, D., A new microscopic principle. Nature 1948, 161(4098), 777-778.
[3] Zhou, P.; Li, Y.; Li, X.; Liu, S.; Su, Y., Holographic display and storage based on photo-responsive liquid crystals. Liquid Crystals Reviews 2016, 4(2), 83-100.
[4] Saleh, B. E.; Teichet, M. C., Fundamentals of photonics. Wiley New York 1991, 696-736.
[5] Tay, S.; Blanche, PA.; Voorakaranam, R.; Tunc, A. V.; Lin, W.; Rokutanda, S.; Gu, T.; Flores, D.; Wang, P.; Li, G.; St Hilaire, P.; Thomas, J.; Norwood, R. A.; Yamamoto, M.; Peyghambarian, N., An updatable holographic three-dimensional display. Nature 2008, 451(7179), 694-698.
[6] Zheng, D.; Wang, W.; Wang, S.; Qu, D.; Liu, H.; Kong, Y.; Liu, S.; Chen, S.; Rupp, R.; Xu, J., Real-time dynamic holographic display realized by bismuth and magnesium co-doped lithium niobate. Applied Physics Letters 2019, 114 (24), 241903.
[7] Pham, V. P.; Manivannan, G.; Lessard, R. A.; Bornengo, G.; Pó, R., New azo-dye-doped polymer systems as dynamic holographic recording media. Applied Physics A 1995, 60(3), 239-242.
[8] Wu, P.; Sun, S. Q.; Baig, S.; Wang, M. R., Nanoscale optical reinforcement for enhanced reversible holography. Optics Express 2012, 20(3), 3091-3097.
[9] Li, X.; Chen, C. P.; Gao, H.; He, Z.; Xiong, Y.; Li, H.; Hu, W.; Ye, Z.; He, G.; Lu, J.;Su, Y., Video-rate holographic display using azo-dye-doped liquid crystal. Journal of Display Technology 2014, 10(6), 438-443.
[10] Crano, J. C.; Guglielmetti, R. J., Organic photochromic and thermochromic compounds. Kluwer Academic/ Plenum Publishers, New York 1999, 1-397.
[11] Hobson, P., Polarization holography. Contemporary Physics 2010, 51(5), 455-456.
[12] Shi, Y. Q.; Steier, W. H.; Yu, L. P.; Chen, M.; Dalton, L. R., Large stable photoinduced refractive-index change in a nonlinear optical polyester polymer with disperse red side groups. Appl Phys Lett 1991, 58 (11), 1131-1133.
[13] Chen, C.-H., Synthesis and characterization of azobenzene / silica composites for optical applications. Master Thesis,National Sun Yat-Sen University 2013, 1-63.
[14] Tseng, Y.-P., Synthesis of azobenzene-based composites and its optical characterization. Master Thesis,National Sun Yat-Sen University 2014, 1-83.
[15] Zhang, J. Y.; Ming, H.; Wang, P.; Sun, X. H.; Lu, Y. H.; Wu, Y. X.; Xie, J. P.; Zhang, Q. J.; Liu, J.; Xie, A. F.; Zhang, Z. B.; Gu, B. Y., Birefringence grating and surface grating in azobenzene polymer liquid crystal films investigated by near-field optical method. Chinese Phys. Lett. 2003, 20, 1043.
[16] Leith, E. N.; Upatnieks, J., Reconstructed wavefronts and communication theory. Journal of the Optical Society of America 1962, 52(10), 1123-1130.
[17] Young, T., The bakerian lecture: on the theory of light and colours.
[18] Yepes, S. V.; Gesualdi, R. R., Dynamic digital holography for recording and reconstruction of 3D images using optoelectronic devices. Journal of Microwaves, Optoelectronics and Electromagnetic Applications 2017, 16 (3), 797-811.
[19] Cheng,S.-Q., Holographic optics. Science Monthly 2017, 567.
[20] Mehta, P. C.; Rampal, V., Lasers and holography. World Scientific 1993, 272-273.
[21] Li, J.; He, M.; Zheng, T.; Cao, L.; He, Q., Two-dimensional shift-orthogonal
[22] Chang, B., Dichromated gelatin holograms and their applications. Optical Engineering 1980, 19(5), 195642.
[23] Saleh, B. E.; Teichet, M. C., Fundamentals of photonics. Wiley New York 1991, 696-736.
[24] Michael, R. G.; John, T. S., A review of the modelling of free-radical photopolymerization in the formation of holographic gratings. Journal of Optics A: Pure and Applied Optics 2009, 11 (2), 024008.
[25] Merino, E.; Ribagorda, M., Control over molecular motion using the cis–trans photoisomerization of the azo group. Beilstein J. Org. Chem. 2012, 8, 1071-1090.
[26] Mahimwalla, Z.; Yager, K.; Mamiya, J. I.; Shishido, A., Azobenzene photomechanics: prospects and potential applications. Polymer Bulletin 2012, 69(8), 967-1006.
[27] Lian, C.; Zhao, H.; Pei, Y.; Sun, X.; Zhang, J., Fast response beam coupling in liquid crystal cells sandwiched between ZnSe substrates. Optics Express 2012, 20(14), 15843-15852.
[28] Li, X.; Chen, C. P.; Li, Y.; Hu, W,; Li, H.; Jiang, X.; Rong, N.; Yuan, Y.; Lu, J. Su, Y., Real-time holographic display using quantum dot doped liquid crystal. SID Symposium Digest 2014, 45(1), 736-738.
[29] Lee, C.-R., Studies of holographic grating recordings and their applications based on azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal films. Doctoral thesis, National Cheng Kung University 2003, 1-94.
[30] Klein, W.; Cook, B. D., Unified approach to ultrasonic light diffraction. IEEE Transactions on sonics and ultrasonics 1967, 14 (3), 123-134.
[31] Kogelnik, H., Coupled wave theory for thick hologram gratings. Bell Labs Technical Journal 1969, 48 (9), 2909-2947.
[32] Lan, W.-l., Matrix effect of azobenzene-based holographic storage materials. Master Thesis,National Sun Yat-sen University 2016, 1-70.
[33] Priimägi, A., Polymer-azobenzene complexes: from supramolecular concepts to efficient photoresponsive polymers. Doctoral Dissertation, Helsinki University of Technology 2009, 3-5.
[34] Bouas-Laurent, H.; Dürr, H., Organic photochromism (IUPAC technical report). Pure and Applied Chemistry 2001, 73 (4), 639-665.
[35] Rau, H., Photochemistry and photophysics. Boca Raton 1990, 2(1), 119-121.
[36] Dumont, M.; Osman, A. E., On spontaneous and photoinduced orientational mobility of dye molecules in polymers. Chemical Physics 1999, 245(1), 437-462.
[37] Ikeda, T.; Horiuchi, S.; Karanjit, D. B.; Kurihara, S.; Tazuke, S., Photochemically induced isothermal phase transition in polymer liquid crystals with mesogenic phenyl benzoate side chains. Macromolecules 1990, 23(1), 42-48.
[38] Yager, K. G.; Barrett, C. J., All-optical patterning of azo polymer films. Curr. Opin. Solid State Material Science 2001, 5(6), 487-494.
[39] Brinker, C. J.; Scherer, G. W., Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press 1990, 1-18.
[40] Yu, H.; Kobayashi, T., Photoresponsive block copolymers containing azobenzenes and other chromophores. Molecules 2010, 15, 570.
[41] Kaur, G.; S. Jain, A. K.; Tiwary, A. K., Investigations on microbially triggered. Asian Journal of Pharmaceutical Sciences 2010, 5(3), 96-105.
[42] Eugenii, P.; Mariya,Y.; Irina, B.; Bair, B., A FTIR study of silanol nests over mesoporous silicate materials. Microporous and Mesoporous Materials 2019, 288(1), 109582.
[43] Corvazier, L.; Zhao, Y., Induction of liquid crystal orientation through azobenzene-containing polymer networks. Macromolecules 1999, 32, 10, 3195-3200.
[44] Drzaic, P. S., Droplet density, droplet size, and wavelength effects in PDLC light scattering. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 1995, 261(1), 383-392.
電子全文 電子全文(網際網路公開日期:20290726)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top