跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 03:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱梓滔
研究生(外文):Zi-Tao Chu
論文名稱:利用奈米線間吸引力透過朗謬爾薄膜組裝奈米線形成微纖維
論文名稱(外文):Utilizing inter-nanowire attractive forces to assemble 1D nanowires into microfiber through Langmuir film
指導教授:邱政維
指導教授(外文):Kevin Chiou
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:107
中文關鍵詞:奈米線微纖維朗謬爾薄膜長寬比纏結長程有序直接組裝
外文關鍵詞:nanowiresmicrofiberLangmuir filmaspect ratioentanglementlong-range orderdirect assembly
相關次數:
  • 被引用被引用:0
  • 點閱點閱:4
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米材料的組裝對於其在實際應用方面尚有很大程度的影響,在本篇研究當中,我希望建立一種創新的一維材料組裝方法,透過朗謬爾薄膜來組裝奈米線形成微纖維,實驗結果顯示擁有高縱橫比及柔韌性的銅奈米線可以很好的透過此方法來形成微纖維,我隨後提出了對成形機制的假設,微纖維是依靠奈米線間作用例如凡德瓦爾力及纏結現象來使奈米線得以相互牽制進而組裝成微纖維,其中奈米材料的縱橫比變成為了決定奈米線是否能組裝的重要關鍵,從文獻中得知材料的柔韌性會很高程度決定於材料的厚度及長度。為了驗證此成形機制假設,我使用了另一種擁有低縱橫比的氧化鋅奈米線,實驗結果也與假設相互呼應。最後我提出結合兩種奈米線的方法,利用擁有高縱橫比的銅奈米線來當作主體,低縱橫比的氧化鋅奈米線則可以填充在其內部當作強化材料,如此便可彌補氧化鋅縱橫比不足的問題並成功使其與銅奈米線一同形成微纖維。
The arrangement of nanomaterials has a significant impact on their practical applications. In this study, I advanced an innovative method for assembling one-dimensional materials into microfibers of aligned constituents. I used Langmuir films to first isolate 1D nanomaterials into a 2D plane, then the nanowires can be reorganized into microfibers. Experimental results demonstrate that high aspect ratio and flexible copper nanowires can effectively form microfibers using this method. Subsequently, I hypothesized that the microfibers rely on interactions between the nanowires, such as van der Waals forces and entanglement phenomena, to restrain each other and assemble into microfibers. The aspect ratios of the nanomaterials become critical in determining whether a sample of nanowires can assemble via this method. To verify this forming mechanism, I combined a low aspect ratio nanowire zinc oxide nanorods with high aspect ratio copper nanowires to verify that microfibers can be drawn from Langmuir films as long as the average aspect-ratio reaches a threshold. This approach compensates for the insufficient aspect ratio of zinc oxide nanorods and successfully forms microfibers along with the copper nanowires.
論文審定書 i
中文摘要 ii
Abstract iii
List of Figures vii
Chapter 1 Introduction 1
1.1 Nanomaterial 1
1.1.1 Basic concepts and definitions of nanomaterials 1
1.1.2 Surface effect of nanomaterial 4
1.1.3 Quantum confinement effect of nanomaterial 5
1.1.4 Synthesis methods of nanomaterials 7
1.2 Nanomaterial assembly 10
1.2.1 Definition of assembly and basic concepts 10
1.2.2 Self-assembly and direct assembly 11
1.2.3 Different Methods to achieve direct assemble of nanomaterials 12
1.3 Entanglement within nanowires 13
1.3.1 Concepts of entanglement in polymer science 13
1.3.2 Similarities between nanowires and polymer chains 16
1.3.3 The flexibility of nanowires 18
1.4 Langmuir film 23
1.4.1 History and basic concepts 23
1.4.2 Mechanism behind Langmuir film forming 24
1.4.3 Effect of surface pressure 26
1.5 Motivation 28
Chapter 2 Experiment 31
2.1 Chemicals 31
2.2 Sample preparation 32
2.2.1 Copper nanowire synthesis 32
2.2.2 Zinc oxide nanowire synthesis 34
2.2.3 Langmuir film deposition and fiber drawing of copper nanowire 35
2.2.3 Copper and zinc oxide nanowire dispersion 37
2.2.4 Langmuir film deposition and fiber drawing 38
2.2.5 Twisting microfiber yarn 40
2.3 Characterization 41
2.3.1 Scanning electron microscopy (SEM, ZEISS GeminiSEM 450) 41
2.3.3 Energy-dispersive X-ray spectroscopy (EDS) 44
2.3.4 Selected area electron diffraction (SAED) 44
2.3.5 X-ray diffractometer (XRD, Bruker XRD D2 PHASER) 46
2.3.6 Fourier transform infrared spectroscopy (FTIR, Nicolet iS50) 47
Chapter 3 Results and Discussion 48
3.1 Characterization of nanomaterials 48
3.1.1 Copper nanowire 48
3.1.2 Zinc oxide nanowire 55
3.2 Characterization of Langmuir-Blodgett film 59
3.2.1 Copper Langmuir-Blodgett film 59
3.2.2 Zinc oxide Langmuir-Blodgett film 63
3.3 Characterization of microfiber draw from Langmuir-Blodgett film 68
3.3.1 Copper microfiber 68
3.3.2 Surface pressure vs. fiber diameter 74
3.4 Processibility of microfiber 81
Chapter 4 Conclusion 83
Chapter 5 Future work 85
Chapter 6 Reference 86
(1) Hasan, S. A review on nanoparticles: their synthesis and types. Res. J. Recent Sci 2015, 2277, 2502.
(2) Feynman, R. P. Plenty of Room at the Bottom. In APS annual meeting, 1959; Little Brown Boston, MA, USA: pp 1-7.
(3) Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. Surface Studies by Scanning Tunneling Microscopy. Physical Review Letters 1982, 49 (1), 57-61.
(4) Binnig, G.; Quate, C. F.; Gerber, C. Atomic Force Microscope. Physical Review Letters 1986, 56 (9), 930-933.
(5) Rahman, K. M.; Melville, L.; Huq, S. M. I.; Khoda, S. K. Understanding bioenergy production and optimisation at the nanoscale – a review. Journal of Experimental Nanoscience 2016, 11 (10), 762-775.
(6) Lines, M. G. Nanomaterials for practical functional uses. Journal of Alloys and Compounds 2008, 449 (1-2), 242-245.
(7) Buzea, C.; Pacheco, I. I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2 (4), MR17-MR71.
(8) Kolahalam, L. A.; Kasi Viswanath, I. V.; Diwakar, B. S.; Govindh, B.; Reddy, V.; Murthy, Y. L. N. Review on nanomaterials: Synthesis and applications. Materials Today: Proceedings 2019, 18, 2182-2190.
(9) Roduner, E. Size matters: why nanomaterials are different. Chemical Society Reviews 2006, 35 (7), 583.
(10) Joudeh, N.; Linke, D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. Journal of Nanobiotechnology 2022, 20 (1).
(11) Garnett, E.; Mai, L.; Yang, P. Introduction: 1D Nanomaterials/Nanowires. Chemical Reviews 2019, 119 (15), 8955-8957.
(12) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666-669.
(13) Kashiwaya, S.; Shi, Y.; Lu, J.; Sangiovanni, D. G.; Greczynski, G.; Magnuson, M.; Andersson, M.; Rosen, J.; Hultman, L. Synthesis of goldene comprising single-atom layer gold. Nature Synthesis 2024.
(14) Sanjay, S. S.; Pandey, A. C. A Brief Manifestation of Nanotechnology. Springer India, 2017; pp 47-63.
(15) Sumanth Kumar, D.; Jai Kumar, B.; Mahesh, H. M. Quantum Nanostructures (QDs): An Overview. Elsevier, 2018; pp 59-88.
(16) Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances 2021, 2 (6), 1821-1871.
(17) Semaltianos, N. G. Nanoparticles by Laser Ablation. Critical Reviews in Solid State and Materials Sciences 2010, 35 (2), 105-124.
(18) Feng, S. H.; Li, G. H. Hydrothermal and Solvothermal Syntheses. Elsevier, 2017; pp 73-104.
(19) Danks, A. E.; Hall, S. R.; Schnepp, Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Materials Horizons 2016, 3 (2), 91-112.
(20) Liu, Y.; Goebl, J.; Yin, Y. Templated synthesis of nanostructured materials. Chemical Society Reviews 2013, 42 (7), 2610-2653.
(21) Malik, M. A.; Wani, M. Y.; Hashim, M. A. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update. Arabian journal of Chemistry 2012, 5 (4), 397-417.
(22) Yadav, T. P.; Yadav, R. M.; Singh, D. P. Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanoscience and Nanotechnology 2012, 2 (3), 22-48.
(23) Kumar, P. S.; Sundaramurthy, J.; Sundarrajan, S.; Babu, V. J.; Singh, G.; Allakhverdiev, S. I.; Ramakrishna, S. Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy & environmental science 2014, 7 (10), 3192-3222.
(24) Pimpin, A.; Srituravanich, W. Review on micro-and nanolithography techniques and their applications. Engineering journal 2012, 16 (1), 37-56.
(25) Ayyub, P.; Chandra, R.; Taneja, P.; Sharma, A.; Pinto, R. Synthesis of nanocrystalline material by sputtering and laser ablation at low temperatures. Applied Physics A 2001, 73, 67-73.
(26) Zhang, D.; Ye, K.; Yao, Y.; Liang, F.; Qu, T.; Ma, W.; Yang, B.; Dai, Y.; Watanabe, T. Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber. Carbon 2019, 142, 278-284.
(27) Amendola, V.; Meneghetti, M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Physical chemistry chemical physics 2009, 11 (20), 3805-3821.
(28) Yin, J.; Huang, Y.; Hameed, S.; Zhou, R.; Xie, L.; Ying, Y. Large scale assembly of nanomaterials: mechanisms and applications. Nanoscale 2020, 12 (34), 17571-17589.
(29) Chai, Z.; Childress, A.; Busnaina, A. A. Directed Assembly of Nanomaterials for Making Nanoscale Devices and Structures: Mechanisms and Applications. ACS Nano 2022, 16 (11), 17641-17686.
(30) Grzelczak, M.; Vermant, J.; Furst, E. M.; Liz-Marzán, L. M. Directed self-assembly of nanoparticles. ACS nano 2010, 4 (7), 3591-3605.
(31) Lan, H.; Ding, Y. Ordering, positioning and uniformity of quantum dot arrays. Nano Today 2012, 7 (2), 94-123.
(32) Hu, L.; Zhang, R.; Chen, Q. Synthesis and assembly of nanomaterials under magnetic fields. Nanoscale 2014, 6 (23), 14064-14105.
(33) Collet, M.; Salomon, S.; Klein, N. Y.; Seichepine, F.; Vieu, C.; Nicu, L.; Larrieu, G. Large‐Scale Assembly of Single Nanowires through Capillary‐Assisted Dielectrophoresis. Advanced Materials 2015, 27 (7), 1268-1273.
(34) Dai, Z.; Ou, Q.; Wang, C.; Si, G.; Shabbir, B.; Zheng, C.; Wang, Z.; Zhang, Y.; Huang, Y.; Dong, Y.; et al. Capillary-bridge mediated assembly of aligned perovskite quantum dots for high-performance photodetectors. Journal of Materials Chemistry C 2019, 7 (20), 5954-5961.
(35) Zhang, S.; Pelligra, C. I.; Feng, X.; Osuji, C. O. Directed Assembly of Hybrid Nanomaterials and Nanocomposites. Advanced Materials 2018, 30 (18), 1705794.
(36) Busseron, E.; Ruff, Y.; Moulin, E.; Giuseppone, N. Supramolecular self-assemblies as functional nanomaterials. Nanoscale 2013, 5 (16), 7098.
(37) Thorkelsson, K.; Bai, P.; Xu, T. Self-assembly and applications of anisotropic nanomaterials: A review. Nano Today 2015, 10 (1), 48-66.
(38) Kalinina, E. G.; Pikalova, E. Y. New trends in the development of electrophoretic deposition method in the solid oxide fuel cell technology: theoretical approaches, experimental solutions and development prospects. Russian Chemical Reviews 2019, 88 (12), 1179.
(39) Wang, M.; He, L.; Yin, Y. Magnetic field guided colloidal assembly. Materials Today 2013, 16 (4), 110-116.
(40) Tao, A. R.; Huang, J.; Yang, P. Langmuir− Blodgettry of nanocrystals and nanowires. Accounts of chemical research 2008, 41 (12), 1662-1673.
(41) Kim, F.; Kwan, S.; Akana, J.; Yang, P. Langmuir− Blodgett nanorod assembly. Journal of the American Chemical Society 2001, 123 (18), 4360-4361.
(42) Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang, P. Langmuir− Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano letters 2003, 3 (9), 1229-1233.
(43) Vigolo, B.; Penicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Bernier, P.; Poulin, P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 2000, 290 (5495), 1331-1334.
(44) Chen, F.; Zhu, Y.-J. Large-scale automated production of highly ordered ultralong hydroxyapatite nanowires and construction of various fire-resistant flexible ordered architectures. ACS nano 2016, 10 (12), 11483-11495.
(45) Haberkorn, N.; Lechmann, M. C.; Sohn, B. H.; Char, K.; Gutmann, J. S.; Theato, P. Templated organic and hybrid materials for optoelectronic applications. Macromolecular rapid communications 2009, 30 (14), 1146-1166.
(46) Kong, D. C.; Yang, M. H.; Zhang, X. S.; Du, Z. C.; Fu, Q.; Gao, X. Q.; Gong, J. W. Control of polymer properties by entanglement: a review. Macromolecular Materials and Engineering 2021, 306 (12), 2100536.
(47) Pawlak, A. The entanglements of macromolecules and their influence on the properties of polymers. Macromolecular Chemistry and Physics 2019, 220 (10), 1900043.
(48) Iwata, K. Role of entanglement in crystalline polymers 1. Basic theory. Polymer 2002, 43 (24), 6609-6626.
(49) Porter, R. S.; Johnson, J. F. The entanglement concept in polymer systems. Chemical Reviews 1966, 66 (1), 1-27.
(50) Wool, R. P. Polymer entanglements. Macromolecules 1993, 26 (7), 1564-1569.
(51) Mooney, M. A theory of large elastic deformation. Journal of applied physics 1940, 11 (9), 582-592.
(52) Qian, R. The concept of cohesional entanglement. In Macromolecular symposia, 1997; Wiley Online Library: Vol. 124, pp 15-26.
(53) Peng, J.; Snyder, G. J. A figure of merit for flexibility. Science 2019, 366 (6466), 690-691.
(54) Peng, J.; Grayson, M.; Snyder, G. J. What makes a material bendable? A thickness-dependent metric for bendability, malleability, ductility. Matter 2021, 4 (9), 2694-2696.
(55) Bauchau, O. A.; Craig, J. I. Structural analysis: with applications to aerospace structures; Springer Science & Business Media, 2009.
(56) Oliveira Jr, O. N.; Caseli, L.; Ariga, K. The past and the future of Langmuir and Langmuir–Blodgett films. Chemical reviews 2022, 122 (6), 6459-6513.
(57) Laurén, S. History of Langmuir and Langmuir-Blodgett Films. Aug 16, ’22. https://www.biolinscientific.com/blog/history-of-langmuir-and-langmuir-blodgett-films (accessed 2024 Jun 14).
(58) Ariga, K.; Yamauchi, Y.; Mori, T.; Hill, J. P. 25th Anniversary article: What can be done with the Langmuir‐Blodgett method? Recent developments and its critical role in materials science. Advanced Materials 2013, 25 (45), 6477-6512.
(59) Padday, J. F.; Russell, D. R. The measurement of the surface tension of pure liquids and solutions. Journal of Colloid Science 1960, 15 (6), 503-511.
(60) Petty, M. C. Langmuir-Blodgett Films; 1996.
(61) Bodik, M.; Jergel, M.; Majkova, E.; Siffalovic, P. Langmuir films of low-dimensional nanomaterials. Advances in Colloid and Interface Science 2020, 283, 102239.
(62) Yang, P.; Kim, F. Langmuir–blodgett assembly of one‐dimensional nanostructures. ChemPhysChem 2002, 3 (6), 503-506.
(63) Tao, A. R.; Huang, J.; Yang, P. Langmuir−Blodgettry of Nanocrystals and Nanowires. Accounts of Chemical Research 2008, 41 (12), 1662-1673.
(64) Zhang, S.; Lin, H.; Yang, H.; Ni, B.; Li, H.; Wang, X. Highly Flexible and Stretchable Nanowire Superlattice Fibers Achieved by Spring‐Like Structure of Sub‐1 nm Nanowires. Advanced Functional Materials 2019, 29 (39), 1903477.
(65) Zhang, M.; Atkinson, K. R.; Baughman, R. H. Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology. Science 2004, 306 (5700), 1358-1361.
(66) Reiser, B.; Gerstner, D.; Gonzalez-Garcia, L.; Maurer, J. H.; Kanelidis, I.; Kraus, T. Spinning hierarchical gold nanowire microfibers by shear alignment and intermolecular self-assembly. ACS nano 2017, 11 (5), 4934-4942.
(67) Bettscheider, S.; Kuttich, B. r.; Engel, L. F.; González-García, L.; Kraus, T. Bundling of nanowires induced by unbound ligand. The Journal of Physical Chemistry C 2021, 125 (6), 3590-3598.
(68) Li, S.; Chen, Y.; Huang, L.; Pan, D. Large-scale synthesis of well-dispersed copper nanowires in an electric pressure cooker and their application in transparent and conductive networks. Inorganic chemistry 2014, 53 (9), 4440-4444.
(69) Hu, H.; Huang, X.; Deng, C.; Chen, X.; Qian, Y. Hydrothermal synthesis of ZnO nanowires and nanobelts on a large scale. Materials Chemistry and Physics 2007, 106 (1), 58-62.
(70) Munir, N.; Hanif, M.; Dias, D. A.; Abideen, Z. The role of halophytic nanoparticles towards the remediation of degraded and saline agricultural lands. Environmental Science and Pollution Research 2021, 28 (43), 60383-60405.
(71) Zhao, C.; Wang, B.; Zhong, S.; Akhtaruzzaman, M.; Liang, W.; Chen, H. NDT studies of nanoscale polymeric coatings. In Polymer-Based Nanoscale Materials for Surface Coatings, Elsevier, 2023; pp 235-257.
(72) Bhanushali, S.; Ghosh, P.; Ganesh, A.; Cheng, W. 1D copper nanostructures: progress, challenges and opportunities. Small 2015, 11 (11), 1232-1252.
電子全文 電子全文(網際網路公開日期:20250731)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top