|
(1) Hasan, S. A review on nanoparticles: their synthesis and types. Res. J. Recent Sci 2015, 2277, 2502. (2) Feynman, R. P. Plenty of Room at the Bottom. In APS annual meeting, 1959; Little Brown Boston, MA, USA: pp 1-7. (3) Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. Surface Studies by Scanning Tunneling Microscopy. Physical Review Letters 1982, 49 (1), 57-61. (4) Binnig, G.; Quate, C. F.; Gerber, C. Atomic Force Microscope. Physical Review Letters 1986, 56 (9), 930-933. (5) Rahman, K. M.; Melville, L.; Huq, S. M. I.; Khoda, S. K. Understanding bioenergy production and optimisation at the nanoscale – a review. Journal of Experimental Nanoscience 2016, 11 (10), 762-775. (6) Lines, M. G. Nanomaterials for practical functional uses. Journal of Alloys and Compounds 2008, 449 (1-2), 242-245. (7) Buzea, C.; Pacheco, I. I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2 (4), MR17-MR71. (8) Kolahalam, L. A.; Kasi Viswanath, I. V.; Diwakar, B. S.; Govindh, B.; Reddy, V.; Murthy, Y. L. N. Review on nanomaterials: Synthesis and applications. Materials Today: Proceedings 2019, 18, 2182-2190. (9) Roduner, E. Size matters: why nanomaterials are different. Chemical Society Reviews 2006, 35 (7), 583. (10) Joudeh, N.; Linke, D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. Journal of Nanobiotechnology 2022, 20 (1). (11) Garnett, E.; Mai, L.; Yang, P. Introduction: 1D Nanomaterials/Nanowires. Chemical Reviews 2019, 119 (15), 8955-8957. (12) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666-669. (13) Kashiwaya, S.; Shi, Y.; Lu, J.; Sangiovanni, D. G.; Greczynski, G.; Magnuson, M.; Andersson, M.; Rosen, J.; Hultman, L. Synthesis of goldene comprising single-atom layer gold. Nature Synthesis 2024. (14) Sanjay, S. S.; Pandey, A. C. A Brief Manifestation of Nanotechnology. Springer India, 2017; pp 47-63. (15) Sumanth Kumar, D.; Jai Kumar, B.; Mahesh, H. M. Quantum Nanostructures (QDs): An Overview. Elsevier, 2018; pp 59-88. (16) Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances 2021, 2 (6), 1821-1871. (17) Semaltianos, N. G. Nanoparticles by Laser Ablation. Critical Reviews in Solid State and Materials Sciences 2010, 35 (2), 105-124. (18) Feng, S. H.; Li, G. H. Hydrothermal and Solvothermal Syntheses. Elsevier, 2017; pp 73-104. (19) Danks, A. E.; Hall, S. R.; Schnepp, Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Materials Horizons 2016, 3 (2), 91-112. (20) Liu, Y.; Goebl, J.; Yin, Y. Templated synthesis of nanostructured materials. Chemical Society Reviews 2013, 42 (7), 2610-2653. (21) Malik, M. A.; Wani, M. Y.; Hashim, M. A. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update. Arabian journal of Chemistry 2012, 5 (4), 397-417. (22) Yadav, T. P.; Yadav, R. M.; Singh, D. P. Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanoscience and Nanotechnology 2012, 2 (3), 22-48. (23) Kumar, P. S.; Sundaramurthy, J.; Sundarrajan, S.; Babu, V. J.; Singh, G.; Allakhverdiev, S. I.; Ramakrishna, S. Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy & environmental science 2014, 7 (10), 3192-3222. (24) Pimpin, A.; Srituravanich, W. Review on micro-and nanolithography techniques and their applications. Engineering journal 2012, 16 (1), 37-56. (25) Ayyub, P.; Chandra, R.; Taneja, P.; Sharma, A.; Pinto, R. Synthesis of nanocrystalline material by sputtering and laser ablation at low temperatures. Applied Physics A 2001, 73, 67-73. (26) Zhang, D.; Ye, K.; Yao, Y.; Liang, F.; Qu, T.; Ma, W.; Yang, B.; Dai, Y.; Watanabe, T. Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber. Carbon 2019, 142, 278-284. (27) Amendola, V.; Meneghetti, M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Physical chemistry chemical physics 2009, 11 (20), 3805-3821. (28) Yin, J.; Huang, Y.; Hameed, S.; Zhou, R.; Xie, L.; Ying, Y. Large scale assembly of nanomaterials: mechanisms and applications. Nanoscale 2020, 12 (34), 17571-17589. (29) Chai, Z.; Childress, A.; Busnaina, A. A. Directed Assembly of Nanomaterials for Making Nanoscale Devices and Structures: Mechanisms and Applications. ACS Nano 2022, 16 (11), 17641-17686. (30) Grzelczak, M.; Vermant, J.; Furst, E. M.; Liz-Marzán, L. M. Directed self-assembly of nanoparticles. ACS nano 2010, 4 (7), 3591-3605. (31) Lan, H.; Ding, Y. Ordering, positioning and uniformity of quantum dot arrays. Nano Today 2012, 7 (2), 94-123. (32) Hu, L.; Zhang, R.; Chen, Q. Synthesis and assembly of nanomaterials under magnetic fields. Nanoscale 2014, 6 (23), 14064-14105. (33) Collet, M.; Salomon, S.; Klein, N. Y.; Seichepine, F.; Vieu, C.; Nicu, L.; Larrieu, G. Large‐Scale Assembly of Single Nanowires through Capillary‐Assisted Dielectrophoresis. Advanced Materials 2015, 27 (7), 1268-1273. (34) Dai, Z.; Ou, Q.; Wang, C.; Si, G.; Shabbir, B.; Zheng, C.; Wang, Z.; Zhang, Y.; Huang, Y.; Dong, Y.; et al. Capillary-bridge mediated assembly of aligned perovskite quantum dots for high-performance photodetectors. Journal of Materials Chemistry C 2019, 7 (20), 5954-5961. (35) Zhang, S.; Pelligra, C. I.; Feng, X.; Osuji, C. O. Directed Assembly of Hybrid Nanomaterials and Nanocomposites. Advanced Materials 2018, 30 (18), 1705794. (36) Busseron, E.; Ruff, Y.; Moulin, E.; Giuseppone, N. Supramolecular self-assemblies as functional nanomaterials. Nanoscale 2013, 5 (16), 7098. (37) Thorkelsson, K.; Bai, P.; Xu, T. Self-assembly and applications of anisotropic nanomaterials: A review. Nano Today 2015, 10 (1), 48-66. (38) Kalinina, E. G.; Pikalova, E. Y. New trends in the development of electrophoretic deposition method in the solid oxide fuel cell technology: theoretical approaches, experimental solutions and development prospects. Russian Chemical Reviews 2019, 88 (12), 1179. (39) Wang, M.; He, L.; Yin, Y. Magnetic field guided colloidal assembly. Materials Today 2013, 16 (4), 110-116. (40) Tao, A. R.; Huang, J.; Yang, P. Langmuir− Blodgettry of nanocrystals and nanowires. Accounts of chemical research 2008, 41 (12), 1662-1673. (41) Kim, F.; Kwan, S.; Akana, J.; Yang, P. Langmuir− Blodgett nanorod assembly. Journal of the American Chemical Society 2001, 123 (18), 4360-4361. (42) Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang, P. Langmuir− Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano letters 2003, 3 (9), 1229-1233. (43) Vigolo, B.; Penicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Bernier, P.; Poulin, P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 2000, 290 (5495), 1331-1334. (44) Chen, F.; Zhu, Y.-J. Large-scale automated production of highly ordered ultralong hydroxyapatite nanowires and construction of various fire-resistant flexible ordered architectures. ACS nano 2016, 10 (12), 11483-11495. (45) Haberkorn, N.; Lechmann, M. C.; Sohn, B. H.; Char, K.; Gutmann, J. S.; Theato, P. Templated organic and hybrid materials for optoelectronic applications. Macromolecular rapid communications 2009, 30 (14), 1146-1166. (46) Kong, D. C.; Yang, M. H.; Zhang, X. S.; Du, Z. C.; Fu, Q.; Gao, X. Q.; Gong, J. W. Control of polymer properties by entanglement: a review. Macromolecular Materials and Engineering 2021, 306 (12), 2100536. (47) Pawlak, A. The entanglements of macromolecules and their influence on the properties of polymers. Macromolecular Chemistry and Physics 2019, 220 (10), 1900043. (48) Iwata, K. Role of entanglement in crystalline polymers 1. Basic theory. Polymer 2002, 43 (24), 6609-6626. (49) Porter, R. S.; Johnson, J. F. The entanglement concept in polymer systems. Chemical Reviews 1966, 66 (1), 1-27. (50) Wool, R. P. Polymer entanglements. Macromolecules 1993, 26 (7), 1564-1569. (51) Mooney, M. A theory of large elastic deformation. Journal of applied physics 1940, 11 (9), 582-592. (52) Qian, R. The concept of cohesional entanglement. In Macromolecular symposia, 1997; Wiley Online Library: Vol. 124, pp 15-26. (53) Peng, J.; Snyder, G. J. A figure of merit for flexibility. Science 2019, 366 (6466), 690-691. (54) Peng, J.; Grayson, M.; Snyder, G. J. What makes a material bendable? A thickness-dependent metric for bendability, malleability, ductility. Matter 2021, 4 (9), 2694-2696. (55) Bauchau, O. A.; Craig, J. I. Structural analysis: with applications to aerospace structures; Springer Science & Business Media, 2009. (56) Oliveira Jr, O. N.; Caseli, L.; Ariga, K. The past and the future of Langmuir and Langmuir–Blodgett films. Chemical reviews 2022, 122 (6), 6459-6513. (57) Laurén, S. History of Langmuir and Langmuir-Blodgett Films. Aug 16, ’22. https://www.biolinscientific.com/blog/history-of-langmuir-and-langmuir-blodgett-films (accessed 2024 Jun 14). (58) Ariga, K.; Yamauchi, Y.; Mori, T.; Hill, J. P. 25th Anniversary article: What can be done with the Langmuir‐Blodgett method? Recent developments and its critical role in materials science. Advanced Materials 2013, 25 (45), 6477-6512. (59) Padday, J. F.; Russell, D. R. The measurement of the surface tension of pure liquids and solutions. Journal of Colloid Science 1960, 15 (6), 503-511. (60) Petty, M. C. Langmuir-Blodgett Films; 1996. (61) Bodik, M.; Jergel, M.; Majkova, E.; Siffalovic, P. Langmuir films of low-dimensional nanomaterials. Advances in Colloid and Interface Science 2020, 283, 102239. (62) Yang, P.; Kim, F. Langmuir–blodgett assembly of one‐dimensional nanostructures. ChemPhysChem 2002, 3 (6), 503-506. (63) Tao, A. R.; Huang, J.; Yang, P. Langmuir−Blodgettry of Nanocrystals and Nanowires. Accounts of Chemical Research 2008, 41 (12), 1662-1673. (64) Zhang, S.; Lin, H.; Yang, H.; Ni, B.; Li, H.; Wang, X. Highly Flexible and Stretchable Nanowire Superlattice Fibers Achieved by Spring‐Like Structure of Sub‐1 nm Nanowires. Advanced Functional Materials 2019, 29 (39), 1903477. (65) Zhang, M.; Atkinson, K. R.; Baughman, R. H. Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology. Science 2004, 306 (5700), 1358-1361. (66) Reiser, B.; Gerstner, D.; Gonzalez-Garcia, L.; Maurer, J. H.; Kanelidis, I.; Kraus, T. Spinning hierarchical gold nanowire microfibers by shear alignment and intermolecular self-assembly. ACS nano 2017, 11 (5), 4934-4942. (67) Bettscheider, S.; Kuttich, B. r.; Engel, L. F.; González-García, L.; Kraus, T. Bundling of nanowires induced by unbound ligand. The Journal of Physical Chemistry C 2021, 125 (6), 3590-3598. (68) Li, S.; Chen, Y.; Huang, L.; Pan, D. Large-scale synthesis of well-dispersed copper nanowires in an electric pressure cooker and their application in transparent and conductive networks. Inorganic chemistry 2014, 53 (9), 4440-4444. (69) Hu, H.; Huang, X.; Deng, C.; Chen, X.; Qian, Y. Hydrothermal synthesis of ZnO nanowires and nanobelts on a large scale. Materials Chemistry and Physics 2007, 106 (1), 58-62. (70) Munir, N.; Hanif, M.; Dias, D. A.; Abideen, Z. The role of halophytic nanoparticles towards the remediation of degraded and saline agricultural lands. Environmental Science and Pollution Research 2021, 28 (43), 60383-60405. (71) Zhao, C.; Wang, B.; Zhong, S.; Akhtaruzzaman, M.; Liang, W.; Chen, H. NDT studies of nanoscale polymeric coatings. In Polymer-Based Nanoscale Materials for Surface Coatings, Elsevier, 2023; pp 235-257. (72) Bhanushali, S.; Ghosh, P.; Ganesh, A.; Cheng, W. 1D copper nanostructures: progress, challenges and opportunities. Small 2015, 11 (11), 1232-1252.
|